



摘要:針對互聯網的廣泛應用容易導致各類隱私數據泄露的問題, 提出了云計算下去中心化雙重差分隱私數據保護算法。首先通過學習隱私數據傳輸信道網絡模型準確采集隱私數據, 然后利用重構隱私數據空間特征的方法獲取隱私數據本體特征, 最后通過隱私數據特征對采集的隱私數據實施精準加噪, 以達到精準保護隱私數據的目的, 完成去中心化雙重差分隱私數據保護。經實驗驗證, 所提算法對隱私數據的保護實時性高、 安全性好, 且在不同噪聲環境下均可以對隱私數據實施精確保護。
關鍵詞:云計算; 雙重差分; 隱私數據; 數據保護; 數據特征重構
中圖分類號: TN249; TP399 文獻標志碼: A
Cloud Computing Decentralized Dual Differential Privacy Data Protection Algorithm
CONG Chuanfeng
(Information Technology Center, Chongqing College of International Business and Economics, Chongqing 401520, China)
Abstract:The wide application of the Internet is likely to lead to various kinds of privacy data leakage. In order to solve the problems, a cloud computing down-centric dual differential privacy data protection algorithm is proposed. First, the purpose of accurate collection of private data is achieved by learning the network model of private data transmission channel, and then the method of reconstructing the spatial characteristics of private data is used to obtain the ontological characteristics of private data. Finally, the collected private data is accurately noised through the characteristics of private data to achieve the purpose of accurate protection of private data, and the decentralized dual differential privacy data protection is completed. The experimental results show that the proposed algorithm has high real-time and good security for privacy data protection, and can accurately protect privacy data in different noise environments.
Key words:cloud computing; double difference; privacy data; data protection; data feature reconstruction
0 引 言
在數據共享過程中, 各類隱私數據的泄露風險逐漸被人們所重視, 因此如何在保證隱私數據安全的前提下不影響其他數據的共享程度成為目前研究的熱點問題。
蔡亮等[1]利用數據分流處理、 分區儲存以及在數據傳輸過程中設置中轉節點并將其替換為哈希值的方式實現數據傳輸過程中隱私數據的保護, 該方法能很好地滿足用戶對隱私數據保護的需求, 但隨著數據量的增加, 其泄露的可能性也隨之提高。王雪純等[2]利用FastDTW算法區分普通數據與隱私數據, 并利用模式擾動的方式降低隱私數據的泄露, 實現隱私數據保護的目的, 雖然該方法可以在一定程度上保護用戶的隱私數據, 但其無法精確地對隱私數據實施保護。朱鵬等[3]首……