999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Unlocking new potential of clinical diagnosis with artificial intelligence: Finding new patterns of clinical and lab data

2024-04-29 03:25:03PradeepKumarDabla
World Journal of Diabetes 2024年3期

Pradeep Kumar Dabla

Abstract Recent advancements in science and technology,coupled with the proliferation of data,have also urged laboratory medicine to integrate with the era of artificial intelligence (AI) and machine learning (ML).In the current practices of evidencebased medicine,the laboratory tests analysing disease patterns through the association rule mining (ARM) have emerged as a modern tool for the risk assessment and the disease stratification,with the potential to reduce cardiovascular disease (CVD) mortality.CVDs are the well recognised leading global cause of mortality with the higher fatality rates in the Indian population due to associated factors like hypertension,diabetes,and lifestyle choices.AI-driven algorithms have offered deep insights in this field while addressing various challenges such as healthcare systems grappling with the physician shortages.Personalized medicine,well driven by the big data necessitates the integration of ML techniques and high-quality electronic health records to direct the meaningful outcome.These technological advancements enhance the computational analyses for both research and clinical practice.ARM plays a pivotal role by uncovering meaningful relationships within databases,aiding in patient survival prediction and risk factor identification.AI potential in laboratory medicine is vast and it must be cautiously integrated while considering potential ethical,legal,and privacy concerns.Thus,an AI ethics framework is essential to guide its responsible use.Aligning AI algorithms with existing lab practices,promoting education among healthcare professionals,and fostering careful integration into clinical settings are imperative for harnessing the benefits of this transformative technology.

Key Words: Laboratory medicine;Artificial intelligence;Machine learning;Association rule mining;Cardiovascular diseases

lNTRODUCTlON

Recent developments with advancements of science and technology and production of massive data have helped laboratory medicine to reach the era of artificial intelligence (AI) and machine learning (ML).In the era of evidence-based medicine,combining laboratory testing with associated disease patterns using association rule mining (ARM) can prove to be modern tool for the risk assessment and disease stratification to reduce mortality in cardiovascular diseases (CVD) patients.AI based algorithms have brought more insights and addressed a variety of problems in this field and can be considered as emerging interdisciplinary field[1].

The available literature suggests that the CVDs had occurred earlier in the Indian population as compared to the European population.Further,the fatality rate has found to be even two-fold increase in Indian population in comparison with the same age group.Thus,CVDs have become the leading cause of mortality and source of much needed attention as a global threat.The hypertension,diabetes,metabolic syndrome,smoking,physical inactivity,diet pattern,and other environmental factors were counted as the major responsible factors for the higher rate of CVD in the Indian population[2].Further,the available data supports the increased mortality with acute coronary syndrome in the young myocardial infarction patients of less than 45 years of age.It is pertinent to note that the CVDs and associated risk in the early stage are typically treated with the greatest probability of success.In another study which is conducted by Dablaet al[3],the researchers found the diagnostic edge with the with lipid indices like lipid tetrad index and lipid pentad index to evaluate the atherogenic index of plasma with respect to the higher risk of premature CAD.

Traditionally,physicians diagnose CVDs based on their knowledge from their previous experience with patients with similar clinical presentations.It cannot be ignored that many countries are currently dealing with the shortage of skilled physicians,where AI can prove to be hopeful solution for the overburdened healthcare system.The growing requirement of personalized medicine for modern laboratory practices cannot be denied,resulting in an increasing amount of big data.ML-based techniques and high-quality cleaned data utilising electronic health records (EHRs) presented in the right format,can help to raise the computation analysis,not only for research but for clinical practice as well.The predictive power of computational analysis of EHRs can be enhanced when coupled with imaging and clinical attributes[4].This unique technique can prove to be a potential tool for the early detection and intervention while applying practical rules to assist doctors and patients in early detection and intervention.There are various methods and rules are applicable in data mining,out of which the ARM technique can extracts potential associations or causal relationships between the sets of patterns present in the given databases[5].

The Advanced Relation Mapping (ARM) method explores the informative index of specified persistent entities or occurrences,establishing connections between elements or events.Consequently,these guidelines unveil noteworthy associations among factors in the data repository,offering a powerful instrument for foreseeing the longevity of individuals experiencing symptoms of cardiac insufficiency.Moreover,it facilitates the identification of crucial clinical attributes (or risk elements) associated with the onset of heart failure.Soniet al[6] in 2016 employed an association rule algorithm to assess the potential risks for individuals with diabetes.Their study involved the application of this algorithm to extract relationships within an authentic dataset.Shehabi and Baba[7] in 2021 proposed a novel approach known as Mining Association Rules Classification to extract significant association rules,addressing challenges associated with symbolic methods.This method aims to overcome issues arising from generating an excessive number of association rules in the context of small datasets,a common problem leading to the production of redundant rules in large datasets.In 2022,Singhet al[8] employed the hotspot algorithm to identify patterns and associations among various attributes.The analysis encompassed a comprehensive set of biochemical evaluation tests,coupled with a detailed patient history that included physical examinations and electrocardiograms.The biochemical markers measured comprised the lipid profile,encompassing total cholesterol,triglyceride,low-density lipoprotein cholesterol,high-density lipoprotein cholesterol,apoprotein A1,apolipoprotein B,and Lp (a) levels.Moreover,it is imperative to acknowledge that the rapid pace of technological evolution and integration demands vigilant consideration of potential medical,ethical,legal,and reputational risks.In this context,ethical considerations are becoming topic of concern and soon necessary requirements.Though,AI application in lab medicine is limited till date compared to other healthcare facilities,however its realization also requires addressing risk of bias tools,algorithm auditing,error managements and most importantly privacy concerns and ethical issues.The significance of an AI ethics framework lies in its ability to illuminate both the potential risks and benefits associated with AI tools,while also setting forth guidelines for their responsible and ethical utilization.

We cannot deny that advantages of new technologies require careful alignment and optimization of AI based algorithms with existing lab practices[9].Hence,rather than hastily implementing technology,a more prudent approach involves directing its adoption through education and careful integration into clinical practices,ensuring its appropriate use by healthcare professionals.

CONCLUSlON

The integration of AI in laboratory medicine holds immense potential to transform healthcare,particularly in combating CVDs.However,its responsible implementation,addressing ethical concerns,and collaboration between technology and healthcare experts are crucial to harnessing the benefits and improve patient outcomes.

FOOTNOTES

Author contributions:Dabla PK designed and written the manuscript and all data were generated in-house and no paper mill was used.

Conflict-of-interest statement:The authors declare that they have no conflict of interest.

Open-Access:This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers.It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license,which permits others to distribute,remix,adapt,build upon this work non-commercially,and license their derivative works on different terms,provided the original work is properly cited and the use is non-commercial.See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin:India

ORClD number:Pradeep Kumar Dabla 0000-0003-1409-6771.

S-Editor:Qu XL

L-Editor:A

P-Editor:Chen YX

主站蜘蛛池模板: 99热精品久久| 九九线精品视频在线观看| 香蕉伊思人视频| 日韩在线中文| 国产h视频免费观看| 亚洲自拍另类| igao国产精品| 国产成人精品18| 国产精品免费电影| 欧美国产视频| 国产人妖视频一区在线观看| 亚洲综合九九| 人妻出轨无码中文一区二区| 看国产毛片| 国产微拍一区二区三区四区| 伊人久久久大香线蕉综合直播| 国产99在线| 日韩中文欧美| 制服丝袜国产精品| 99精品免费欧美成人小视频| 激情無極限的亚洲一区免费| 在线观看国产精品第一区免费| 欧美一区福利| 99久久国产精品无码| 色综合日本| 亚洲丝袜中文字幕| 欧美五月婷婷| 无码在线激情片| 无码国产伊人| 亚洲精品老司机| 992tv国产人成在线观看| 无码内射中文字幕岛国片| 国产成人高清精品免费5388| 色亚洲成人| 一级成人欧美一区在线观看| 精品伊人久久大香线蕉网站| 国产一级毛片网站| 热re99久久精品国99热| 国产va视频| 国产迷奸在线看| 久久福利网| 激情六月丁香婷婷四房播| 亚洲 欧美 日韩综合一区| 久久精品国产亚洲麻豆| 91口爆吞精国产对白第三集| 日韩欧美国产三级| 黄色不卡视频| 99ri精品视频在线观看播放| 欧美精品H在线播放| 欧美日韩第二页| 国产成人无码综合亚洲日韩不卡| 亚洲综合精品第一页| 亚洲欧美自拍一区| 日韩123欧美字幕| 手机精品福利在线观看| 91精品免费高清在线| 欧美日本在线一区二区三区| 国产欧美日韩va另类在线播放| 九九免费观看全部免费视频| 日韩AV无码一区| 日韩在线视频网站| 欧美精品亚洲精品日韩专| 国产福利一区二区在线观看| Aⅴ无码专区在线观看| 亚洲性色永久网址| 成人午夜视频网站| 久久久久亚洲av成人网人人软件| 日韩无码视频播放| 精品国产aⅴ一区二区三区| 国产伦精品一区二区三区视频优播 | 综合色区亚洲熟妇在线| 色欲国产一区二区日韩欧美| 香港一级毛片免费看| 91精品最新国内在线播放| 波多野结衣爽到高潮漏水大喷| 国产尤物在线播放| 国产白浆在线| 2021亚洲精品不卡a| 亚洲经典在线中文字幕| 亚洲日韩第九十九页| 又黄又湿又爽的视频| 欧美成人在线免费|