楊芬婷 徐震



摘 要:無線傳感器網(wǎng)絡監(jiān)測系統(tǒng)中,環(huán)境變化緩慢和節(jié)點感知范圍重疊所造成的冗余數(shù)據(jù)會增加節(jié)點的數(shù)據(jù)發(fā)送量,降低信息收集效率并導致傳感器節(jié)點過早死亡.因此,提出一種基于環(huán)形緩沖區(qū)的簇內(nèi)數(shù)據(jù)融合方案.所有節(jié)點采用環(huán)形緩沖區(qū)存儲數(shù)據(jù).源節(jié)點基于環(huán)形緩沖區(qū)采用二值化相似函數(shù)和滑動四分位檢測法,在保證數(shù)據(jù)時間關(guān)聯(lián)性的同時剔除冗余數(shù)據(jù)和瞬時性異常數(shù)據(jù).簇頭節(jié)點基于加權(quán)皮爾遜距離的改進支持度對從源節(jié)點接收到的數(shù)據(jù)進行加權(quán)融合.仿真實驗表明,所提出的方案在網(wǎng)絡剩余節(jié)點數(shù)、網(wǎng)絡剩余能量和網(wǎng)絡發(fā)送數(shù)據(jù)包數(shù)等3個方面有明顯的優(yōu)勢.
關(guān)鍵詞:無線傳感器網(wǎng)絡;數(shù)據(jù)融合;支持度;環(huán)形緩沖區(qū);滑動窗口
中圖分類號:TP212.9文獻標志碼:A文章編號:1000-2367(2024)02-0062-10
無線傳感器網(wǎng)絡憑借節(jié)點體積小、成本低和自組網(wǎng)等特點廣泛應用于環(huán)境監(jiān)測、災情警報、健康檢測、智能交通等領(lǐng)域[1-2].傳感器節(jié)點將感知區(qū)域采集的信息進行預處理,經(jīng)節(jié)點單跳傳輸或多節(jié)點轉(zhuǎn)發(fā)最終匯聚到匯聚節(jié)點或基站.與以往的無線網(wǎng)絡不同,無線傳感器網(wǎng)絡的通信和采集等主要工作需要節(jié)點提供足夠的電池能量,若傳感器節(jié)點電池能量極低或耗盡,則該節(jié)點將成為故障節(jié)點或死亡節(jié)點,降低無線傳感器網(wǎng)絡的壽命.因此,在環(huán)境監(jiān)測的數(shù)據(jù)收集過程中,通過有效利用資源來降低能耗,在無線傳感器網(wǎng)絡的研究中占據(jù)十分重要的地位[3-4].
由于傳感器節(jié)點密集部署,節(jié)點采集范圍的重疊會產(chǎn)生許多冗余數(shù)據(jù),頻繁的采集和發(fā)送會產(chǎn)生許多不必要的能量消耗并造成網(wǎng)絡堵塞.另外,感知環(huán)境中的不穩(wěn)定性如電磁噪聲、壓力、輻射等外界干擾、信道質(zhì)量劣化以及傳感器節(jié)點自身故障都會使傳感器節(jié)點采集到許多異常數(shù)據(jù),從而降低了無線傳感器網(wǎng)絡的性能[5-6].數(shù)據(jù)融合技術(shù)結(jié)合多個傳感器節(jié)點信息,多節(jié)點協(xié)作減少數(shù)據(jù)冗余和數(shù)據(jù)傳輸量的同時提高信息的整體準確性,在降低無線傳感器網(wǎng)絡能耗方面發(fā)揮重要作用[7-8].
研究表明,將無線傳感器網(wǎng)絡劃分為多個簇,簇內(nèi)成員節(jié)點向簇頭節(jié)點發(fā)送數(shù)據(jù),通過簇內(nèi)融合采集到的數(shù)據(jù)可以消除冗余數(shù)據(jù),從而減少發(fā)送到匯聚節(jié)點或基站的數(shù)據(jù)量,降低網(wǎng)絡能耗[9].成員節(jié)點將頻繁采集的原始信息數(shù)據(jù)發(fā)送至簇頭進行融合使得簇頭節(jié)點信息量不斷增加,融合過程中易造成信息丟失.無線傳感器網(wǎng)絡的監(jiān)測數(shù)據(jù)存在時空相關(guān)性,節(jié)點空間分布使得數(shù)據(jù)間產(chǎn)生空間相關(guān)性,另外,監(jiān)測數(shù)據(jù)在時間上也存在相關(guān)性.大部分收集的原始數(shù)據(jù)摻雜著冗余數(shù)據(jù),基于數(shù)據(jù)時空相關(guān)性的簇內(nèi)數(shù)據(jù)融合技術(shù)能夠減少無線傳感器網(wǎng)絡中數(shù)據(jù)包的傳輸量,對降低網(wǎng)絡能耗起著重要作用[10-11].
目前許多學者對無線傳感器網(wǎng)絡數(shù)據(jù)融合技術(shù)進行了研究.SUN等[12]提出基于信任度和改進遺傳的多傳感器數(shù)據(jù)融合算法,用三次指數(shù)平滑法對數(shù)據(jù)進行預處理,接著在模糊理論基礎(chǔ)上用指數(shù)信任度函數(shù)對預處理后的數(shù)據(jù)進行融合,最后用改進的遺傳算法提高算法收斂,優(yōu)化融合的估計值.YUAN等[13]提出一種數(shù)據(jù)密度相關(guān)度的數(shù)據(jù)融合方法,該空間相關(guān)性模型與數(shù)據(jù)差值相關(guān),以此來度量節(jié)點數(shù)據(jù)與其相鄰節(jié)點數(shù)據(jù)間相關(guān)性,該算法適合節(jié)點部署密集的無線傳感器網(wǎng)絡.REYANA等[14]提出了用于多傳感器數(shù)據(jù)融合算法,將自適應卡爾曼濾波器和決策樹算法相結(jié)合進行火災檢測,并用模糊優(yōu)化來提升監(jiān)測系統(tǒng)決策能力.LI等[15]提出一種基于雙閾值結(jié)合最優(yōu)中繼選擇數(shù)據(jù)聚合方案.當節(jié)點的數(shù)據(jù)量閾值和能量閾值滿足要求時才能執(zhí)行路由,并選擇數(shù)據(jù)包較多或等待時間較長的節(jié)點作為傳輸中繼節(jié)點,最終完成數(shù)據(jù)聚合.
還有一些學者對簇內(nèi)數(shù)據(jù)融合方案基于分層的角度進行了研究.AGARWAL等[16]提出一種基于緩沖區(qū)的無線傳感器網(wǎng)絡數(shù)據(jù)聚合線性過濾算法.源節(jié)點用余弦距離計算采集數(shù)據(jù)和緩沖區(qū)已有數(shù)據(jù)的關(guān)聯(lián)度并剔除關(guān)聯(lián)度高的數(shù)據(jù),簇頭節(jié)點剔除重復的數(shù)據(jù)來過濾冗余數(shù)據(jù).ALSAFASFEH等[17]提出一種基于反向傳播神經(jīng)網(wǎng)絡模型的數(shù)據(jù)融合算法.該算法采用改進的能量有效的閾值感知網(wǎng)絡協(xié)議(threshold-sensitive energy efficient sensor network protocol,TEEN)進行節(jié)點聚類,將簇看作反向傳播神經(jīng)網(wǎng)絡對感知數(shù)據(jù)進行融合,并在簇頭提取感知數(shù)據(jù)的特征值傳輸?shù)絽R聚節(jié)點.XIA等[18]設(shè)計了基于數(shù)據(jù)融合的智能溫室無線溫度監(jiān)測系統(tǒng).源節(jié)點通過改進的無跡卡爾曼濾波器收集和預處理溫室的溫度數(shù)據(jù).簇頭用并行逆協(xié)方差相交融合算法進行局部融合.匯聚節(jié)點采用改進的極值學習算法進行全局融合.DASH等[19]提出一種利用傳感器時空相關(guān)性的數(shù)據(jù)融合算法,將采集周期分為多個時隙,在源節(jié)點采用Jaccard相似函數(shù)消除冗余,在簇頭節(jié)點用加權(quán)皮爾遜相關(guān)系數(shù)判斷數(shù)據(jù)間的相關(guān)程度,并保留節(jié)點間相似度較高的數(shù)據(jù).
1 所提的方案
1.1 簇的構(gòu)建
無線傳感器網(wǎng)絡由匯聚節(jié)點、簇頭節(jié)點和源節(jié)點三類節(jié)點構(gòu)成.所有節(jié)點靜止,且通信半徑相同.匯聚節(jié)點在監(jiān)測區(qū)域外獨立設(shè)置且能量供應充足.其他節(jié)點初始能量相同,且能量有限無法補充.匯聚節(jié)點負責收集網(wǎng)絡中所有采集的數(shù)據(jù).簇頭節(jié)點負責接收、融合簇內(nèi)源節(jié)點發(fā)送的數(shù)據(jù),并傳輸?shù)絽R聚節(jié)點.源節(jié)點負責采集數(shù)據(jù)并將采集的數(shù)據(jù)傳輸?shù)酱仡^節(jié)點.
當節(jié)點完成部署后,根據(jù)簇頭節(jié)點選擇算法[17],選擇適合的節(jié)點當選簇頭.擔任簇頭的節(jié)點向鄰節(jié)點廣播簇頭信標.鄰節(jié)點在接收到的簇頭消息中選擇向距離最近的簇頭發(fā)送請求消息申請入簇,簇頭接收到請求消息后回復確認幀進行確認.當所有節(jié)點完成簇的加入,簇頭節(jié)點為簇內(nèi)源節(jié)點分配標識ID.網(wǎng)絡拓撲如圖1所示.
1.2 源節(jié)點數(shù)據(jù)處理
在數(shù)據(jù)驅(qū)動的無線傳感器網(wǎng)絡中,數(shù)據(jù)融合技術(shù)已成為消除冗余數(shù)據(jù),減少數(shù)據(jù)傳輸量的重要技術(shù)之一.在已提出的基于緩沖區(qū)的線性濾波算法中,由于節(jié)點數(shù)據(jù)緩沖區(qū)較小,數(shù)據(jù)采集過程中會頻繁觸發(fā)數(shù)據(jù)的發(fā)送.為保證數(shù)據(jù)完整性和在時間上的前后關(guān)聯(lián)性,本文使用環(huán)形緩沖區(qū)進行存儲,基于環(huán)形緩沖區(qū)采用相似函數(shù)對冗余數(shù)據(jù)進行過濾,然后使用滑動四分位法進行異常檢測,對因電流或電壓不穩(wěn)造成的無效異常進行檢測剔除,以及對因天氣驟變或突發(fā)災害等有效異常進行上報.
1.2.1 源節(jié)點冗余數(shù)據(jù)過濾
源節(jié)點分配一段連續(xù)的內(nèi)存空間,從而構(gòu)建數(shù)組形式的環(huán)形緩沖區(qū)存儲采集數(shù)據(jù).環(huán)形緩沖區(qū)的存儲空間在邏輯上首尾相連,在物理存儲上為一段一維連續(xù)空間.源節(jié)點分配好內(nèi)存空間后設(shè)置兩個指針:讀指針和寫指針.初始構(gòu)建緩沖區(qū)時,緩沖區(qū)為空,讀寫指針指向同一位置.當有采集數(shù)據(jù)存入時,寫指針偏移.發(fā)送數(shù)據(jù)時,源節(jié)點取出數(shù)據(jù),寫指針偏移相應數(shù)據(jù)的長度.以該種方式進行采集數(shù)據(jù)的存儲和取出,既不用頻繁分配線性緩沖區(qū),還保證了時間關(guān)聯(lián)性.
每個源節(jié)點維護一個環(huán)形緩沖區(qū)用來存儲每個時隙采集的數(shù)據(jù).一段時間內(nèi),環(huán)境信息變化緩慢,節(jié)點易存儲大量冗余的數(shù)據(jù),若將冗余數(shù)據(jù)全部發(fā)送,會產(chǎn)生許多不必要的節(jié)點能耗.為將冗余載荷轉(zhuǎn)換為有效載荷進行傳輸,本文采用簡單二值化相似函數(shù)進行數(shù)據(jù)處理.
將采集周期劃分為N個相同時隙,源節(jié)點在一個周期內(nèi)采集的數(shù)據(jù)序列為{d1,d2,…,dt,…,dN},t時刻采集的數(shù)據(jù)為dt,對dt與前一時刻采集數(shù)據(jù)dt-1進行冗余對比,如式(1)所示:
若小于給定的閾值,則數(shù)據(jù)相同或極度相似,可判斷為冗余數(shù)據(jù),不存入緩沖區(qū).為保證數(shù)據(jù)時間前后關(guān)聯(lián)性,這里僅對相鄰時間的數(shù)據(jù)進行冗余判斷.假設(shè)節(jié)點在當前第m時刻保存的數(shù)據(jù)權(quán)重wdm初始化值為1,m∈[1,k],k≤N.若第m+1時刻數(shù)據(jù)判斷為冗余,則丟棄,調(diào)整第m時刻數(shù)據(jù)權(quán)重為wdm+1.丟棄的冗余數(shù)據(jù)越多,表明該數(shù)據(jù)在該組數(shù)據(jù)向量中所占的比重越大,該數(shù)據(jù)權(quán)重越大.
經(jīng)冗余數(shù)據(jù)過濾后,每個源節(jié)點采集的數(shù)據(jù)會形成一個具有權(quán)值的數(shù)據(jù)集合,即節(jié)點i的數(shù)據(jù)集合為di={(di1,wi1),(di2,wi2),…,(dik,wik)}.權(quán)值wi1,wi2,…,dik表示當前數(shù)據(jù)的最終占比.
其中,wd1,wd2,…,wdm,…,wdk表示存入緩沖區(qū)的數(shù)據(jù)權(quán)重.
1.2.2 基于環(huán)形緩沖區(qū)的滑動四分位檢測
考慮到節(jié)點因外界噪聲或電壓電流不穩(wěn)會產(chǎn)生尖端瞬時性異常,或因節(jié)點故障、監(jiān)測區(qū)域產(chǎn)生重大環(huán)境變化等突發(fā)異常,本文基于環(huán)形緩沖區(qū)采用滑動窗口的四分位法進行異常值的檢測.如圖2所示.
在基于緩沖區(qū)的線性濾波算法[19]中,節(jié)點采用固定幀長的緩沖區(qū)存儲采集數(shù)據(jù),該算法中緩沖區(qū)容量較小.本文選用環(huán)形緩沖區(qū)存儲采集數(shù)據(jù).環(huán)形緩沖區(qū)不用頻繁分配內(nèi)存,其低內(nèi)存利用率非常適合內(nèi)存有限的節(jié)點存儲數(shù)據(jù)[20],相比固定幀長的緩沖區(qū)更適合傳感器節(jié)點存儲采集到的數(shù)據(jù).
滑動窗口策略常使用于時間相關(guān)性強的數(shù)據(jù).隨著時間進行,歷史數(shù)據(jù)的參考意義小于最近時間數(shù)據(jù)的參考意義[21],因此,當使用滑動窗口進行檢測時,如果采集數(shù)據(jù)充滿滑動窗,便進行一次檢測.
基于滑動窗口的異常檢測采用滑動四分位異常檢測機制實現(xiàn).選擇四分位檢測法進行異常值判別能夠減小節(jié)點計算復雜度.滑動四分位法異常檢測過程如下:
1)假設(shè)進入滑動窗內(nèi)的數(shù)據(jù)序列為d1,d2,…,dp,…,dq,對序列進行從小到大的排序后,選取當前數(shù)據(jù)序列的1/4處序列值(Q1),3/4處序列值(Q3).則四分位IQR=Q3-Q1.
2)計算當前序列對應的上下限.考慮到不同時間段窗口內(nèi)的數(shù)據(jù)變化會產(chǎn)生不同程度的波動,所以需構(gòu)建窗口的動態(tài)閾值.設(shè)定寬容度常數(shù)為α1和α2(α2=1/α1),其大小可以動態(tài)調(diào)整.則上下限計算式為:
3)異常值判定:若dp在區(qū)間[εa,εb]內(nèi),則為非異常值.若超出該區(qū)間,則為異常值.
4)源節(jié)點設(shè)置異常計數(shù)標志記錄檢測出的異常數(shù)據(jù)個數(shù).當異常值個數(shù)累計大于緩沖區(qū)長度l的二分之一,源節(jié)點喚醒簇頭節(jié)點,并保留該部分連續(xù)異常值,將當前緩沖區(qū)數(shù)據(jù)全部發(fā)送給簇頭節(jié)點.
若異常值個數(shù)并未超過緩沖區(qū)長度的二分之一,則滑動窗口后移,等待下一個時間段所采集的數(shù)據(jù)填滿緩沖區(qū)再進行異常檢測.環(huán)形緩沖區(qū)滑動窗口上的數(shù)據(jù)檢測完成后,源節(jié)點采用二值化判斷是否進行該部分數(shù)據(jù)的發(fā)送.判斷公式如下:
其中,S為強制發(fā)送標志,fabn表示異常計數(shù)標志,l為節(jié)點緩沖區(qū)長度.正常情況下,節(jié)點不會強制發(fā)送.一個周期即將結(jié)束時,喚醒簇頭節(jié)點等待接收源節(jié)點異常檢測和冗余數(shù)據(jù)處理后的數(shù)據(jù).周期時間到達時,源節(jié)點剔除檢測出的瞬時性異常數(shù)據(jù),并發(fā)送給簇頭節(jié)點,其過程如圖3所示.
1.3 基于支持度函數(shù)的簇頭節(jié)點融合
1.3.1 支持度函數(shù)
支持度函數(shù)[22]的提出是在數(shù)據(jù)融合的過程中將數(shù)值間的關(guān)聯(lián)信息加入,進一步優(yōu)化數(shù)據(jù)融合方案.Sup(a,b)表示b對a的支持程度,即數(shù)值a和b的接近程度.支持度函數(shù)需滿足以下3個性質(zhì):(1)Sup(a,b)∈[0,1];(2)Sup(a,b)=Sup(b,a);(3)Sup(a,b)≥Sup(x,y),若 |a-b|<|x-y|.
目前,常用的支持度函數(shù)為高斯支持度函數(shù)[23],其函數(shù)形式為:
其中,K表示幅度,K∈[0,1];β表示函數(shù)衰減因子.β越大,數(shù)值a和b的支持度越小.當數(shù)值a和b相同時,支持度為1.
指數(shù)形式的高斯支持度函數(shù)計算較為復雜.為降低計算復雜度,劉思峰等[24]基于灰色接近關(guān)聯(lián)度來描述兩數(shù)值接近程度,提出一種無需指數(shù)運算的新型支持度函數(shù).其函數(shù)表達式為:
考慮到序列的時間前后關(guān)聯(lián),匡亮等[25]提出了基于優(yōu)化動態(tài)彎曲距離的支持度函數(shù)IDTW-SF.其表達式為:
1.3.2 基于加權(quán)皮爾遜距離的改進支持度函數(shù)
基于優(yōu)化動態(tài)彎曲距離的支持度函數(shù)雖然考慮了采集信息的時間關(guān)聯(lián)性,但通過尋找兩序列在時間軸上的對齊方式來計算最短距離,需要花費較高的計算成本.
加權(quán)皮爾遜距離在強調(diào)時間序列變化趨勢相似程度的同時,通過調(diào)整不同維度的權(quán)重來控制每個維度的貢獻.加權(quán)皮爾遜距離具有平移不變性.這種平移不變的特性對時間序列到達同一簇頭的前后延遲具有包容性.本文采用加權(quán)皮爾遜距離[26]計算支持度函數(shù)中兩數(shù)據(jù)序列的距離,并在簇頭采用加權(quán)皮爾遜距離的改進支持度函數(shù)(weighted Pearson distance improvement support function,wPd-SF)進行加權(quán)融合.
由于成員節(jié)點發(fā)送數(shù)據(jù)之前會過濾冗余數(shù)據(jù)并剔除異常數(shù)據(jù),所以,到達簇頭的數(shù)據(jù)時間序列長度可能會不同.在計算兩序列間加權(quán)皮爾遜距離時,需要將兩序列拓展到相同的長度.簇頭節(jié)點用源節(jié)點i生成的帶權(quán)值的數(shù)據(jù)集合di={(di1,wi1),(di2,wi2),…,(dik,wik)},計算加權(quán)平均數(shù)xi.并用xi來補齊序列.xi計算如下:xi=(di1wi1+di2wi2+…+dikwik)/k.
假設(shè)同一簇內(nèi)的兩個不同節(jié)點在相同周期時間發(fā)送至簇頭節(jié)點的數(shù)據(jù)序列為Xi=(xi1,xi2,…,xin)和Xj=(xj1,xj2,…,xjn).則他們的加權(quán)皮爾遜相關(guān)系數(shù)ρ(Xi,Xj)和加權(quán)皮爾遜距離Dw(Xi,Xj)分別為:
其中,W表示權(quán)重矩陣.通過權(quán)重來體現(xiàn)各維度上采集數(shù)值對所在時間序列的重要程度.維度上的權(quán)重越高,表示采集數(shù)據(jù)時與該維度上的數(shù)值相同或相似的值越多,可以將其看作當前時間序列上的重要采集點.若兩時間序列的重要采集點出現(xiàn)在同一時間維度,則這兩個時間序列變化趨勢相似.在消除冗余數(shù)值的同時,通過時間序列上的重要采集點以增強對兩時間序列變化趨勢的描述.利用加權(quán)皮爾遜距離來計算兩時間序列距離,更準確把握時間序列間相關(guān)程度.
基于加權(quán)皮爾遜距離的改進支持度函數(shù)定義為
即簇內(nèi)節(jié)點i和j間的支持度為Sij=Sup(Xi,Xj).節(jié)點相互支持度矩陣可定義如下:
其中,n為簇內(nèi)傳感器節(jié)點數(shù).簇內(nèi)傳感器節(jié)點對傳感器節(jié)點的支持度之和為:
傳感器節(jié)點的融合權(quán)值wi為:
在簇內(nèi)節(jié)點均無故障的情況下,簇頭節(jié)點將簇內(nèi)成員節(jié)點發(fā)送的采集信息經(jīng)加權(quán)融合成一組最優(yōu)融合值,其表達式如下:X(t)=∑ni=1(wi×Xi(t))/∑ni=1wi,
其中,t指周期內(nèi)第t時刻,Xi(t)指t時刻采集的數(shù)據(jù).
若簇內(nèi)存在故障節(jié)點,簇頭節(jié)點丟棄故障節(jié)點數(shù)據(jù)并用融合的估計值代替故障節(jié)點采集的數(shù)據(jù)值.故障節(jié)點的融合估計值計算如下:
其中,T為周期長度.
最后,如圖4所示,簇頭節(jié)點對簇內(nèi)節(jié)點數(shù)據(jù)進行最終融合,將多個傳感器節(jié)點數(shù)據(jù)融合成一組數(shù)據(jù)并傳到匯聚節(jié)點,從而減少數(shù)據(jù)傳輸量,降低節(jié)點的能耗.
2 仿真和結(jié)果分析
為評估本文所提方案,對其進行仿真測試.本文實驗能耗參照一階能耗模型公式[27].實驗環(huán)境基于Windows 10(64 bit),運行內(nèi)存16 GB,處理器為Intel(R)Core(TM)i5-7300HQ CPU @ 2.50 GHz 2.50 GHz.仿真和測試實驗在MATLAB R2021a中進行.實驗數(shù)據(jù)集采用英特爾伯克利研究實驗室的公開數(shù)據(jù)集[28],其中包含了不同傳感器信息,包括溫度、濕度、光照和電壓.該真實數(shù)據(jù)集還包含了節(jié)點ID以及時間等信息.在本文中,選取環(huán)境監(jiān)測最常見的溫度屬性進行實驗,其傳感器節(jié)點分布圖如圖5所示.
仿真參數(shù)如表1所示.
2.1 源節(jié)點數(shù)據(jù)異常檢測
本文所提方案采用滑動四分位法對溫度數(shù)據(jù)集進行異常檢測,滑動四分位法無需用到早期的歷史數(shù)據(jù),適用于存儲資源有限的傳感器節(jié)點.傳感器節(jié)點采集過程中受到環(huán)境和噪聲等干擾會產(chǎn)生兩種類型的異常數(shù)據(jù):一種是瞬時性的尖端異常,另外一種是連續(xù)多個偏離正常值.這里選用同一傳感器節(jié)點連續(xù)采集的1 500個溫度數(shù)據(jù),其中分別設(shè)置60個加入噪聲干擾的瞬時性和連續(xù)性異常數(shù)據(jù).這里,衡量異常值檢測方法優(yōu)劣的指標選用F1分數(shù)[29].其表達式如下所示:F1=21AR+1CR=2×AR×CRAR×CR,
式中,準確率AR指檢測出的異常值中,真實異常值個數(shù)占所有檢測出的異常值個數(shù)的比值.覆蓋率CR指檢測出的異常值中,真實異常值個數(shù)占總的真實異常值個數(shù)的比值.對溫度數(shù)據(jù)集,測試不同滑動窗口寬度和寬容度常數(shù)組合情況下的異常檢測F1值.F1分數(shù)值越大表示檢測效果越好.如圖6和圖7所示,實驗表明,在合適的滑動窗寬和寬容度常數(shù)下,兩種不同異常值檢測的最優(yōu)F1值可以達到91.47%和96.77%.
2.2 簇頭節(jié)點數(shù)據(jù)融合測試
為測試本文提出的加權(quán)皮爾遜距離改進支持度函數(shù)(wPd-SF)的融合效果,對融合溫度傳感器節(jié)點組采用方差來評估融合結(jié)果,對故障節(jié)點的融合估計值采用平均絕對誤差(mean absolute error,MAE)進行評估.這里,選取位置鄰近的5個傳感器節(jié)點在同一天內(nèi)每5 min采集1次溫度,每小時進行1次溫度數(shù)據(jù)融合測試.所選取的傳感器組溫度監(jiān)測值如圖8所示.
在節(jié)點無故障的情況下,將本文提出wPd-SF與新型支持度函數(shù)D-SF[30]、改進型支持度函數(shù)SN-SF[31]、動態(tài)彎曲距離支持度函數(shù)DTW-SF[22]和優(yōu)化動態(tài)彎曲距離支持度函數(shù)IDTW-SF[25]進行融合結(jié)果方差對比.其結(jié)果如圖9所示.
由圖9可以看出,本文提出的支持度函數(shù)wPd-SF對簇內(nèi)傳感器節(jié)點的融合方差小于其他支持度函數(shù).
在計算故障節(jié)點的融合估計值過程中,需要傳感器節(jié)點采集時間序列間的相互支持度矩陣來進行估計值計算.對于D-SF以及SN-SF而言,它們在每個時刻都要計算出一次當前時刻的支持度矩陣,無法顧及時間前后的關(guān)聯(lián)性,在融合階段不便計算故障節(jié)點估計值.所以,該部分實驗選擇能夠計算兩序列間距離DTW-SF和IDTW-SF進行MAE值對比,結(jié)果如圖10所示.
由圖10可以看出,對于故障節(jié)點融合估計值的計算,DTW-SF在環(huán)境信息較平穩(wěn)時MAE值較低,但仍高于IDTW-SF和本文所提出的wPd-SF;在環(huán)境信息變化波動較大時,DTW-SF的估計值出現(xiàn)較大誤差,穩(wěn)定性遠不如IDTW-SF和wPd-SF.使用wPd-SF對故障節(jié)點的融合估計值與該故障節(jié)點正常工作監(jiān)測值的MAE值小于其他2個支持度函數(shù).
表2和表3給出了各支持度函數(shù)計算時間的對比.在無故障節(jié)點情況下,本文提出的wPd-SF的計算時間明顯少于D-SF、SN-SF和DTW-SF.wPd-SF的計算時間和IDTW-SF的計算時間接近,但仍低于IDTW-SF的計算時間.在計算故障節(jié)點的融合估計值時,wPd-SF的計算時間明顯低于DTW-SF和IDTW-SF.
2.3 整體網(wǎng)絡性能評估
為更準確地評估本文所提出的數(shù)據(jù)融合算法的性能,本文方案從網(wǎng)絡剩余節(jié)點、網(wǎng)絡剩余能量、網(wǎng)絡數(shù)據(jù)包發(fā)送量3個方面,與分層傳輸縮減ETDTR算法[32]、基于數(shù)據(jù)時空間相關(guān)性的數(shù)據(jù)聚合STCDRR方案[19]和基于緩沖區(qū)的數(shù)據(jù)聚合線性濾波BFL算法[16]進行對比.
2.3.1 網(wǎng)絡剩余節(jié)點數(shù)分析
網(wǎng)絡剩余節(jié)點數(shù)量多少決定了傳感器網(wǎng)絡的壽命.如圖11所示,在前1 500輪之前,4種算法都沒有節(jié)點死亡,在2 000輪時,BFL算法仍未有死亡節(jié)點.但隨著輪次的繼續(xù)進行,BFL算法死亡節(jié)點數(shù)增加變快.這是由于BFL算法中節(jié)點緩沖區(qū)較小,當緩沖區(qū)滿的時候易觸發(fā)被替換數(shù)據(jù)的發(fā)送,所以節(jié)點能耗變快.隨著輪次增加可以看出,本文所提出方案的網(wǎng)絡剩余節(jié)點數(shù)多于其他3個算法.
2.3.2 網(wǎng)絡剩余能量分析
如圖12所示,該圖為4種算法的網(wǎng)絡剩余能量.隨著輪次進行至8 000輪,本文所提方案和ETDTR算法、BFL算法和STCDRR算法的網(wǎng)絡剩余能量均低于網(wǎng)絡初始總能量的50%.ETDTR算法、BFL算法和STCDRR算法的網(wǎng)絡剩余能量僅剩16.12%、22.95%和7.72%.而本文所提方案的網(wǎng)絡剩余能量占網(wǎng)絡初始總能量的39.33%.仿真實驗表明,本文所提算法在網(wǎng)絡剩余能量方面優(yōu)于其他3個算法.
2.3.3 網(wǎng)絡發(fā)送數(shù)據(jù)包數(shù)分析
隨著無線傳感器網(wǎng)絡生存周期的延長,網(wǎng)絡發(fā)送數(shù)據(jù)包數(shù)也會逐漸累加.圖13結(jié)果顯示每個算法的網(wǎng)絡發(fā)送數(shù)據(jù)包數(shù)情況.相對ETDTR算法、BFL算法及STCDRR算法而言,本文所提方案分別大約減少了26.19%、14.58% 和33.13%的數(shù)據(jù)包發(fā)送量.本文所提方案傳輸?shù)臄?shù)據(jù)包數(shù)少于其他3個算法.
3 總 結(jié)
本文提出一種基于環(huán)形緩沖區(qū)的無線傳感器網(wǎng)絡簇內(nèi)數(shù)據(jù)融合算法.源節(jié)點采用環(huán)形緩沖區(qū)存儲采集數(shù)據(jù).源節(jié)點在數(shù)據(jù)存入緩沖區(qū)前采用相似函數(shù)判斷數(shù)據(jù)冗余,并丟棄冗余的數(shù)據(jù).且源節(jié)點基于緩沖區(qū)的滑動窗口采用滑動四分位法進行異常數(shù)據(jù)的檢測.若異常值個數(shù)累計超過預設(shè)范圍,則強制喚醒簇頭去接收數(shù)據(jù).若沒有超預設(shè)范圍,則在周期時間到達后,剔除異常值并發(fā)送到簇頭進行融合.簇頭使用基于加權(quán)皮爾遜距離的改進支持度函數(shù)對簇內(nèi)采集的數(shù)據(jù)進行加權(quán)數(shù)據(jù)融合.在沒有故障節(jié)點的情況下,簇頭對整組傳感器節(jié)點發(fā)來的數(shù)據(jù)進行融合.若存在故障節(jié)點,為保證數(shù)據(jù)融合的準確性,通過融合其他正常節(jié)點數(shù)據(jù)對故障節(jié)點進行估計值計算,并用估計值代替故障節(jié)點數(shù)據(jù).
仿真結(jié)果表明,本文所提方案融合誤差小于其他支持度函數(shù)融合誤差,計算時間小于其他支持度函數(shù).且對不同類型異常數(shù)據(jù)異常檢測率均在91%以上.整體性能評估上,本文所提出的算法在網(wǎng)絡剩余節(jié)點個數(shù)、網(wǎng)絡剩余能量和網(wǎng)絡發(fā)送數(shù)據(jù)包數(shù)等3個方面的評估均優(yōu)于ETDTR算法、BFL算法和STCDRR算法.
參 考 文 獻
[1]WAN R Z,XIONG N X,HU Q H,et al.Similarity-aware data aggregation using fuzzy c-means approach for wireless sensor networks[J].EURASIP Journal on Wireless Communications and Networking,2019,2019(1):59.
[2]YANG C Y,LIN C Y,GALSANBADAM S,et al.Multivariable support vector regression with multi-sensor network data fusion[C]//2018 IEEE International Conference on Systems,Man,and Cybernetics(SMC).[s.l.]:IEEE,2019:4029-4034.
[3]DANANJAYAN S,ZHUANG J J,TANG Y,et al.Wireless sensor deployment scheme for cost-effective smart farming using the ABC-TEEM algorithm[J].Evolving Systems,2023,14(4):567-579.
[4]ZHANG J,LIN Z W,TSAI P W,et al.Entropy-driven data aggregation method for energy-efficient wireless sensor networks[J].Information Fusion,2020,56:103-113.
[5]IZADI D,ABAWAJY J H,GHANAVATI S,et al.A data fusion method in wireless sensor networks[J].Sensors,2015,15(2):2964-2979.
[6]ULLAH I,YOUN H Y.A novel data aggregation scheme based on self-organized map for WSN[J].The Journal of Supercomputing,2019,75(7):3975-3996.
[7]SOLTANI M,HEMPEL M,SHARIF H.Data fusion utilization for optimizing large-scale Wireless Sensor Networks[C]//2014 IEEE International Conference on Communications(ICC).[s.l.]:IEEE,2014:367-372.
[8]SONG Y,LIU Z,HE X,et al.Research on data fusion scheme for wireless sensor networks with combined improved LEACH and compressed sensing[J].Sensors,2019,19(21):4704-4733.
[9]XIAO X X,HUANG H N,WANG W.Underwater wireless sensor networks:an energy-efficient clustering routing protocol based on data fusion and genetic algorithms[J].Applied Sciences,2020,11(1):312.
[10]CAO L,CAI Y,YUE Y G.Data fusion algorithm for heterogeneous wireless sensor networks based on extreme learning machine optimized by particle swarm optimization[J].Journal of Sensors,2020,2020:1-17.
[11]JARWAN A,SABBAH A,IBNKAHLA M.Data transmission reduction schemes in WSNs for efficient IoT systems[J].IEEE Journal on Selected Areas in Communications,2019,37(6):1307-1324.
[12]SUN G L,ZHANG Z Y,ZHENG B W,et al.Multi-sensor data fusion algorithm based on trust degree and improved genetics[J].Sensors,2019,19(9):2139.
[13]YUAN F,ZHAN Y J,WANG Y H.Data density correlation degree clustering method for data aggregation in WSN[J].IEEE Sensors Journal,2014,14(4):1089-1098.
[14]REYANA A,VIJAYALAKSHMI P.Multisensor data fusion technique for energy conservation in the wireless sensor network application “condition-based environment monitoring”[J].Journal of Ambient Intelligence and Humanized Computing,2021,13:1-10.
[15]LI A,LIU W,ZENG L J,et al.An efficient data aggregation scheme based on differentiated threshold configuring joint optimal relay selection in WSNs[J].IEEE Access,2021,9:19254-19269.
[16]AGARWAL A,JAIN K,DEV A.BFL:a buffer based linear filtration method for data aggregation in wireless sensor networks[J].International Journal of Information Technology,2022,14(3):1445-1454.
[17]ALSAFASFEH M,ARIDA Z A,SARAEREH O A,et al.An optimized data fusion paradigm for WSN based on neural networks[J].Computers,Materials & Continua,2021,69(1):1097-1108.
[18]XIA S B,NAN X Y,CAI X,et al.Data fusion based wireless temperature monitoring system applied to intelligent greenhouse[J].Computers and Electronics in Agriculture,2022,192:106576.
[19]DASH L,PATTANAYAK B K,MISHRA S K,et al.A data aggregation approach exploiting spatial and temporal correlation among sensor data in wireless sensor networks[J].Electronics,2022,11(7):989.
[20]FELDMAN S,DECHEV D.A wait-free multi-producer multi-consumer ring buffer[J].ACM SIGAPP Applied Computing Review,2015,15(3):59-71.
[21]YIN C Y,ZHANG S,WANG J,et al.Anomaly detection based on convolutional recurrent autoencoder for IoT time series[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2022,52(1):112-122.
[22]SHI P,LI G H,YUAN Y M,et al.Data fusion using improved support degree function in aquaculture wireless sensor networks[J].Sensors,2018,18(11):3851.
[23]YAGER R R.The power average operator[J].IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,2001,31(6):724-731.
[24]劉思峰,謝乃明,JEFFERY F.基于相似性和接近性視角的新型灰色關(guān)聯(lián)分析模型[J].系統(tǒng)工程理論與實踐,2010,30(5):881-887.
LIU S F,XIE N M,JEFFERY F.On new models of grey incidence analysis based on visual angle of similarity and nearness[J].Systems Engineering-Theory & Practice,2010,30(5):881-887.
[25]匡亮,施珮,季云峰,等.改進型支持度函數(shù)的WSN水質(zhì)監(jiān)測數(shù)據(jù)融合方法[J].農(nóng)業(yè)工程學報,2020,36(16):192-200.
KUANG L,SHI P,JI Y F,et al.Data fusion method for water quality monitoring using WSN based on improved support function[J].Transactions of the Chinese Society of Agricultural Engineering,2020,36(16):192-200.
[26]LIN R H,WU B D,SU Y.An adaptive weighted Pearson similarity measurement method for load curve clustering[J].Energies,2018,11(9):2466.
[27]HEINZELMAN W B,CHANDRAKASAN A P,BALAKRISHNAN H.An application-specific protocol architecture for wireless microsensor networks[J].IEEE Transactions on Wireless Communications,2002,1(4):660-670.
[28]MADDEN S.Intel Berkeley Research Lab[EB/OL].[2022-12-09].http://db.csail.mit.edu/labdata/labdata.html.
[29]李藝,華靜,劉保雙,等.大氣污染物監(jiān)測數(shù)據(jù)異常值判別方法研究[J].環(huán)境科學學報,2022,42(12):341-352.
LI Y,HUA J,LIU B S,et al.Study on the outlier identification approaches for atmospheric pollutant monitoring data[J].Acta Scientiae Circumstantiae,2022,42(12):341-352.
[30]熊迎軍,沈明霞,陸明洲,等.溫室無線傳感器網(wǎng)絡系統(tǒng)實時數(shù)據(jù)融合算法[J].農(nóng)業(yè)工程學報,2012,28(23):160-166.
XIONG Y J,SHEN M X,LU M Z,et al.Algorithm of real time data fusion for greenhouse WSN system[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(23):160-166.
[31]段青玲,肖曉琰,劉怡然,等.基于改進型支持度函數(shù)的畜禽養(yǎng)殖物聯(lián)網(wǎng)數(shù)據(jù)融合方法[J].農(nóng)業(yè)工程學報,2017,33(S1):239-245.
DUAN Q L,XIAO X Y,LIU Y R,et al.Data fusion method of livestock and poultry breeding Internet of Things based on improved support function[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(S1):239-245.
[32]IDREES A K,ALHUSSAINI R,ABED SALMAN M.Energy-efficient two-layer data transmission reduction protocol in periodic sensor networks of IoTs[J].Personal and Ubiquitous Computing,2023,27(2):139-158.
Research on WSN data fusion technology based on ring buffer
Yang Fenting, Xu Zhen
(School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430048, China)
Abstract: In the wireless sensor network monitoring system, redundant data caused by slow environmental changing and overlapping sensing range of nodes will increase the amount of data sent by sensor nodes, reduce the efficiency of information collection, and lead to premature death of sensor nodes. Therefore, this paper proposes an intracluster data fusion scheme based on ring buffer. All sensor nodes use ring buffers to store data. Based on the ring buffer, the source node adopts the binarized similarity function and sliding quartile detection method to eliminate redundant data and transient abnormal data while ensuring data time correlation. Based on the improved support of weighted Pearson distance, the cluster head node carries out weighted fusion of the data received from the source node. Simulation experiments show that the proposed scheme has obvious advantages in the number of remaining nodes in the network, the remaining energy of the network and the number of packets sent by the network.
Keywords: wireless sensor network; data fusion; support function; ring buffer; sliding window
[責任編校 陳留院 趙曉華]