董慧雪,陳倩,郭曉江,王際睿1,2,,4
小麥穗發芽抗性機制及抗性育種研究
董慧雪1,3,陳倩1,3,郭曉江3,王際睿1,2,3,4
1四川農業大學西南作物基因資源發掘與利用國家重點實驗室,成都 611130;2四川農業大學農學院,成都 611130;3四川農業大學小麥研究所,成都 611130;4四川農業大學西南作物基因資源與遺傳改良教育部重點實驗室,成都 611130
穗發芽是禾本科作物籽粒在收獲前于高濕環境下的穗上發芽現象,嚴重影響小麥的產量與品質。種子休眠水平是影響小麥穗發芽抗性的主要因素,而往往馴化作物的籽粒休眠水平低,導致栽培小麥普遍比其野生祖先種更易發生穗發芽。小麥穗發芽主要受外源環境(溫度、濕度等)和內源植物激素(GAs、ABA、IAA、MeJA、ET、BR)的調控。已鑒定出一批抗穗發芽材料,并克隆了一系列調控穗發芽抗性的關鍵基因,如、、、、等。通過分子標記輔助選擇、人工合成小麥和CRISPR/Cas9基因編輯技術,已成功創制了抗穗發芽小麥新材料。本文綜述了小麥穗發芽抗性的遺傳機制及抗性育種研究的最新進展,未來仍需繼續挖掘關鍵穗發芽抗性基因,以生物育種的方法培育抗穗發芽小麥新品種。
小麥;穗發芽;種子休眠;激素;育種改良
小麥穗發芽(pre-harvest sprouting,PHS)是指小麥在成熟期遭遇連續陰雨天氣時籽粒在穗上發芽的現象。穗發芽是一個世界性的自然災害,北歐和西歐的沿海地區、美國、新西蘭和加拿大等地都是穗發芽危害特別嚴重的地區;我國黃淮麥區、西南冬麥區、長江中下游等麥區也頻繁發生穗發芽危害,受穗發芽危害的麥區約占全國小麥總面積的83%[1]。近年來,隨著全球氣候變暖,以及極端天氣頻發,小麥成熟至收獲期間,穗上發芽現象越發頻繁。特別是2016年、2018年和2023年,江蘇、安徽、四川、湖北、河南等省份暴發了嚴重的小麥穗發芽災害,嚴重降低了小麥的產量,并導致小麥品質劣化[2-4]。由于穗發芽造成的危害嚴重,在20世紀早期,我國研究者就已經開始重點研究小麥穗發芽現象[5]。1973年,國際上也成立了國際谷物穗發芽組織委員會,該組織于1975年在瑞典召開了第一屆會議(International Symposium on Pre-Harvest Sprouting in Cereals,ISPHSC),并于2019年在成都舉辦了第十四屆國際谷物穗發芽大會。
小麥穗發芽是基因與環境互作的結果,涉及眾多的影響因素,包括種子休眠水平、種子結構、植物激素等內部因素,以及溫度、濕度等外界環境因素,其中,種子自身的休眠特性是影響穗發芽的主要因素[5-7]。本文主要從穗發芽發生的遺傳與生理機制、穗發芽對產量品質的危害、穗發芽抗性種質資源與相關基因發掘、抗穗發芽小麥新材料創制等方面綜述近年來小麥穗發芽的研究進展,并對未來小麥抗穗發芽研究方向和育種改良策略提出建議,以期為未來創造環境穩定的抗穗發芽小麥品種提供參考。
小麥穗發芽抗性受多個因素共同影響,包括麥穗持水特性、穎殼特性、籽粒含水量、種子內源激素、種子休眠水平,以及外界因素如溫度和空氣濕度。其中,種子休眠水平是影響小麥穗發芽抗性的主要因素[8]。種子休眠(seed dormancy)是指在適宜條件下種子暫時不能萌發的特性。休眠的種子在不適宜幼苗生長的情況下不萌發,這樣有助于減少在惡劣環境中萌發的風險,從而保障了種群的延續。
種子休眠特性具有重要的生態適應意義和農業價值,休眠喪失是馴化過程中的一個典型特征[9]。早期,農民選擇休眠性較弱的種子,以便收獲后能立即種植并實現整齊發芽,從而提高糧食產量。隨著人類的馴化過程,栽培作物的休眠水平普遍低于其野生祖先[10]。就小麥而言,節節麥(L.)作為普通小麥D組染色體的供體野生種,其種子具有很強的休眠特性[5, 9, 11],但這種豐富的穗發芽抗性并沒有在六倍體小麥中保留下來。此外,地方品種和栽培品種之間的種子休眠水平差異顯著,說明在小麥育種過程中忽視了穗發芽抗性[12]。盡管通過選擇即時和同步發芽等方法可以提高小麥生產力,但也導致了穗發芽的產生,從而對產量和品質構成了重大威脅[13]。
穗發芽會導致小麥籽粒內源α-淀粉酶、蛋白酶活性的增強,降解胚乳中的淀粉和蛋白質,發芽小麥中醇溶蛋白和可溶性麥谷蛋白的含量下降,清蛋白和球蛋白含量減少45.43%,而非蛋白含量增加62.09%[14]。即使部分小麥外觀沒有發芽跡象,但籽粒內部貯藏物質已經開始分解,脂肪含量也會降低[14-15]。這些變化會降低小麥的產量和品質,對小麥的食用和種用價值產生影響,從而導致嚴重的經濟損失。研究表明,發芽小麥制成的面粉在理化指標方面也會受到影響,如降落數值、沉降值、直鏈淀粉含量和膨脹系數、糊化起始溫度和峰值溫度、面筋網絡的變化等[16-17]。這些變化會降低面團的耐揉性,增加其黏性,影響面團的質量,不利于后續加工[18]。因此,發芽小麥制作的面粉會嚴重影響面包、餃子皮、饅頭、海綿蛋糕、面條和餅干的蒸煮/烘焙特性,只有當發芽程度輕微時,才會對餅干和蛋糕的加工品質影響較小[19]。此外,穗發芽還會導致面團變得流態化和缺乏彈性,增加碾磨難度,降低出粉率,因此,常被用作飼料,造成了資源的浪費。
在作物收獲季節,若遇到高溫高濕天氣,種子休眠性降低,常會導致作物穗發芽災害,如水稻[20]、小麥[13]、高粱[21]和大麥[22]均有發生。植物母體經歷較低的溫度往往會增加種子的休眠深度,反之,受到熱脅迫則會減少種子的休眠深度,易發生穗發芽現象[23-24]。在不同溫度和濕度環境下,同一品種種子的穗發芽抗性也會發生變化[25]。在灌漿期,溫度對穗發芽有較大的影響,低溫(~13 ℃)時,水分脅迫會使種子休眠增加;而沒有水分脅迫時,突然的高溫(最高溫度超過30 ℃,超過12 d)會減少種子收獲前后的休眠[23, 26]。
小麥穗發芽還與生育期有關,生育期長的品種,穗發芽程度較低,可能是由于在遭遇熟期陰雨天氣時,該品種的籽粒尚在灌漿期,并未達到生理成熟,從而避開了陰雨天氣的危害[4]。另外,小麥收獲后溫度和濕度的控制也非常重要,若沒有得到及時的晾曬,其籽粒含水量較高,也會導致短時間內發芽,甚至霉變;儲藏時,若管理不當,倉庫環境不適宜,易導致糧堆發熱,也會造成小麥發芽。
研究表明,多種植物激素影響種子萌發。赤霉素(GAs)-脫落酸(ABA)的平衡是調控種子萌發的內在核心,二者是連接外部與內部信號的重要樞紐[27-28]。ABA介導的穗發芽調控主要包括對ABA代謝和ABA核心信號途徑(PYL-PP2C-SnRK-ABI3/4/5)的調節[29]。在小麥種子發育期間,尤其是在干物質大量積累的灌漿期,ABA含量的逐漸升高,有效抑制了種子內部與萌發相關酶的活性,從而使種子保持休眠特性和休眠狀態[30]。ABA在穗發芽中發揮兩方面的作用:一方面在種子成熟過程中誘導種子進入休眠狀態;另一方面抑制種子萌發[30]。GA與ABA作用相反。在種子休眠被打破并萌發的過程中,通常伴隨著內源ABA含量的下降和GA含量的增加[31]。GA在穗發芽中的主要作用為:一方面促進胚的生長潛力;另一方面通過提高α-淀粉酶活性來瓦解胚胎萌發時種皮形成的機械屏障[27]。
ABA和GA主要通過影響種子體內的α-淀粉酶活性或相關基因的表達調節種子的萌發[7]。GAs能促進α-淀粉酶特異mRNA的合成,提高轉錄效率,因此,α-淀粉酶的合成對GA有一定的依賴性;而ABA可以影響小麥籽粒糊粉層中酶的轉錄,通過誘導α-淀粉酶抑制因子的產生來抑制GA的相關轉錄,阻礙α-淀粉酶的積累[7]。編碼ABA合成關鍵酶,而TaMyb10可以結合啟動子上的SMRE元件,激活其表達,從而促進小麥籽粒中ABA的含量,提高小麥穗發芽的抗性[32]。研究表明,小麥ABA信號途徑的蛋白磷酸酶TaPP2C-a10與Ⅱ、Ⅲ亞類TaSnRK2s相互作用[33],可能與擬南芥一樣,通過TaSnRK2s-TaABI5通路來調控穗發芽。在高度休眠的小麥品種中,和的轉錄本拼接會發生錯誤,而多數轉錄本的正確拼接,不僅能激活表達,還能抑制α-淀粉酶的表達[34]。參與ABA代謝途徑的和表達量降低,使小麥體內ABA含量升高,抑制籽粒發芽[35]。擬南芥雙突變體異位表達,可以恢復種子的萌發表型[36]。調節因子TaAFP、LEC1-LIKE(TaL1L)、TaL2L和TaFUS3[37-38]介導的小麥穗發芽與其擬南芥同源物的功能非常相似,構成了一個完整的ABA調控穗發芽的信號網絡。
植物體內的一些蛋白質通過影響GA的代謝和核心信號途徑來調節種子萌發[39]。GA促進調控因子(GASRs,又稱GASAs)在種子萌發過程中起重要作用。在普通小麥中已鑒定出37個GASR基因,但只有與谷物休眠和發芽有關[40]。GA負調控因子Rht-B1b和Rht-D1b與GA受體TaGID1結合并被降解,但Rht-B1c不能與TaGID1相互作用[41-42]。VAN DE VELDE等[43]從Maringá突變體中鑒定到的和(2個內的抑制等位基因)提高了小麥穗發芽抗性,并對籽粒產量和品質無明顯負效應。LIU等[44]在具有休眠性的小麥干種子中,利用基因芯片檢測到6個可能參與休眠調控的GA代謝基因——、、、、和。
除ABA和GA外,生長素(IAA)、茉莉酸甲酯(MeJA)、乙烯(ET)和油菜素內酯(BR)也參與了穗發芽的調控。與ABA類似,IAA和MeJA可以提高谷物對穗發芽的抗性[45-47]。生長素響應因子ARF10和ARF16以不依賴于ABA的方式激活ABA信號途徑的轉錄因子ABI3,控制種子休眠[48]。在吸漲過程中,IAA生物合成基因被誘導,在成熟籽粒中的表達量低于休眠籽粒,表明IAA負調控小麥萌發過程[44]。以上研究結果表明,IAA參與籽粒萌發,但是,IAA如何參與調控小麥穗發芽仍不清楚。MeJA通過抑制和增加的表達來降低小麥胚中ABA的含量[49]。ABA也會通過誘導MeJA生物合成基因(如、、和)的表達來增加MeJA的含量[47]。此外,小麥MeJA負調控因子TaJAZ1通過JAZ結構域與TaABI5相互作用,阻斷ABA信號的轉導,經ABA處理后,誘導MeJA降解TaJAZ1蛋白,釋放TaABI5,從而調控小麥穗發芽[47]。表明MeJA和ABA在參與籽粒發芽中存在復雜的調控機制。
與GA類似,ET[50]和BR[51-52]促進籽粒發芽。ET通過影響GA和ABA代謝基因(如、、和)的表達來調節GA與ABA的平衡,從而調控小麥籽粒的萌發和幼苗的生長[50]。BR調控轉錄因子BES1通過非E-box基序(5′-AA(A/T)CAAnnnC(C/T)T-3′)與GA合成相關基因(、和)的啟動子結合,誘導GA合成,從而促進籽粒萌發[52]。
小麥的穗部形態(如麥芒、穎殼)、穎殼中的酚類物質、籽粒硬度(如種皮厚度)和胚乳中的發芽抑制物(如α-淀粉酶抑制蛋白)等在穗發芽過程中也起重要作用[53-54]。較長的芒和較寬的芒角能聚集更多的水滴,從而增加籽粒吸水量,增加發生穗發芽的可能性[55]。種皮顏色是與種子穗發芽相關的典型特性之一,通常紅粒小麥比白粒小麥具有更強的穗發芽抗性[32, 56-57]。因此,降雨量相對較多的東北春麥區和南方春麥區通常種植紅粒小麥,而黃淮冬小麥產區則主要種植半冬性白粒小麥(表1,根據中華人民共和國農業農村部發布的數據進行統計,http://www.moa.gov.cn/)。有色種皮中可能含有抑制胚發育萌發的物質,從而延緩種子的萌發[58]。并非白皮小麥里不存在抗穗發芽材料,而是白粒小麥品種的穗發芽抗性可能具有復雜的遺傳性質,其表型會因組合和親本(遺傳背景)的不同而有所差異,呈現典型的微效多基因控制的數量遺傳特征[59-60]。

表1 2019—2023年中國審定小麥品種籽粒顏色分布
為了培育抗穗發芽、優質高產的小麥品種,必須全面了解現有小麥種質資源的穗發芽抗性水平,以及相關抗性組分的遺傳多樣性,以便在培育新品種時有針對性地利用這些抗性資源。在20世紀50年代,吳兆蘇等[61]和沈正興等[62]選用26個省(區)具有代表性的335個地方品種和39個推廣品種作為試驗材料,對中國小麥品種的種子休眠特性和穗發芽進行了研究,發現小麥品種的休眠期與冬春性或早熟性無關,與環境因素有關。閆長生等[63]對我國小麥主產區20世紀50年代至21世紀初的781個主要推廣品種和新品系進行了穗發芽抗性鑒定,發現不同年代小麥品種的穗發芽抗性存在較大差異。自1990年以來,育成的品種穗發芽抗性與20世紀80年代相近,但明顯弱于50、60和70年代,且長江中下游和北部2個冬麥區的種子發芽率均在10%以上。在我國小麥主產區黃淮冬小麥產區,蘭花麥、白火麥、內鄉19、輝縣紅、小偃5和白玉皮等品種表現出良好的穗發芽抗性[1, 64]。江蘇里下河農業科學研究所、安徽農業大學、四川農業大學、四川省農業科學院、河南農業大學、河南百農種業有限公司、河南華冠種業有限公司等單位一直在開展抗穗發芽研究工作,選育了具有穗發芽抗性的揚輻麥10號、川農16、川麥104、洛麥24、百農207等一批品種[65-67]。其中,豫麥18、百農64、豫麥7698、百農3217等現代品種由于具有較好的產量和農藝性狀,更符合當前小麥穗發芽抗性育種的要求[68]。但是少數具有良好穗發芽抗性的品種并不能滿足小麥安全生產的需要,還需繼續加強穗發芽抗性育種,培育更多抗穗發芽小麥品種。
ZHOU等[69]對717份中國小麥地方品種進行了穗發芽抗性鑒定和評價,共篩選出194份具有穗發芽抗性的種質資源(包括9份白皮和185份紅皮品種),為現代品種的穗發芽抗性改良遺傳機理研究奠定了基礎。在這些品種中,紅皮小麥平均發芽率(19.08%— 55.98%)顯著低于(<0.01)白皮小麥(47.02%— 79.63%),表明地方品種中紅皮小麥穗發芽抗性優于白皮小麥。來自長江中下游春(秋播)麥區(Ⅲ-YTS)、西南春(秋播)麥區(Ⅳ-SAS)、華南春(秋播)麥區(Ⅴ-SWAS)的地方品種穗發芽抗性優于其他麥區,而青藏高原春-冬(播)麥區(Ⅸ-Q&T)的小麥地方品種穗發芽抗性最差[69]。常成等[70]對中國的833份小麥種質資源(包括278份小麥微核心種質、124份地方品種和431份現代推廣品種及高代品系)進行穗發芽抗性檢測,共鑒定出63份穗發芽抗性較好的種質資源,其中41份達到抗穗發芽水平,主要為紅皮品種和地方農家種,對抗穗發芽品種的培育具有重要的應用價值。
自20世紀開始研究穗發芽以來,篩選白皮抗穗發芽小麥種質資源的工作也一直在進行。江登陽[71]從269個普通小麥材料中篩選出6個中國白皮小麥(包括涪陵須須白麥等,發芽率低于10%)。張海峰等[60]鑒定到9個白皮小麥材料(包括豐產3號、ID80-115、Vakka、Ford和Peck等),發芽率低于20%。肖世和等[1]和蔣國梁等[72]篩選出20多個高抗穗發芽的白皮小麥材料,如萬縣白麥子、遂寧坨坨麥、梓潼女兒麥、宜賓白麥子、永川白麥子以及涪陵須須麥等。周勇等[73]通過對來自世界主要小麥產區的502個白皮小麥材料進行穗發芽抗性鑒定和評價,發現僅有1.39%的材料平均發芽率小于40%,其中,Osiris(埃及)、Vilmorin 29(法國)、Miana(法國)、Kanto 107(日本)、Darwin(德國)、Magnif MG(阿根廷)和Benefactress(英國)小麥材料表現出在多個環境下穩定的穗發芽抗性。HUCL等[74]、SINGH等[75]和Matus-Cádiz等[76]在RL4137(紅皮抗穗發芽)×AUS1408(白皮抗穗發芽)的F5后代中篩選到一份白皮抗穗發芽材料W98616。
小麥穗發芽是由多個QTL或基因控制的數量性狀[60]。通過Meta分析,TAI等[39]共獲得66個Meta-QTL,分布在小麥21條染色體上,其中至少有44個Meta-QTL尚未找到目的基因[39]。隨后,利用680份小麥材料進行系統的穗發芽表型統計和全基因組關聯分析,發現53個新的小麥穗發芽相關QTL位點,共包含1 637個候選基因[77]。本文主要介紹2B、3A、3D和4A染色體上主效穗發芽抗性基因的鑒定過程。
MUNKVOLD等[78]利用DH群體在2B染色體上鑒定到一個主效QTL(),解釋5%—31%的表型變異。對其進行精細定位,發現該位點由2個相鄰的QTL組成,共同作用于表型變異[79]。在小麥中,ZHANG等[80]發現了與水稻種子休眠基因(與穗發芽抗性相關)同源的基因,定位在2BS染色體上,并開發了功能標記(表2)。很可能是已報道2B染色體上的穗發芽抗性主效QTL的候選基因。
OSA等[81]利用Zen/CS構建RIL群體,在3AS分子標記附近定位到一個穗發芽抗性主效位點。隨后,MORI等[82]將此QTL區間縮短在—標記之間。NAKAMURA等[23]克隆了該基因,是()的同源基因,將其命名為,只在盾片和胚根鞘中表達,且受低溫誘導,增強種子休眠。同時,LIU等[83]也在3AS上定位到與標記緊密連鎖的抗穗發芽主效QTL,利用白皮抗穗發芽小麥Rio Blanco圖位克隆了。與是同源基因,在不同的遺傳群體中可解釋11.6%—74.3%的穗發芽表型變異率[84-86]。/有多個SNP位點,與穗發芽表型相關(表2)。
ZHOU等[69]通過對717份中國地方小麥進行全基因組關聯分析,在3D染色體上定位到穗發芽抗性主效QTL,與籽粒顏色轉錄因子TaMyb10共定位。YANG等[87]在具有強休眠性四倍體AS60和中抗穗發芽二倍體AS2255創制的人工合成小麥SHW-1中也定位到3D染色體上的穗發芽抗性主效QTL(),可以解釋不同環境中42.47%的穗發芽變異表型。LANG等[32]利用合成小麥后代的RIL群體鑒定到一個位于2.4 Mb存在/缺失變異(presence-absence variation,PAV)區域內的QTL位點,并成功克隆到調控籽粒顏色和休眠的R2R3- MYB轉錄因子家族成員(即基因[88]),還發現白粒小麥普遍缺失3D染色體(包含)的2.4 Mb區域,為下一步白粒抗穗發芽小麥的選育提供了新思路。
4AL染色體上存在一個穩定的控制種子休眠和穗發芽的主效QTL(),在不同的DH和RIL群體中多次被鑒定到,可解釋28.3%—43.3%的表型變異率[89-91]。2007年,CHEN等[91]利用地方品種禿頭麥A(抗穗發芽品種)和泗陽936(感穗發芽品種)構建了152個RIL群體,將位點定位在標記和之間(遺傳距離為9.14 cM)。隨后,該區間又被進一步縮小至和之間(遺傳距離為2.9 cM)[92]。2015年,BARRERO等[93]利用MAGIC群體將位點定位在標記wsnpEx_c66324_64493429和CD920298之間,并通過對多個近等基因系和親本進行轉錄組測序,鑒定到2個相鄰的候選基因和。研究表明,對ABA有響應,與籽粒休眠相關。與此同時,TORADA等[94]于2005年利用DH群體在4AL染色體上鑒定到位點,2016年,利用一個雙親群體將該位點定位在0.19 cM區間內,通過篩選中國春BAC文庫構建物理圖譜,得到2個與QTL共分離的BAC,物理長度為180 kb[95]。在該區間內,只有上的一個SNP變異與種子休眠相關(表2)。基于圖位克隆方法,獲得,與的距離為0.5 cM[95]。SHORINOLA等[96]使用2個雙親作圖群體構建了高密度遺傳圖譜,發現和到的距離為0.3 cM。隨后,在六倍體和四倍體小麥中構建了1.2 Mb的物理圖譜,基于前人研究,對和的單倍型與籽粒休眠表型進行相關性分析,結果表明,是真正的候選基因[97]。
除了上述穗發芽抗性關鍵基因的挖掘,還鑒定到一些在小麥籽粒發育不同時期表達、參與調控穗發芽的重要基因(圖1)。最早在玉米中被發現[98],參與調控種子休眠和胚胎發育[99-100]。在擬南芥中的同系物是[101]。位于3A、3B和3D染色體長臂,可能編碼與胚胎特異性休眠相關的轉錄因子,正調控種子休眠[102-103]。TaSRO1與TaVP1相互作用,并抑制TaVP1對穗發芽抗性基因或的轉錄激活[104]。能誘導種子休眠,但是與擬南芥的序列相似性較低[105]。在不同植物中,的組織特異性表達模式并不保守[105]。在擬南芥中,分別異位過表達和,均可顯著增加種子休眠,并且,其干種子儲存過程中的休眠釋放與過表達的轉基因植株相似[105-107],表明這些在增強種子休眠方面具有保守功能。小麥TaDOG1L1和TaDOG1L4還可與ABA信號通路中的TaPP2C-a10相互作用,調節小麥穗發芽[108]。FUSCA3(FUS3)是一種B3型轉錄因子,其N端可與種子中特異的bZIP蛋白結合,C端具有轉錄激活能力,能促進ABA的生物合成,參與調控籽粒休眠[109-110]。在普通小麥種子中,和在授粉后25 d和吸脹后24 h高表達,且表達譜相似,但未檢測到的轉錄[111]。通過對沉默植株的研究發現,其GA合成和ABA代謝相關基因的表達量增加,而ABA合成相關基因的表達量減少,表明在小麥種子休眠和穗發芽抗性中發揮積極作用,可能與ABA、GA水平和信號轉導有關[111]。根據序列多樣性,已在上述基因內開發了分子標記,可用于檢測小麥穗發芽抗性(表2)。
分子標記能有效地將表型和基因型結合起來,提高育種效率。HICKEY等[127]在休眠品種(具有SW95-50213和AUS1408血統)和無休眠品種雜交產生的7套F2和F3代群體中,利用小麥4AL的SSR標記(和)成功篩選出抗穗發芽材料。SINGH等[128]在60份加拿大小麥品種驗證了小麥染色體4AL上主效穗發芽抗性QTL位點分子標記(、、)選擇的有效性。GRAYBOSCH等[129]在美國硬白冬麥中驗證了小麥2B(、、、)和3AS(、、)位點標記選擇的有效性。、、、和被證實為可用于篩選白皮抗穗發芽小麥的較穩定的分子標記[73]。

圖1 穗發芽相關基因在小麥種子發育的不同時期表達模型

表2 小麥穗發芽抗性基因及其抗原品種

續表2 Continued table 2
常成等[70]基于已報道的12個抗穗發芽基因/位點,開發了13個分子標記,并通過分子標記輔助選擇和常規育種手段相結合,創制了12份抗穗發芽種質資源。其中,5份白皮半冬性品種達到了中抗水平,而7份紅皮品種達到了抗穗發芽水平。通過分子標記鑒定,這些材料包含3—4個抗穗發芽基因/位點,主要位于2AL()、3AS(、)、3BL()、4AL()、5B()和6B()染色體上。其中,、、和的頻率較高。在這些分子標記中,和鑒定的抗/感類型間差異最大,其次是、、、、、、和。這些標記在等位類型間的穗發芽抗性差異均達到極顯著水平,為抗穗發芽小麥新品種的選育提供了可利用的分子標記。
不同抗性位點的聚合有助于提高穗發芽抗性水平。已篩選出一些抗穗發芽等位基因組合,例如+、+、+、+[124]和/[115]。標記可用于紅粒優質小麥的穗發芽抗性篩選,而和標記可用于白粒優質小麥的穗發芽抗性篩選[130]。XIAO等[131]通過分子標記輔助選擇,利用與小麥3AS主效基因緊密連鎖的分子標記、、和,成功選育出白皮抗穗發芽小麥新品種中麥911。張海萍等[132]利用同樣的分子標記,同時聚合了3AS和3BL()上具有抗穗發芽優異等位基因的小麥品種,選育出白皮抗穗發芽小麥新品種安農0711。以上研究表明,利用分子標記輔助選擇的方法,可以更高效地選育出抗穗發芽小麥新品種。
人工合成六倍體小麥模擬了普通小麥的起源過程,可作為育種的“橋梁”材料,將四倍體或二倍體祖先種攜帶的未被育種利用的遺傳變異重新引入到現代小麥中,從而提高普通小麥的生產能力,具有較大的育種潛力[133-135]。通過人工合成小麥已成功選育出具有重穗、抗旱、抗凍等不同特點的多個小麥品種[136]。同時,合成小麥在小麥抗穗發芽育種中也具有非常重要的價值。
蘭秀錦等[137]將高抗穗發芽的河南節節麥與四倍體小麥簡陽矮蘭麥雜交,經過染色體加倍,合成新的具有穗發芽抗性的六倍體小麥RSP。基因定位試驗表明,其抗性基因來源于節節麥的2D染色體[138]。研究人員利用具有深度休眠特性的節節麥和中抗穗發芽的硬粒小麥雜交創制出抗穗發芽合成小麥SHW-L1[139],并從其后代中創制出抗穗發芽小麥新品系L10-1580[87]。不少學者也從人工合成小麥中鑒定到穗發芽抗性位點[32, 87, 139]。這些研究表明,小麥祖先種中含有豐富的抗穗發芽優異基因,可以作為小麥穗發芽改良的抗源材料,并通過人工合成途徑創制出抗穗發芽的六倍體小麥新材料[140]。
由于現代品種是育種家長期聚合優良變異的結果,而人工合成小麥存在植株偏高、難脫粒、晚熟等缺陷,育種應用范圍有限[141]。為提高人工合成小麥育種利用效率,HAO等[142]設計了“雙頂交-兩段選擇”育種方法,并進一步優化形成了“育種原始種質-頂交-兩段選擇”技術體系[141],提高了人工合成小麥滲入育種效率。此外,為了加快將節節麥整體優異變異轉移到優質小麥上的進程,ZHOU等[143]組裝了4個新的參考基因組,對278份節節麥進行重組測序,構建了涵蓋節節麥99%以上總體遺傳變異的核心種質,將其與優質小麥品種雜交,形成一個人工合成八倍體小麥庫。通過對抗穗發芽滲入系進行分析,證實了其在小麥育種中的巨大潛力,為小麥抗穗發芽育種和資源利用奠定了堅實基礎[143]。
普通小麥有3個亞基因組,基因功能存在部分冗余,使得某一個亞基因組上的基因突變很難表現出明顯的表型,尤其是由隱性基因控制的性狀。隨著技術的發展,農桿菌介導的CRISPR/Cas9技術在小麥中的應用逐漸成熟[144-145]。編碼丙氨酸氨基轉移酶,調控大麥種子休眠[146-147]。ABE等[148]運用CRISPR/ Cas9技術在小麥Fielder背景中敲除同源等位基因,并與野生型Fielder雜交分離轉基因載體系統,最終獲得一個在3個亞基因組上均具有突變但沒有外源序列的純合隱性突變體。該突變體的籽粒休眠時間明顯長于野生型,能有效避免穗發芽。編碼bHLH轉錄因子,通過調控ABA分解代謝基因和ABA生物合成基因負調控水稻種子休眠性[149]。XU等[149]運用基因編輯技術改良了多個水稻易穗發芽主栽品種的,在收獲期遭遇連綿陰雨天氣時,改良材料的穗發芽情況有顯著改善。通過改良小麥品種科農199中的,顯著提高了小麥穗發芽抗性,表明SD6在水稻和小麥中控制種子休眠性的功能是保守的,在水稻和小麥穗發芽抗性育種改良中均具有重要的應用價值。此外,中國農業科學院深圳農業基因組研究所聯合中國農業科學院作物科學研究所等單位,利用CRISPR/Cas9基因編輯技術成功獲得的+1 bp編輯植株[150]。通過編輯,使白皮小麥中的19 bp缺失導致的移碼突變被精準修復為18 bp缺失,從而使恢復編碼蛋白的能力,將白粒小麥轉化為紅粒小麥,成功提高了小麥的抗穗發芽能力。
小麥穗發芽在長江中下游冬麥區、西南春麥區和東北春麥區頻繁發生。然而,由于在品種選育過程中,穗發芽抗性選擇的壓力較小、小麥成熟期降水的增加,以及收獲方式的改變等原因,黃淮和北方冬麥區發生穗發芽的風險逐漸加重。因此,加快培育白皮抗穗發芽小麥品種仍是我國小麥育種的重要目標之一。在不同的環境條件下,小麥穗發芽抗性的效果也會有所不同。小麥的祖先種和地方品種含有許多現代小麥品種所缺乏的優良等位基因,通過人工合成小麥滲入育種等方法,可以將普通小麥進化和人工選擇過程丟失的遺傳變異重新引入育成品種[143]。聚合多個抗穗發芽基因可以有效提高小麥品種的抗穗發芽水平。目前,利用分子標記輔助選擇育種,聚合有效的抗穗發芽基因仍然是提高穗發芽抗性的主要有效方法[70]。不同研究人員對小麥種質資源材料的穗發芽抗性和基因型進行鑒定,發現了不同的抗穗發芽優異基因組合,例如-/-/-/-/-[151]、-/-[124]和/[115]。然而,由于試驗材料數量有限,且利用的抗穗發芽基因內分子標記有限,不同小麥材料中鑒定出的優異基因組合類型存在差異,可能仍存在更優的組合需要在育種過程中驗證。在聚合不同的穗發芽抗性基因時,需要考慮它們對小麥生育期、株葉型、抗病性等農藝性狀的影響,以及它們之間是否相互影響。此外,還需要注意不同的雜交親本品種在不同環境下的穗發芽抗性差異,以培育適應當地環境的抗穗發芽小麥品種。由于小麥基因組復雜且龐大,未來的研究仍需挖掘穗發芽抗性位點和關鍵基因,并加快開發和驗證單拷貝和多拷貝穗發芽抗性基因內分子標記的有效性,避免標記和目標基因之間的不完全連鎖。這將有助于通過分子標記輔助常規育種手段,聚合多個穗發芽抗性基因,培育出抗穗發芽白皮小麥新品種。
CRISPR/Cas9基因編輯技術可以實現基因組水平上的編輯,創造等位基因并對性狀進行微調。利用CRISPR/Cas9技術,對小麥種子休眠相關基因進行靶向編輯,可以快速有效提高穗發芽抗性,抑制穗發芽能力,并為小麥種子的休眠和萌發研究提供更豐富的種質資源。重要的是,該方法可用于生產上正在推廣的高產優質小麥品種的快速改良,而不需要經過繁瑣的雜交聚合和回交,大大節約了培育小麥品種的年限。該技術可作為小麥性狀改良的模型,特別是對遺傳隱性性狀的改良。因此,挖掘和鑒定重要的基因/QTL,進行重要基因的轉移、聚合或定向編輯,將是改良穗發芽抗性分子育種研究的主要領域。目前,世界種業進入到育種“4.0時代”,正迎來以全基因組選擇、基因編輯、合成生物和人工智能等技術融合發展為標志的新一輪科技革命。這些新的育種技術可以在小麥抗穗發芽育種中提供重要的幫助和應用。例如,通過大規模的遺傳和表型數據分析,篩選出具有較高穗發芽抗性的親本材料;結合基因組學進行目標基因鑒定,利用CRISPR/Cas9基因編輯技術對目標基因進行精準編輯,從而實現對小麥性狀的精準改良,加速選育抗穗發芽品種的進程、提高育種效率。目前,一批轉基因玉米、大豆品種已正式通過國家品種審定。在不久的將來,轉基因小麥育種工作也將會有更多的可能性。
[1] 肖世和, 閆長生, 張海萍, 孫果忠. 小麥穗發芽研究. 北京: 中國農業科學技術出版社, 2004.
Xiao S H, Yan C S, Zhang H P, Sun G Z. Study on preharvest Germination of wheat. Beijing: China Agricultural Science and Technology Press, 2004. (in Chinese)
[2] 張宗敏, 陳巧艷, 李新華, 喬紅, 歐行奇. 豫北地區不同小麥品種穗發芽初步研究. 農業科技通訊, 2016(11): 60-63.
Zhang Z M, Chen Q Y, Li X H, Qiao H, Ou X Q. Preliminary study on pre-harvest germination of different wheat varieties in northern Henan Province. Bulletin of Agricultural Science and Technology, 2016(11): 60-63. (in Chinese)
[3] 唐豪, 周勇, 譚志, 楊力生, 郭曉江, 王際睿. 部分小麥產區穗發芽危害狀況調查及應對建議. 農家科技, 2018, 7: 36-37.
Tang H, Zhou Y, Tan Z, Yang L S, Guo X J, Wang J R. Investigation of pre-harvest sprouting hazards in some wheat producing areas and suggestions for countermeasures. Agricultural Science and Technology, 2018, 7: 36-37. (in Chinese)
[4] 朱利廣, 張玉坤, 馬慶, 王勖, 晁漫寧. 安徽省冬小麥品種大田條件下穗發芽抗性研究. 中國種業, 2023(9): 66-69.
Zhu L G, Zhang Y K, Ma Q, Wang X, Chao M N. Research of pre-harvest sprouting resistances of winter wheat varieties under field conditions in Anhui province. China Seed Industry, 2023(9): 66-69. (in Chinese)
[5] 毛伯韌, 吳兆蘇. 小麥種子休眠特性的遺傳及其機理的研究. 中國農業科學, 1983, 16(6): 53-60.
Mao B R, Wu Z S. Studies on the inheritance and mechanism of seed dormancy in wheat. Scientia Agricultura Sinica, 1983, 16(6): 53-60. (in Chinese)
[6] Pérez-flores L, Carrari F, Osuna-fernández R, Rodríguez M V, Enciso S, Stanelloni R, SAnchez R A, Bottini R, Iusem N D, Benech-arnold R L. Expression analysis of a GA 20-oxidase in embryos from two sorghum lines with contrasting dormancy: possible participation of this gene in the hormonal control of germination. Journal of Experimental Botany, 2003, 54(390): 2071-2079.
[7] Toorop P E, Barroco R M, Engler G, Groot S P C, Hilhorst H W M. Differentially expressed genes associated with dormancy or germination ofseeds. Planta, 2005, 221(5): 637-647.
[8] Rodríguez M V, Barrero J M, Corbineau F, Gubler F, Benech-Arnold R L. Dormancy in cereals (not too much, not so little): about the mechanisms behind this trait. Seed Science Research, 2015, 25(2): 99-119.
[9] Henry R J, Furtado A, Rangan P. Wheat seed transcriptome reveals genes controlling key traits for human preference and crop adaptation. Current Opinion in Plant Biology, 2018, 45(Pt B): 231-236.
[10] Liu S B, Sehgal S K, Lin M, Li J R, Trick H N, Gill B S, Bai G H. Independent mis-splicing mutations in TaPHS1 causing loss of preharvest sprouting (PHS) resistance during wheat domestication. The New phytologist, 2015, 208(3): 928-935.
[11] Liu D C, Lan X J, Wang Z R, Zheng Y L, Zhou Y H, Yang J L, CHI Y. Evaluation ofCosson for preharvest sprouting tolerance. Genetic Resources and Crop Evolution, 1998, 45(6): 495-498.
[12] Wang J R, Liu Y X, Wang Y, Chen Z H, Dai S, Cao W G, Fedak G, Lan X J, Wei Y M, Liu D C, Zheng Y L. Genetic variation of Vp1 in Sichuan wheat accessions and its association with pre-harvest sprouting response. Genes & Genomics, 2011, 33(2): 139-146.
[13] Vetch J M, Stougaard R N, Martin J M, Giroux M J. Review: Revealing the genetic mechanisms of pre-harvest sprouting in hexaploid wheat (L.). Plant Science, 2019, 281: 180-185.
[14] ?ILI? S, JANKOVI? M, BARA? M, PE?I? M, KONI?-RISTI? A, ?UKALOVI? V H T. Effects of enzyme activities during steeping and sprouting on the solubility and composition of proteins, their bioactivity and relationship with the bread making quality of wheat flour. Food & Function, 2016, 7(10): 4323-4331.
[15] 金玉紅, 張開利, 付聿成, 張興春, 杜金華. 小麥蛋白質含量對小麥芽質量的影響. 中國糧油學報, 2006, 21(3): 39-43.
Jin Y H, Zhang K L, Fu Y C, Zhang X C, Du J H. The influence of protein content on the quality of wheat malt. Journal of the Chinese Cereals and Oils Association, 2006, 21(3): 39-43. (in Chinese)
[16] Li C, Jeong D, Lee J H, Chung H J. Influence of germination on physicochemical properties of flours from brown rice, oat, sorghum, and millet. Food Science and Biotechnology, 2020, 29(9): 1223-1231.
[17] Simsek S, Ohm J B, Lu H Y, Rugg M, Berzonsky W, Alamri M S, Mergoum M. Effect of pre-harvest sprouting on physicochemical properties of starch in wheat. Foods (Basel, Switzerland), 2014, 3(2): 194-207.
[18] Groos C, Gay G, Perretant M R, Gervais L, Bernard M, Dedryver F, Charmet G. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white×red grain bread-wheat cross. Theoretical and Applied Genetics, 2002, 104(1): 39-47.
[19] 梁王壯, 唐雅楠, 劉佳薈, 郭曉江, 董慧雪, 祁鵬飛, 王際睿. 小麥發芽對面粉質量與加工產品品質的影響, 中國農業科學, 2024, 57(7): 1267-1280.doi: 10.3864/j.issn.0578-1752.2024.07.005.
Liang W Z, Tang Y N, Liu J H, Guo X J, Dong H X, Qi P F, Wang J R. Effect of flour and cooking/baking qualities by sprouted wheat. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280. doi: 10.3864/j.issn.0578-1752.2024.07.005.(in Chinese)
[20] Lee G A, Jeon Y A, Lee H S, Hyun D Y, Lee J R, Lee M C, Lee S Y, Ma K H, Koh H J. New genetic loci associated with preharvest sprouting and its evaluation based on the model equation in rice. Frontiers in Plant Science, 2017, 8: 1393.
[21] Benech-arnold R L, Rodríguez M V. Pre-harvest sprouting and grain dormancy in: What have we learned? Frontiers in Plant Science, 2018, 9: 811.
[22] Ullrich S E, Clancy J A, Del Blanco I A, Lee H, Jitkov V A, Han F, Kleinhofs A, Matsui K. Genetic analysis of preharvest sprouting in a six-row barley cross. Molecular Breeding, 2008, 21(2): 249-259.
[23] Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. The Plant Cell, 2011, 23(9): 3215-3229.
[24] Huang Z, Footitt S, Tang A, Finch-Savage W E. Predicted global warming scenarios impact on the mother plant to alter seed dormancy and germination behaviour in. Plant, Cell & Environment, 2018, 41(1): 187-197.
[25] Fahad S, Bajwa A A, Nazir U, Anjum S A, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan M Z, Alharby H, Wu C, Wang D P, Huang J L. Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science, 2017, 8: 1147.
[26] Biddulph T B, Plummer J A, Setter T L, Mares D J. Influence of high temperature and terminal moisture stress on dormancy in wheat (L.). Field Crops Research, 2007, 103(2): 139-153.
[27] Debeaujon I, Koornneef M. Gibberellin requirement forseed germination is determined both by testa characteristicsand embryonic abscisic acid. Plant Physiology, 2000, 122(2): 415-424.
[28] 于敏, 徐恒, 張華, 朱英. 植物激素在種子休眠與萌發中的調控機制. 植物生理學報, 2016, 52(5): 599-606.
Yu M, Xu H, Zhang H, Zhu Y. Regulation of plant hormones on seed dormancy and germination. Plant Physiology Journal, 2016, 52(5): 599-606. (in Chinese)
[29] Johnson R R, Wagner R L, Verhey S D, Walker-Simmons M K. The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiology, 2002, 130(2): 837-846.
[30] Gubler F, Millar A A, Jacobsen J V. Dormancy release, ABA and pre-harvest sprouting. Current Opinion in Plant Biology, 2005, 8(2): 183-187.
[31] Finkelstein R. Abscisic acid synthesis and response. The Arabidopsis Book, 2013, 11: e0166.
[32] Lang J, Fu Y X, Zhou Y, Cheng M P, Deng M, Li M L, Zhu T T, Yang J, Guo X J, Gui L X, Li L C, Chen Z X, Yi Y, Zhang L Q, Hao M, Huang L, Tan C, Chen G Y, Jiang Q T, Qi P F, Pu Z E, Ma J, Liu Z H, Liu Y J, Luo M C, Wei Y M, Zheng Y L, Wu Y R, Liu D C, Wang J R.confersresistance to pre-harvest sprouting by regulatingin ABA biosynthesis pathway of wheat. The New phytologist, 2021, 230(5): 1940-1952.
[33] Yu X F, Han J P, Wang E P, Xiao J, Hu R, Yang G X, He G Y. Genome-wide identification and homoeologous expression analysis ofgenes in wheat (L.). Frontiers in Genetics, 2019, 10: 561.
[34] Utsugi S, Nakamura S, Noda K, Maekawa M. Structural and functional properties ofgenes in dormant wheat. Genes & Genetic Systems, 2008, 83(2): 153-166.
[35] Chono M, Matsunaka H, Seki M, Fujita M, Kiribuchi- Otobe C, Oda S, Kojima H, Kobayashi D, Kawakami N. Isolation of a wheat (L.) mutant in ABA 8'- hydroxylase gene: effect of reduced ABA catabolism on germination inhibition under field condition.Breeding Science, 2013, 63(1): 104-115.
[36] Son S, Chitnis V R, Liu A H, Gao F, Nguyen T N, Ayele B T. Abscisic acid metabolic genes of wheat (L.): identification and insights into their functionality in seed dormancy and dehydration tolerance. Planta, 2016, 244(2): 429-447.
[37] Ohnishi N, Himi E, Yamasaki Y, Noda K. Differential expression of three ABA-insensitive five binding protein (AFP)-like genes in wheat. Genes & Genetic Systems, 2008, 83(2): 167-177.
[38] Rikiishi K, Maekawa M. Seed maturation regulators are related to the control of seed dormancy in wheat (L.). Plos ONE, 2014, 9(9): e107618.
[39] Tai L, Wang H J, Xu X J, Sun W H, Ju L, Liu W T, Li W Q, Sun J Q, Chen K M. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. Journal of Experimental Botany, 2021, 72(8): 2857-2876.
[40] Cheng X, Wang S, Xu D, Liu X, Li X, Xiao W, Cao J, Jiang H, Min X, Wang J, Zhang H, Chang C, Lu J, Ma C. Identification and analysis of the GASR gene family in common wheat (L.) and characterization of, a gene associated with seed dormancy and germination. Frontiers in Genetics, 2019, 10: 980.
[41] Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. 'Green revolution' genes encode mutant gibberellin response modulators. Nature, 1999, 400(6741): 256-261.
[42] Wu J, Kong X Y, Wan J M, Liu X Y, Zhang X, Guo X P, Zhou R H, Zhao G Y, Jing R L, Fu X D, Jia J Z. Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. Plant Physiology, 2011, 157(4): 2120-2130.
[43] Van De Velde K, Chandler P M, Van Der Straeten D, Rohde A. Differential coupling of gibberellin responses by Rht-B1c suppressor alleles and Rht-B1b in wheat highlights a unique role for the DELLA N-terminus in dormancy. Journal of Experimental Botany, 2017, 68(3): 443-455.
[44] Liu A H, Gao F, Kanno Y, Jordan M C, Kamiya Y, Seo M, Ayele B T. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. Plos ONE, 2013, 8(2): e56570.
[45] Ramaih S, Guedira M, Paulsen G M. Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat. Functional Plant Biology, 2003, 30(9): 939-945.
[46] Belin C, Megies C, Hauserová E, Lopez-Molina L. Abscisic acid represses growth of theembryonic axis after germination by enhancing auxin signaling. The Plant Cell, 2009, 21(8): 2253-2268.
[47] Ju L, Jing Y X, Shi P T, Liu J, Chen J S, Yan J J, Chu J F, Chen K M, Sun J Q. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and. The New phytologist, 2019, 223(1): 246-260.
[48] Liu X D, Zhang H, Zhao Y, Feng Z Y, Li Q, Yang H Q, Luan S, Li J M, He Z H. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(38): 15485-15490.
[49] Jacobsen J V, Barrero J M, Hughes T, Julkowska M, Taylor J M, Xu Q, Gubler F. Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain (L.). Planta, 2013, 238(1): 121-138.
[50] Sun M H, Tuan P A, Izydorczyk M S, Ayele B T. Ethylene regulates post-germination seedling growth in wheat through spatial and temporal modulation of ABA/GA balance. Journal of Experimental Botany, 2020, 71(6): 1985-2004.
[51] Tong H N, Xiao Y H, Liu D P, Gao S P, Liu L C, Yin Y H, Jin Y, Qian Q, Chu C C. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. The Plant Cell, 2014, 26(11): 4376-4393.
[52] Unterholzner S J, Rozhon W, Papacek M, Ciomas J, Lange T, Kugler K G, Mayer K F, Sieberer T, Poppenberger B. Brassinosteroids are master regulators of gibberellin biosynthesis in. The Plant Cell, 2015, 27(8): 2261-2272.
[53] 張秀英, 陳旭, 閆長生, 肖世和. 不同遺傳背景小麥材料穗發芽差異評價. 作物雜志, 2017(1): 48-50.
Zhang X Y, Chen X, Yan C S, Xiao S H. Evaluation of pre-harvest sprouting of wheat materials with different genetic backgrounds. Crops, 2017(1): 48-50. (in Chinese)
[54] 苗西磊, 王德森, 夏蘭芹, 張運宏, 王忠偉, 何中虎, 陳新民. 白粒小麥品種(系)穗發芽抗性機制分析. 麥類作物學報, 2011, 31(4): 741-746.
Miao X L, Wang D S, Xia L Q, Zhang Y H, Wang Z W, He Z H, Chen X M. Analysis on the mechanism of pre-harvest sprouting resistance in white-grain wheat. Journal of Triticeae Crops, 2011, 31(4): 741-746. (in Chinese)
[55] Mares D J, Mrva K. Wheat grain preharvest sprouting and late maturity alpha-amylase. Planta, 2014, 240(6): 1167-1178.
[56] Himi E, Mares D J, Yanagisawa A, Noda K. Effect of grain colour gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat. Journal of Experimental Botany, 2002, 53(374): 1569-1574.
[57] Gu X Y, Foley M E, Horvath D P, Anderson J V, Feng J H, Zhang L H, Mowry C R, Ye H, Suttle J C, Kadowaki K I, Chen Z X. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics, 2011, 189(4): 1515-1524.
[58] 劉莉, 王海慶, 陳志國. 小麥抗穗發芽研究進展. 作物雜志, 2013(4): 6-11.
Liu L, Wang H Q, Chen Z G. Advances on resistance to pre-harvest sprouting in wheat. Crops, 2013(4): 6-11. (in Chinese)
[59] 陳兆夏, 蔣國梁. 小麥白粒品種抗穗發芽性遺傳的初步研究. 南京農業大學學報, 1997, 20(3): 1-6.
Chen Z X, Jiang G L. Preliminary study on inheritance of pre-harvest sprouting resistance in white wheat germplasm. Journal of Nanjing Agricultural University, 1997, 20(3): 1-6. (in Chinese)
[60] 張海峰, 盧榮禾. 小麥穗發芽抗性機理與遺傳研究. 作物學報, 1993, 19(6): 523-530.
Zhang H F, Lu R H. Study on the mechanism of the resistance to preharvest sprouting and inheritance in wheat. Acta Agronomica Sinica,1993, 19(6): 523-530. (in Chinese)
[61] 吳兆蘇, 魏燮中, 俞世蓉, 徐成彬. 小麥品種抗穗發芽性的鑒定篩選技術及其相關性的研究初報. 種子, 1987, 6(1): 5-8.
Wu Z S, Wei X Z, Yu S R, Xu C B. preliminary report on the identification and screening techniques of pre-harvest germination resistance of wheat varieties and their correlation. Seeds, 1987, 6(1): 5-8. (in Chinese)
[62] 沈正興, 俞世蓉, 吳兆蘇. 小麥品種抗穗發芽性的研究. 中國農業科學, 1991, 24(5): 44-50.
Shen Z X, Yu S R, Wu Z S. Studies on pre-harvest sprouting resistance in wheat cultivars. Scientia Agricultura Sinica, 1991, 24(5): 44-50. (in Chinese)
[63] 閆長生, 張海萍, 海林, 張秀英, 胡琳, 胡漢橋, 蒲宗君, 肖世和. 中國小麥品種穗發芽抗性差異的研究. 作物學報, 2006, 32(4): 580-587.
Yan C S, Zhang H P, Hai L, Zhang X Y, Hu L, Hu H J, Pu Z J, Xiao S H. Differences of preharvest sprouting resistance among chinese wheat cultivars. Acta Agronomica Sinica, 2006, 32(4): 580-587. (in Chinese)
[64] 黃義文, 代旭冉, 劉宏偉, 楊麗, 買春艷, 于立強, 劉朝輝, 李洪杰, 周陽, 張宏軍. 小麥抗穗發芽基因挖掘及分子育種進展. 麥類作物學報, 2021, 41(2): 147-156.
Huang Y W, Dai X R, Liu H W, Yang L, Mai C Y, Yu L Q, Liu Z H, Li H J, Zhou Y, Zhang H J. Progress on identification of resistant QTLs/genes associated with wheat pre-harvest sprouting and application in molecular breeding.Journal of Triticeae Crops, 2021, 41(2): 147-156. (in Chinese)
[65] 趙斌, 萬映秀, 王瑞, 張平治. 小麥抗穗發芽品種資源的篩選. 安徽農業科學, 2010, 38(17): 8900-8902.
Zhao B, Wan Y X, Wang R, Zhang P Z. Screening of wheat cultivar resources with pre-harvest sprouting resistance. Journal of Anhui Agricultural Sciences, 2010, 38(17): 8900-8902. (in Chinese)
[66] 陳杰, 張星宇, 白冬, 宋佳靜, 宋全昊, 趙立尚, 朱統泉, 朱保磊, 陳建輝, 張香粉. 黃淮麥區(南片)小麥穗發芽抗性評價及其等位基因檢測. 分子植物育種, 2023, 21(14): 4694-4701.
Chen J, Zhang X Y, Bai D, Song J J, Song Q H, Zhao L S, Zhu T Q, Zhu B L, Chen J H, Zhang X F. Evaluation of wheat pre-harwest sprouting resistance and allele detection in huanghuai southern wheat region. Molecular Plant Breeding, 2023, 21(14): 4694-4701. (in Chinese)
[67] 王琴, 劉澤厚, 萬洪深, 魏會廷, 龍海, 李濤, 鄧光兵, 李俊, 楊武云. 川麥42和川農16抗穗發芽QTL定位及聚合效應分析. 中國農業科學, 2020, 53(17): 3421-3431.doi:10.3864/j.issn.0578-1752. 2020.17.001.
Wang Q, Liu Z H, Wan H S, Wei H T, Long H, Li T, Deng G B, Li J, Yang W Y. Identification and pyramiding of QTLs for traits associated with pre-harvest sprouting resistance in two wheat cultivars Chuanmai 42 and Chuannong 16. Scientia Agricultura Sinica, 2020, 53(17): 3421-3431. doi:10.3864/j.issn.0578-1752.2020.17.001. (in Chinese)
[68] Chang C, Zhang H P, Lu J, Si H Q, Ma C X. Genetic improvement of wheat with pre-harvest sprouting resistance in China. Genes, 2023, 14(4): 837.
[69] Zhou Y, Tang H, Cheng M P, Dankwa K O, Chen Z X, Li Z Y, Gao S, Liu Y X, Jiang Q T, Lan X J, Pu Z E, Wei Y M, Zheng Y L, Hickey L T, Wang J R. Genome-wide association study for pre-harvest sprouting resistance in a large germplasm collection of chinese wheat landraces. Frontiers in Plant Science, 2017, 8: 401.
[70] 常成, 王旭陽, 余趙玉, 張海萍, 盧杰, 司紅起, 陳璨, 馬傳喜. 中國小麥抗穗發芽種質資源的挖掘與創制. 安徽農業大學學報, 2023, 50(5): 745-750.
Chang C, Wang X Y, Yu Z Y, Zhang H P, Lu J, Si H Q, Chen C, Ma C X. Excavation and creation of pre-harvest sprouting resistant germplasm resources in Chinese wheats. Journal of Anhui Agricultural University, 2023, 50(5): 745-750. (in Chinese)
[71] 江登陽. 小麥穗發芽鑒定方法及白皮品種抗性研究. 作物品種資源, 1991(2): 22-24.
Jiang D Y. Identification method of wheat pre-harvest and resistance of white wheat germplasm. Crop variety resources, 1991(2): 22-24. (in Chinese)
[72] 蔣國梁, 陳兆夏, 劉世家, 肖世和. 白皮小麥收獲前穗發芽及品種抗性機制探討. 作物學報, 1998, 24(6): 793-798.
Jiang G L, Chen Z X, Liu S J, Xiao S H. Pre-harvest sprouting in white wheats and its resistant characteristics of cultivars. Acta Agronomica Sinica, 1998, 24(6): 793-798. (in Chinese)
[73] 周勇, 李凈瓊, 李嘉, 毛瑞文, 謝嬌, 劉亞西, 江千濤, 蒲至恩, 譚志, 王際睿. 白皮小麥抗穗發芽資源評價及抗性候選位點關聯分析. 麥類作物學報, 2018, 38(6): 674-685.
Zhou Y, Li J Q, Li J, Mao R W, Xie J, Liu Y X, Jiang Q T, Pu Z E, Tan Z, Wang J R. Evaluation of pre-harvest sprouting tolerance and association analysis based on candidate loci in white grained wheat accessions. Journal of Triticeae Crops, 2018, 38(6): 674-685. (in Chinese)
[74] HUCL P, Matus-cádiz M. W98616, a white-seeded spring wheat with increased preharvest sprouting. Canadian Journal of Plant Science, 2002, 82(1): 129-131.
[75] Singh R, Matus-Cádiz M, B?ga M, Hucl P, Chibbar R N. Identification of genomic regions associated with seed dormancy in white-grained wheat. Euphytica, 2010, 174(3): 391-408.
[76] Matus-Cádiz M A, Daskalchuk T E, Verma B, Puttick D, Chibbar R N, Gray G R, Perron C E, Tyler R T, Hucl P. Phenolic compounds contribute to dark bran pigmentation in hard white wheat. Journal of Agricultural and Food Chemistry, 2008, 56(5): 1644-1653.
[77] Tai L, Wu J H, Jing Y X, Liu H Z, Zeng Q D, Xu X J, Shi S, Wang H J, Liu W T, Sun J Q, Han D J, Chen K M. A genome-wide association study uncovers thatregulates pre-harvest sprouting in wheat. Plant Communications, 2023: 100739.
[78] MUNKVOLD J D, TANAKA J, BENSCHER D, SORRELLS M E. Mapping quantitative trait loci for preharvest sprouting resistance in white wheat. Theoretical and Applied Genetics, 2009, 119(7): 1223-1235.
[79] SOMYONG S, ISHIKAWA G, MUNKVOLD J D, TANAKA J, BENSCHER D, CHO Y G, SORRELLS M E. Fine mapping of a preharvest sprouting QTL interval on chromosome 2B in white wheat. Theoretical and Applied Genetics, 2014, 127(8): 1843-1855.
[80] ZHANG Y J, MIAO X L, XIA X C, HE Z H. Cloning of seed dormancy genes () associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker. Theoretical and Applied Genetics, 2014, 127(4): 855-866.
[81] OSA M, KATO K, MORI M, SHINDO C, TORADA A, MIURA H. Mapping QTLs for seed dormancy and thehomologue on chromosome 3A in wheat. Theoretical and Applied Genetics, 2003, 106(8): 1491-1496.
[82] MORI M, UCHINO N, CHONO M, KATO K, MIURA H. Mapping QTLs for grain dormancy on wheat chromosome 3A and the group 4 chromosomes, and their combined effect. Theoretical and Applied Genetics, 2005, 110(7): 1315-1323.
[83] LIU S B, BAI G H. Dissection and fine mapping of a major QTL for preharvest sprouting resistance in white wheat Rio Blanco. Theoretical and Applied Genetics, 2010, 121(8): 1395-1404.
[84] LIU S B, CAI S B, GRAYBOSCH R, CHEN C X, BAI G H. Quantitative trait loci for resistance to pre-harvest sprouting in US hard white winter wheat Rio Blanco. Theoretical and Applied Genetics, 2008, 117(5): 691-699
[85] Liu S B, Sehgal S K, Li J R, Lin M, Trick H N, Yu J M, Gill B S, Bai G H. Cloning and characterization of a critical regulator for preharvest sprouting in wheat. Genetics, 2013, 195(1): 273.
[86] VETCH J M, TILLETT B J, BRUCKNER P, MARTIN J M, MARLOWE K, HOOKER M A, SEE D R, GIROUX M J.andhomeologs are associated with wheat preharvest sprouting. The Plant Genome, 2022, 15(4): e20250.
[87] Yang J, Tan C, Lang J, Tang H, Hao M, Tan Z, Yu H, Zhou Y, Liu Z H, Li M L, Zhou Y, Cheng M P, Zhang L Q, Liu D C, Wang J R. Identification ofandfrom synthetic wheat for pre-harvest sprouting resistance wheat improvement. Molecular Breeding, 2019, 39(9): 132.
[88] Himi E, Maekawa M, Miura H, Noda K. Development of PCR markers forrelated to R-1, red grain color gene in wheat. Theoretical and Applied Genetics, 2011, 122(8): 1561-1576.
[89] MARES D, RATHJEN J, MRVA K, CHEONG J. Genetic and environmental control of dormancy in white-grained wheat (L.). Euphytica, 2009, 168(3): 311-318.
[90] MARES D, MRVA K, CHEONG J, WILLIAMS K, WATSON B, STORLIE E, SUTHERLAND M, ZOU Y. A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theoretical and Applied Genetics, 2005, 111(7):1357-1364.
[91] CHEN C X, CAI S B, BAI G H. A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Molecular Breeding, 2008, 21(3): 351-358.
[92] LIN M, CAI S B, WANG S, LIU S B, ZHANG G R, BAI G H. Genotyping-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance. Theoretical and Applied Genetics, 2015, 128(7): 1385-1395.
[93] Barrero J M, Cavanagh C, Verbyla K L, Tibbits J F G, Verbyla A P, Huang B E, Rosewarne G M, Stephen S, Wang P H, Whan A, Rigault P, Hayden M J, Gubler F. Transcriptomic analysis of wheat near-isogenic lines identifiesandas candidates for a major dormancy QTL. Genome Biology, 2015, 16(1): 93.
[94] TORADA A, IKEGUCHI S, KOIKE M. Mapping and validation of PCR-based markers associated with a major QTL for seed dormancy in wheat. Euphytica, 2005, 143(3): 251-255.
[95] Torada A, Koike M, Ogawa T, Takenouchi Y, Tadamura K, Wu J Z, Matsumoto T, Kawaura K, Ogihara Y. A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase kinase. Current Biology, 2016, 26(6): 782-787.
[96] SHORINOLA O, BIRD N, SIMMONDS J, BERRY S, HENRIKSSON T, JACK P, WERNER P, GERJETS T, SCHOLEFIELD D, BALCáRKOVá B, VALáRIK M, HOLDSWORTH M J, FLINTHAM J, UAUY C. The wheat Phs-A1 pre-harvest sprouting resistance locus delays the rate of seed dormancy loss and maps 0.3 cM distal to the PM19 genes in UK germplasm. Journal of Experimental Botany, 2016, 67(14): 4169-4178.
[97] Shorinola O, BALCáRKOVá B, Hyles J, Tibbits J F G, Hayden M J, HOLU?OVA K, VALáRIK M, Distelfeld A, Torada A, Barrero J M, Uauy C. Haplotype analysis of the pre-harvest sprouting resistance locus Phs-A1 reveals a causal role of TaMKK3-A in global germplasm. Frontiers in Plant Science, 2017, 8: 1555.
[98] Mccarty D R, Hattori T, Carson C B, Vasil V, Lazar M, Vasil I K. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell, 1991, 66(5): 895-905.
[99] Bailey P C, McKibbin R S, Lenton J R, Holdsworth M J, Flintham J E, Gale M D. Genetic map locations for orthologousgenes in wheat and rice. Theoretical and Applied Genetics, 1999, 98(2): 281-284.
[100] Yang Y, Ma Y Z, Xu Z S, Chen X M, He Z H, Yu Z, Wilkinson M, Jones H D, Shewry P R, Xia L Q. Isolation and characterization ofgenes in wheat cultivars with distinct ABA sensitivity and pre-harvest sprouting tolerance. Journal of Experimental Botany, 2007, 58(11): 2863-2871.
[101] Giraudat J, Hauge B M, Valon C, Smalle J, Parcy F, Goodman H M. Isolation of thegene by positional cloning. The Plant Cell, 1992, 4(10): 1251-1261.
[102] Carrari F, Perez-Flore L, Lijavetzky D, Enciso S, Sanchez R, Benech-Arnold R, Iusem N. Cloning and expression of a sorghum gene with homology to maize vp1. Its potential involvement in pre-harvest sprouting resistance. Plant Molecular Biology, 2001, 45(6): 631-640.
[103] Nakamura S, Toyama T. Isolation of a VP1 homologue from wheat and analysis of its expression in embryos of dormant and non-dormant cultivars. Journal of Experimental Botany, 2001, 52(357): 875-876.
[104] LIU S P, LI L, WANG W L, XIA G M, LIU S W. TaSRO1 interacts with TaVP1 to modulate seed dormancy and pre-harvest sprouting resistance in wheat. Journal of Integrative Plant Biology, 2024, 66(1): 36-53.
[105] Ashikawa I, Abe F, Nakamura S. Ectopic expression of wheat and barley DOG1-like genes promotes seed dormancy in. Plant Science, 2010, 179(5): 536-542.
[106] Ashikawa I, Mori M, Nakamura S, Abe F. A transgenic approach to controlling wheat seed dormancy level by usingDOG1-like genes. Transgenic Research, 2014, 23(4): 621-629.
[107] Ashikawa I, Abe F, Nakamura S. DOG1-like genes in cereals: Investigation of their function by means of ectopic expression in. Plant Science, 2013, 208: 1-9.
[108] Yu X P, Han J P, Li L, Zhang Q, Yang G X, He G Y. Wheat PP2C-a10 regulates seed germination and drought tolerance in transgenic. Plant Cell Reports, 2020, 39(5): 635-651.
[109] Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, Mccourt P. The transcription factor FUSCA3 controls developmental timing inthrough the hormones gibberellin and abscisic acid. Developmental Cell, 2004, 7(3): 373-385.
[110] Sun F S, Liu X Y, Wei Q H, Liu J N, Yang T X, Jia L Y, Wang Y S, Yang G X, He G Y. Functional characterization of TaFUSCA3, a B3-superfamily transcription factor gene in the wheat. Frontiers in Plant Science, 2017, 8: 1133.
[111] SASAKI A, ITOH H, GOMI K, UEGUCHI-TANAKA M, ISHIYAMA K, KOBAYASHI M, JEONG D H, AN G, KITANO H, ASHIKARI M, MATSUOKA M. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science, 2003, 299(5614): 1896-1898.
[112] FENG Y M, LIU M, WANG Z, ZHAO X L, HAN B, XING Y P, WANG M Y, YANG Y. A 4-bp deletion in the 5'UTR ofis associated with seed dormancy in common wheat (L.). BMC Plant Biology, 2019, 19(1): 349.
[113] BI H H, SUN Y W, XIAO Y G, XIA L Q. Characterization of DFR allelic variations and their associations with pre-harvest sprouting resistance in a set of red-grained Chinese wheat germplasm. Euphytica, 2014, 195(2): 197-207.
[114] ZHANG Y J, XIA X C, HE Z H. The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces. Theoretical and Applied Genetics, 2017, 130(1): 81-89.
[115] 曹雪連, 張衡, 姜昊, 吳曾云, 曹佳佳, 朱玉磊, 王升星, 常成, 張海萍, 馬傳喜. 分子標記PM19-A1對1015份小麥抗穗發芽基因型的篩選及其有效性驗證. 麥類作物學報, 2016, 36(10): 1283-1290.
Cao X l, Zhang H, Jiang H, Wu Z y, Cao J j, Zhu Y l, Wang S x, Chang C, Zhang H p, Ma C x. Detection and validation of molecular marker PM19-A1 associated with pre-harvest sprouting resistance in 1015 wheat varieties. Journal of Triticeae Crops, 2016, 36(10): 1283-1290. (in Chinese)
[116] Lei L, Zhu X K, Wang S W, Zhu M R, Carver B F, Yan L L. TaMFT-A1 is associated with seed germination sensitive to temperature in winter wheat. Plos ONE, 2013, 8(9): e73330.
[117] Jiang H, Zhao L X, Chen X J, Cao J J, Wu Z Y, Liu K, Zhang C, Wei W X, Xie H Y, Li L, Gan Y G, Lu J, Chang C, Zhang H P, Xia X C, Xiao S H, Ma C X. A novel 33-bp insertion in the promoter of TaMFT-3A is associated with pre-harvest sprouting resistance in common wheat. Molecular Breeding, 2018, 38(5): 69.
[118] Sydenham S L, Barnard A. Targeted haplotype comparisons between south African wheat cultivars appear predictive of pre-harvest sprouting tolerance. Frontiers in Plant Science, 2018, 9: 63.
[119] YANG Y, ZHAO X L, XIA L Q, CHEN X M, XIA X C, YU Z, HE Z H, R?DER M. Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats. Theoretical and Applied Genetics, 2007, 115(7): 971-980.
[120] 羅永露, 隋建樞, 謝才江, 王偉, 陳天青, 何慶才. 西南地區87份小麥品種(系)穗發芽抗性的分子鑒定及篩選. 種子, 2020, 39(1): 49-53.
Luo Y l, Sui J s, Xie C j, Wang W, Chen T q, He Q c. Molecular identification and screening of spike germination resistance of 87 wheat varieties (lines) in southwest China. seed, 2020, 39(1): 49-53. (in Chinese)
[121] CHANG C, FENG J M, SI H Q, YIN B, ZHANG H P, MA C X. Validating a novel allele of() associated with high seed dormancy of Chinese wheat landrace, Wanxianbaimaizi. Molecular Breeding, 2010, 25(3): 517-525.
[122] CHANG C, ZHANG H P, FENG J M, YIN B, SI H Q, MA C X. Identifying alleles of Viviparous-1B associated with pre-harvest sprouting in micro-core collections of Chinese wheat germplasm. Molecular Breeding, 2010, 25(3): 481-490.
[123] CHANG C, ZHANG H P, ZHAO Q X, FENG J M, SI H Q, LU J, MA C X. Rich allelic variations ofand their associations with seed dormancy/pre-harvest sprouting of common wheat. Euphytica, 2011, 179(2): 343-353.
[124] YANG Y, ZHANG C L, LIU S X, SUN Y Q, MENG J Y, XIA L Q. Characterization of the rich haplotypes ofin Chinese wheats and development of a novel sequence-tagged site marker for pre-harvest sprouting resistance. Molecular Breeding, 2014, 33(1): 75-88.
[125] WEI W X, MIN X Y, SHAN S Y, JIANG H, CAO J J, LI L, WANG J P, WANG S X, ZHU Y L, LU J, SI H Q, XIA X C, MA C X, ZHANG H P, CHANG C. Isolation and characterization ofgenes for period of dormancy in common wheat (L.). Molecular Breeding, 2019, 39(10/11): 150.
[126] ONISHI K, YAMANE M, YAMAJI N, TOKUI M, KANAMORI H, WU J, KOMATSUDA T, SATO K. Sequence differences in the seed dormancy geneamong various wheat genomes. BMC Genomics, 2017, 18(1): 497.
[127] HICKEY L T, DIETERS M J, DELACY I H, CHRISTOPHER M J, KRAVCHUK O Y, BANKS P M. Screening for grain dormancy in segregating generations of dormant × non-dormant crosses in white-grained wheat (L.). Euphytica, 2010, 172(2): 183-195.
[128] SINGH R, HUCL P, B?GA M, CHIBBAR R N. Validation of molecular markers for pre-harvest sprouting resistance in bread wheat. Cereal Research Communications, 2012, 40(2): 194-203.
[129] GRAYBOSCH R A, ST AMAND P, BAI G H. Evaluation of genetic markers for prediction of preharvest sprouting tolerance in hard white winter wheats. Plant Breeding, 2013, 132(4): 359-366.
[130] 李亞青, 張楠, 彭義峰, 張士昌, 李孟軍. 穗發芽抗性相關分子標記在優質小麥中的有效性驗證. 河南農業科學, 2021, 50(10): 18-26.
Li Y q, Zhang N, Peng Y f, Zhang S c, Li M j. Validation of molecular markers related to pre-harvest sprouting resistance in high-quality wheat varieties. Journal of Henan Agricultural Sciences,2021, 50(10): 18-26. (in Chinese)
[131] XIAO S H, ZHANG H P, YOU G X, ZHANG X Y, YAN C S, CHEN X. Integration of marker-assisted selection for resistance to pre-harvest sprouting with selection for grain-filling rate in breeding of white-kernelled wheat for the Chinese environment. Euphytica, 2012, 188(1): 85-88.
[132] 張海萍, 常成, 司紅起, 盧杰, 馬傳喜. 小麥抗穗發芽分子標記開發及育種應用. 科技導報, 2016, 34(22): 81-86.
Zhang H p, Chang C, Si h Q, Lu J, Ma C x. Developing of molecular marker for pre-harvest sprouting resistance and its application in wheat MAS breeding. Science & Technology Review, 2016, 34(22): 81-86. (in Chinese)
[133] 郝明, 張連全, 黃林, 甯順腙, 袁中偉, 姜博, 顏澤洪, 伍碧華, 鄭有良, 劉登才. 合成六倍體小麥的遺傳育種. 植物遺傳資源學報, 2022, 23(1): 40-48.
Hao M, Zhang L Q, Huang L, Ning S Z, Yuan Z W, Jiang B, Yan Z H, Wu B H, Zheng Y L, Liu D C. Genetic improvement of synthesized hexaploid wheat in breeding. Journal of Plant Genetic Resources, 2022, 23(1): 40-48. (in Chinese)
[134] Reif J C, Zhang P, Dreisigacker S, Warburton M L, Van Ginkel M, Hoisington D, Bohn M, Melchinger A E. Wheat genetic diversity trends during domestication and breeding. Theoretical and Applied Genetics, 2005, 110(5): 859-864.
[135] Li A L, Liu D C, Yang W Y, Kishii M, Mao L. Synthetic hexaploid wheat: Yesterday, today, and tomorrow. Engineering, 2018, 4(4): 552-558.
[136] Hao M, Zhang L Q, Zhao L B, Dai S P, Li A L, Yang W Y, Xie D, Li Q C, Ning S Z, Yan Z H, Wu B H, Lan X J, Yuan Z W, Huang L, Wang J R, Zheng K, Chen W S, Yu M, Chen X J, Chen M P, Wei Y M, Zhang H G, Kishii M, Hawkesford M J, Mao L, Zheng Y L, Liu D C. A breeding strategy targeting the secondary gene pool of bread wheat: Introgression from a synthetic hexaploid wheat. Theoretical and Applied Genetics, 2019, 132(8): 2285-2294.
[137] 蘭秀錦, 鄭有良, 劉登才, 魏育明, 顏澤洪, 周永紅. 節節麥抗穗發芽基因的染色體定位及其抗性機理. 中國農業科學, 2002, 35(1): 12-15.
Lan X J, Zheng Y L, Liu D C, Wei Y M, Yan Z H, Zhou Y H. Tolerant mechanism and chromosome location of gene of pre-harvest sprouting tolerance incosson. Scientia Agricultura Sinica, 2002, 35(1): 12-15. (in Chinese)
[138] Zhang L Q, Liu D C, Yan Z H, Lan X J, Zheng Y L, Zhou Y H. Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Science in China Series C, Life Sciences, 2004, 47(6): 553-561.
[139] Imtiaz M, Ogbonnaya F C, Oman J, Van Ginkel M. Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics, 2008, 178(3): 1725-1736.
[140]藏天青, 劉玉娥, 馬春芳, 李瀟, 王希友, 郝明, 張連全, 袁中偉, 姜博, 劉登才, 甯順腙. 抗穗發芽合成小麥改良品系的篩選及遺傳分析. 四川農業大學學報, 2023, 41(6): 998-1007.
Zang T Q, Liu Y E, Ma C F, Li X, Wang X Y, Hao M, Zhang L Q, Yuan Z W, Jiang B, Liu D C, Ning S Z. Identification and genetic analysis of improved synthetic wheat line showing resistance to pre-harvest sprouting. Journal of Sichuan Agricultural University, 2023, 41(6): 998-1007. (in Chinese)
[141] 李生科, 郝明, 張連全, 黃林, 甯順腙, 袁中偉, 姜博, 陳雪, 陳雪姣, 顏澤洪, 伍碧華, 鄭有良, 劉登才. 基于原始種質的小麥育種技術體系. 四川農業大學學報, 2023, 41(6): 961-972.
Li S K, Hao M, Zhang L Q, Huang L, Ning S Z, Yuan Z W, Jiang B, Chen X, Chen X J, Yan Z H, Wu B H, Zheng Y L, Liu D C. Primitive-germplasm-mediated breeding system for wheat. Journal of Sichuan Agricultural University, 2023, 41(6): 961-972. (in Chinese)
[142] Hao M, Zhang L Q, Zhao L B, Dai S F, Li A L, Yang W Y, Xie D E, Li Q C, Ning S Z, Yan Z H, Wu B H, Lan X J, Yuan Z W, Huang L, Wang J R, Zheng K, Chen W S, Yu M, Chen X J, Chen M P, Wei Y M, Zhang H G, Kishii M, Hawkesford M J, Mao L, Zheng Y L, Liu D C. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theoretical and Applied Genetics, 2019, 132(8): 2285-2294.
[143] Zhou Y, Bai S L, Li H, Sun G L, Zhang D L, Ma F F, Zhao X P, Nie F, Li J Y, Chen L Y, Lv L L, Zhu L L, Fan R X, Ge Y F, Shaheen A, Guo G H, Zhang Z, Ma J C, Liang H H, Qiu X L, Hu J M, Sun T, Hou J Y, Xu H X, Xue S L, Jiang W K, Huang J L, Li S P, Zou C S, Song C P. Introgressing thegenome into wheat as a basis for cereal improvement. Nature Plants, 2021, 7(6): 774-786.
[144] Wang Y p, Cheng X, Shan Q w, Zhang Y, Liu J x, Gao C x, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 2014, 32(9): 947-951.
[145] Zhang Z z, Hua L, Gupta A, Tricoli D, Edwards K J, Yang B, Li W l. Development of an-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnology Journal, 2019, 17(8): 1623-1635.
[146] Hisano H, Hoffie R E, Abe F, Munemori H, Matsuura T, Endo M, Mikami M, Nakamura S, Kumlehn J, Sato K. Regulation of germination by targeted mutagenesis of grain dormancy genes in barley. Plant Biotechnology Journal, 2022, 20(1): 37-46.
[147] SATO K, YAMANE M, YAMAJI N, KANAMORI H, TAGIRI A, SCHWERDT J G, FINCHER G B, MATSUMOTO T, TAKEDA K, KOMATSUDA T. Alanine aminotransferase controls seed dormancy in barley. Nature Communications, 2016, 18(7): 11625.
[148] Abe F, Haque E, Hisano H, Tanaka T, Kamiya Y, Mikami M, Kawaura K, Endo M, Onishi K, Hayashi T, Sato K. Genome-edited triple-recessive mutation alters seed dormancy in wheat.Cell Reports, 2019, 28(5): 1362-1369.
[149] Xu F, Tang J y, Wang S x, Cheng X, Wang H r, Ou S j, Gao S p, Li B s, Qian Y w, Gao C x, Chu C c. Antagonistic control of seed dormancy in rice by two bHLH transcription factors.Nature Genetics, 2022, 54(12): 1972-1982.
[150]Zhu Y w, Lin Y R, Fan Y J, Wang Y W, Li P P, Xiong J, He Y H, Cheng S P, Ye X G, Wang F, Goodrich J, Zhu J K, Wang K, Zhang C J. CRISPR/Cas9-mediated restoration ofto create pre-harvest sprouting-resistant red wheat. Plant Biotechnology Journal, 2023, 21(4): 665-667.
[151] 潘麗媛, 王永軍, 李海軍, 侯富, 李菁, 李麗麗, 孫蘇陽. 小麥抗穗發芽種質鑒評及其初步應用. 植物遺傳資源學報, 2024, doi: 10.13430/j.cnki.jpgr.20231106003.
PAN L Y, WANG Y J, LI H J, HOU F, LI J, LI L L, SUN S Y. Evaluation of wheat pre-harvest sprouting resistant germplasm resources and their preliminary application. Journal of Plant Genetic Resources, 2024, doi: 10.13430/j.cnki.jpgr.20231106003. (in Chinese)
Research on the Mechanisms of Pre-Harvest Sprouting and Resistant Breeding in Wheat
DONG HuiXue1,3, CHEN Qian1,3, GUO XiaoJiang3, WANG JiRui1,2,3,4
1State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130;2College of Agronomy, Sichuan Agricultural University, Chengdu 611130;3Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130;4Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu 611130
Pre-harvest sprouting (PHS) refers to the germination of cereal crops on the spike in high humidity conditions before grain harvest. Wheat PHS is a significant problem that affects both the yield and quality of wheat. Seed dormancy level is a major factor influencing the resistance of wheat PHS, and domesticated crops often exhibit reduced seed dormancy levels, making cultivated wheat more prone to PHS compared to its wild ancestors. Wheat PHS is mainly regulated by external environmental factors such as temperature and humidity, as well as internal plant hormones (GAs, ABA, IAA, MeJA, ET, BR). Researchers have identified a range of materials resistant to PHS, cloned key genes regulating PHS resistance, such as,,,,. New wheat materials resistant to PHS have been successfully developed through molecular marker-assisted selection, artificial synthesis of wheat, and CRISPR/Cas9 gene editing technology. This article reviews the genetic mechanism of PHS resistance in wheat and the latest progress in PHS resistance breeding research. In the future, it is necessary to continue exploring key genes related to PHS resistance, and employ biotechnological breeding methods to cultivate new PHS-resistant wheat varieties.
wheat; pre-harvest sprouting; seed dormancy; hormone; breeding improvement

10.3864/j.issn.0578-1752.2024.07.003
2023-12-28;
2024-02-19
科技創新2030(2023ZD04069)、國家農業科技重大專項(NK20220607)、國家自然科學基金(32301810,32301837,U22A20472)、國家重點研發計劃(2018YFE0112000)、四川省科技計劃(2023NSFSC0217,2021YFH0077)
董慧雪,E-mail:13051378621@163.com。通信作者王際睿,E-mail:wangjirui@gmail.com
(責任編輯 李莉)