999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于機器視覺的變電站高壓電氣設備絕緣自動監測方法

2024-03-03 03:05:48穆文靜
綿陽師范學院學報 2024年2期
關鍵詞:變電站故障檢測

穆文靜

(合肥職業技術學院機電工程學院,安徽合肥 230000)

0 引言

變電站由很多高壓電氣設備組成,其安全運行是電力系統穩定的重中之重[1].在高壓電氣設備故障當中,最主要的就是絕緣故障,它是由于設備長時間的使用導致絕緣材料老化、污染和損壞等原因造成的,其直接后果就是產生局部放電現象[2],如果不能及時處理就會導致嚴重的電力事故,所以對絕緣故障進行有效檢測可以有效避免事故的發生,減少經濟損失,保證變電站的安全運行.

傳統的絕緣故障檢測方法是采用人工巡檢和離線實驗等方法,但是這樣不僅浪費資源,而且速度慢、效果差,導致很多絕緣故障不能得到及時有效地處理,從而引發事故[3].所以,如何快速有效地實現變電站高壓電氣設備絕緣自動監測就成了亟待解決的問題[4].

趙慶生等人[5]采用BOF(Bag of features,BOF)圖像檢索算法分類電氣設備圖像,通過加速魯棒特征(SURF)算法尋找特征點位置,使用訓練集圖像進行深度學習,從而分類電氣設備圖像,識別絕緣故障.趙歡等人[6]通過卷積神經網絡進行圖像特征提取,使用邊框回歸算法,進行電氣設備絕緣故障的識別.但是這兩種方法都缺乏實時性,而且在圖像處理時受背景影響較大,導致絕緣故障的識別結果不準確,出現空洞現象.

我國近年來一直在發展智能電網,實現變電站高壓電氣設備絕緣檢測的實時性和工作人員的移動化是未來發展的必然趨勢,隨著智能視頻監控技術的發展,研究人員也提出了電力系統智能檢測的概念[7].同時機器視覺中的多軸平行攝影技術也被越來越多地應用于電力系統無人機自動巡檢和測量方面,取得了很好的定位效果[8],結合多軸平衡攝影探頭,將可見光、紅外光和紫外光三者結合,可以實現更加精確的測量[9].

因此,本文提出了一種基于機器視覺的變電站高壓電氣設備絕緣自動監測方法,結合機器視覺中的多軸平行攝影技術和智能視頻監控技術,實現對電氣設備的絕緣故障進行遠程實時監測,從而達到自動化、智能化、實時性等要求,能夠大幅度減少資源浪費,降低維護費用,具有極其顯著的經濟效益.

1 變電站高壓電氣設備絕緣自動監測

1.1 總體方案設計

本文將基于機器視覺的圖像采集和處理技術應用于變電站高壓電氣設備絕緣自動監測,通過在變電站現場安裝多軸平行攝影探頭,實時監測各個部位高壓電氣設備的絕緣情況,并將采集到的異常現象圖像發送至PC 端做進一步處理.當發生絕緣故障時,攝像頭采集到的圖像會發生明顯的變化,這些局部異常現象即為運動前景對象,利用四幀差分算法對采集到的異常現象圖像進行前景目標檢測,經Canny 邊緣檢測算法處理后識別絕緣故障,并儲存圖像數據,采用三點定位法計算絕緣故障的具體位置,輸出最終的計算結果,即絕緣故障發生時的準確圖像和定位,從而實現變電站高壓電氣設備絕緣自動監測,具體流程用圖1表示.

圖1 絕緣自動監測方法流程圖Fig.1 Flow chart of automatic insulation monitoring method

1.2 圖像采集和預處理

1.2.1 基于機器視覺的多軸平行攝影技術 本文采用機器視覺中的多軸平行攝影技術,運用平行軸鏡頭的方法,融合可見、紫外和紅外三種光源,通過CMOS感光元件進行結構重組,能夠進行不同波普的圖像采集,從而更好地判斷絕緣故障的發生情況[10].本文進行絕緣自動監測時選用多軸平行攝影探頭,其設計原理是采用光軸平行的方法,將三個不同波段的攝影探頭進行組合,構建成一個整體的攝像頭.其主要結構用圖2表示.

圖2 多軸平行攝影探頭結構圖Fig.2 Structure of multi-axis parallel photography probe

圖2中,可見光攝像頭需要采集高清圖像,所以需要很高的探頭解析度,需要達到頻率60幀/s、畫質2K(1 920×1 080 像素)以上.紫外和紅外探頭選用頻率60 幀/s、640×480像素的設備即可,因為二者的畫面數據量較小,所以無需太高的探頭解析度.

嵌入系統有兩個計算功能:

(1)當三個攝像頭捕捉到一項以上的異常現象時,即刻儲存實時單幀數據,并標定具體時間,發送到PC端進行分析處理.異常現象包括:異常閃光、紫外輻射點和異常瞬時高溫.

(2)將可見光、紫外和紅外三個探頭的數據疊加處理,得出更加準確的異常現象圖像.

1.2.2 圖像預處理 為了使圖像檢測更加快速和準確,過濾多余信息,減少待處理的數據總量,本文結合中值濾波和雙邊濾波兩種方法對采集到的異常圖像進行預處理.

(1)中值濾波

中值濾波是一種可以有效過濾非線性噪聲的濾波方法,它用像素點領域內像素的中值替換像素點,讓鄰近的像素值與實際情況更加類似,從而去除個別特異的噪聲點,大幅度改善圖像細節不清的問題,對于校驗噪聲和脈沖干擾非常有效[11],具有很好的除噪效果.

假設中值濾波的對象為一維序列x1,x2,x3,...,xn,從中依次選擇m個數,將其按照大小順序排列,提取出其序號中心點對應的那個數,公式為:

(2)雙邊濾波

雙邊濾波與中值濾波類似,同屬于非線性濾波法,可以在濾波的同時更好地保護邊緣像素信息[12].濾波后圖像點的灰度值公式為:

式中歸一化系數用k表示,其公式為:

式中,中心圖像點與鄰域圖像點分別用x、ζ表示,中心圖像點與鄰域點的灰度相似度為s,中心圖像點和領域點的空間相似度為c,通過高斯函數表現函數s和c:

其中,σ表示圖像方差.

1.3 絕緣故障自動監測

1.3.1 四幀差分算法的絕緣故障前景獲取 本文采用四幀差分算法對預處理后的異常現象圖像進行分析,從中識別到絕緣故障前景目標.四幀差分算法解決了三幀差分算法中圖像出現空洞或者不完整現象的問題[13],可以有效識別變電站高壓電氣設備在發生絕緣故障時產生的局部放電現象,并清晰地分辨局部區域的明暗變化.其具體運算步驟用圖3表示.

圖3 四幀差分算法應用流程Fig.3 Application flow of four-frame differential algorithm

四幀差分算法分為以下三個步驟:

(1)從攝像頭采集并進行預處理后的異常現象圖像中選取四幀相鄰的像素,假設從第一幀到第四幀分別為Ik(x,y)、Ik+1(x,y)、Ik+2(x,y)、Ik+3(x,y),將兩幀之間的差值分別進行運算,得出灰度圖像DFk,k+3和DFk+1,k+2,其公式如下:

(2)將攝像頭采集并預處理后的異常現象圖像進行二值化處理,設定一個區間值X為參考閾值,得出的二值化圖像用Mk,k+3和Mk+1,k+2表示,其公式為:

(3)將Mk,k+3和Mk+1,k+2進行“與”操作,即可得出Mk,當Mk=1 時,說明獲取到了變電站高壓電氣設備絕緣故障前景目標的最終運動軌跡,即為絕緣故障在圖像中的具體信息,公式如下:

1.3.2 基于Canny 邊緣檢測的絕緣故障前景邊緣檢測 通過四幀差分算法獲取絕緣故障圖像后,需要提取該圖像的邊緣輪廓,以便更加準確地提取局部放電現象的詳細信息[14].本文采用Canny邊緣檢測算法提取絕緣故障前景目標的完整邊緣輪廓信息,得到邊緣輪廓準確清晰的絕緣故障圖像.Canny邊緣檢測的具體過程如下:

(1)平滑圖像,使用高斯濾波器.其公式為:

式中,原始圖像和平滑后的圖像分別為f(x,y)和g(x,y),卷積為*,高斯平滑函數為h(x,y,σ).

(2)運算梯度的幅值和方向,采用一階有限差分2 × 2運算平滑后的g(x,y)圖像,分別求解出x,y偏導數的兩個陣列fx′(x,y)和fy′(x,y),其公式如下:

為了讓圖像可以在同一點運算x,y的偏導數梯度,可以在2 × 2 的正方形內求出差分的均值,并使用直角坐標轉化幅值和方位角的坐標:

其中圖像邊緣的強度和方向分別用幅值M(x,y)和方位角θ(x,y)描述,當前者處于局部最大值的狀態時,后者就代表邊緣的方向.

(3)用非極大值抑制梯度幅值,保留局部梯度的最大值點,將其他非極大值點設置為0,保留邊緣點,去掉非邊緣點.

(4)將邊緣進行檢測和連接,通過設定一個高閾值獲取假邊緣較少的邊緣圖像,再設定一個低閾值連接邊緣,在輪廓端點處3 × 3領域中,找到一個適合的低閾值點提取新的邊緣信息,重復進行此步驟,直到邊緣輪廓完整為止.

完成以上步驟即可得出邊緣輪廓準確清晰地絕緣故障圖像,以便后續變電站工作人員進行檢修和維護.

1.4 絕緣故障定位

因為絕緣故障產生的局部放電現象在可見光、紫外光和紅外光三種攝像頭的各個光源頻譜上都有明顯的反映,所以根據傾斜攝影的定位原理,可以計算出局部放電現象發生的位置[15].

基于絕緣故障圖像利用三點定位法對絕緣故障發生的具體位置進行定位.以外部空間比較寬松的擺桿式高壓斷路器為例,在四周不同的方位安裝3個多軸平行攝影探頭,與斷路器的距離在12~18 m 左右,通過三種攝像頭進行不同光譜的數據采集,同時利用三點定位法獲得絕緣故障發生的位置,其公式如下:

其中,絕緣故障定位點的三軸坐標用(x0,y0,z0)表示,三個多軸平行攝影探頭的三軸坐標分別用(x1,y1,z1)、(x2,y2,z2)、(x3,y3,z3)表示,根據光學原理取得的絕緣故障發生位置與三個探頭之間的距離分別用L1、L2、L3表示.

為了準確的定位絕緣故障發生的具體位置,需要獲得(x0,y0,z0),因為可以直接取得三個攝像頭的坐標,分別求解出距離量L1、L2、L3,以每個探頭為圓點畫圓,其三個距離向量即為這三個圓的半徑,求得三個圓的交點即為絕緣故障的具體位置,從而達到定位效果.

最后將所獲得的絕緣故障圖像和具體位置發送到PC端,實現變電站高壓電氣設備絕緣自動監測,以供工作人員后續對該高壓電氣設備進行檢修和維護.

2 實驗及分析

選擇某220 kV變電站作為實驗場所,該變電站占地面積為2 156 m2,全站采用GIS結構,配備兩臺容量為240兆伏安的變壓器,220 kV 出線6回.由于在變電站實際運行過程中進行實驗具有很大的安全隱患和不確定性,所以本文選取變電站其中一部分高壓電器絕緣設備進行獨立實驗,設置絕緣故障觸發功能,進行5種不同規模和不同位置的異常放電實驗,每種10次.

2.1 放電實驗

本文方法主要是通過機器視覺中的多軸平行攝影技術對變電站高壓設備的絕緣故障進行檢測和識別,通過可見光、紫外光和紅外光等電磁輻射判斷是否發生異常放電現象,所以本文方法的判斷準確率是非常重要的一個分析指標.主要包括三個方面:一是敏感性,即判斷絕緣故障的正確率;二是特異性,即判斷非絕緣故障的正確率;三是絕緣故障的定位精度.具體實驗結果如表1所示.

表1 不同規模異常放電實驗結果對比Tab.1 Comparison of abnormal discharge test results of different scales

從表1中可以看出,在不同規模和不同位置放電的情況下,本文方法對于絕緣故障自動監測識別的敏感性和特異性都比較高,定位的精度也很高,最低為91.38%,最高可達98.63%,而且放電規模越大、強度越高、識別的準確度就越高,說明本文方法判斷和定位的準確率較高,且穩定性良好.

2.2 絕緣故障檢測結果對比

為了驗證本文方法在絕緣故障檢測中的效果,選用文獻[5]的基于BOF圖像檢索的絕緣故障識別方法和文獻[6]的基于邊框回歸的絕緣故障識別方法進行對比實驗,其中每種方法的視頻單幀處理速度小于1/25 s(45.2 ms),視頻在白天進行拍攝,使用1 280×720分辨率,在達到實時監測的同時,提高檢測精度.實驗結果用圖4表示.

圖4 絕緣故障檢測結果對比Fig.4 Comparison of insulation fault detection results

從圖4 中可以看出,對于發生的絕緣故障局部放電現象,采用文獻[5]方法檢測的結果產生了大規模的誤檢現象,明顯受到了放電所產生強光的影響,檢測結果出現了很大偏差.文獻[6]方法只檢測到了故障區域的邊緣部分,內部出現了很大的空洞.而本文方法由于采用了四幀差分算法,使得抗背景干擾能力強,能夠準確完整的檢測出故障發生的區域,并解決圖像空洞問題,具有良好的檢測性能.

為了進一步對比三種方法對絕緣故障放電現象的檢測準確度和檢測時間,本文共采集了10 個局部放電的有效視頻數據,每個視頻時長5min 左右,平均每段視頻會產生6 次放電現象,其實驗結果用表2來描述.

表2 三種方法絕緣故障檢測結果對比Tab.2 Comparison of insulation fault detection results of three methods

從表2當中可以看出,三種方法的檢測準確度具有很大的差別,但在處理速度上基本達到合格水平.其中文獻[5]方法的準確率只有91.67%,單幀處理時間最長,雖然沒有漏檢情況,但是誤檢卻多達5 次.文獻[6]方法雖然沒有誤檢現象發生,但是也造成了3 次漏檢.而本文方法由于采用了四幀差分算法,表現十分優異,不僅單幀處理時間僅為21 ms,而且也沒有出現誤檢現象,準確率可以達到98.34%.

實驗表明本文方法對于變電站高壓電氣設備的絕緣故障具有很好的檢測效果,不僅準確率高、速度快,還可以防止誤檢和漏檢的發生.

2.3 Canny邊緣檢測結果與分析

在得出準確的絕緣故障圖像之后,需要進行邊緣提取,本文選擇兩張絕緣故障的檢測結果圖片,使用Canny邊緣檢測算法進行處理,其實驗結果用圖5表示.

從圖5 當中可以看出,使用Canny 邊緣檢測算法對絕緣故障圖像進行處理后,圖像中局部放電部位的輪廓細節都得到了很好地保留,與未處理的圖像有明顯區別,可以提取出完整的邊緣輪廓,以便工作人員后續的研究和維修.

3 結論

本文采用基于機器視覺的圖像采集和處理技術,通過四幀差分算法識別絕緣故障,結合三點定位法獲得絕緣故障發生的位置,實現變電站高壓電氣設備絕緣自動監測.實驗表明:

(1)本文方法對于變電站高壓電氣設備的絕緣故障自動監測,具有很高的判斷和定位準確率,且穩定性良好,不僅檢測速度快,還可以防止誤檢和漏檢現象的發生.

(2)本文方法抗背景干擾能力強,能夠準確完整地檢測出絕緣故障發生的區域,還可以解決圖像空洞的問題,可以改善其他檢測方法的缺點.

(3)本文方法使用Canny 邊緣檢測算法對絕緣故障圖像進行處理,可以提取出完整的邊緣輪廓,以便工作人員后續的研究和維修.

猜你喜歡
變電站故障檢測
“不等式”檢測題
“一元一次不等式”檢測題
“一元一次不等式組”檢測題
故障一點通
關于變電站五防閉鎖裝置的探討
電子制作(2018年8期)2018-06-26 06:43:34
超高壓變電站運行管理模式探討
電子制作(2017年8期)2017-06-05 09:36:15
奔馳R320車ABS、ESP故障燈異常點亮
220kV戶外變電站接地網的實用設計
小波變換在PCB缺陷檢測中的應用
變電站,城市中“無害”的鄰居
河南電力(2015年5期)2015-06-08 06:01:45
主站蜘蛛池模板: 国产一级α片| 99精品影院| 青青青视频蜜桃一区二区| 91亚洲精选| 国产91小视频| 国产欧美又粗又猛又爽老| 黑色丝袜高跟国产在线91| 欧美成人日韩| 国内精品九九久久久精品| 国产91久久久久久| 亚洲日韩AV无码一区二区三区人| 亚洲美女操| 欧美色视频网站| 干中文字幕| 国产精品污视频| 久青草免费在线视频| 亚洲欧美极品| 无码人中文字幕| 四虎在线高清无码| 美女无遮挡免费视频网站| 无码日韩视频| 亚洲性视频网站| 亚洲区欧美区| 久久久久亚洲精品成人网| 亚洲日韩精品无码专区| 最新亚洲av女人的天堂| 亚洲一区毛片| h网址在线观看| 18禁色诱爆乳网站| 国产色婷婷| 天天综合天天综合| 色AV色 综合网站| 99热亚洲精品6码| 国产成人精品第一区二区| 九九免费观看全部免费视频| 日韩欧美网址| 孕妇高潮太爽了在线观看免费| 一级香蕉视频在线观看| 欧美人在线一区二区三区| 99精品视频在线观看免费播放| 毛片久久网站小视频| 国产一级二级在线观看| 在线观看免费AV网| 国产自在线播放| 中国国语毛片免费观看视频| 91久久偷偷做嫩草影院电| 国产三级毛片| 69综合网| 国产真实乱子伦视频播放| 香蕉视频在线精品| 狠狠做深爱婷婷综合一区| 国产拍在线| 自拍偷拍一区| 青青草原偷拍视频| 国产va在线观看| 精品一区二区三区四区五区| 国产免费怡红院视频| 1769国产精品视频免费观看| 久久久久人妻一区精品色奶水| 欧美特黄一级大黄录像| 9999在线视频| 一级黄色网站在线免费看| 国产高颜值露脸在线观看| 亚洲日韩精品无码专区| 久久精品欧美一区二区| 日本人妻丰满熟妇区| 精品偷拍一区二区| vvvv98国产成人综合青青| 国产综合日韩另类一区二区| 台湾AV国片精品女同性| 欧美三级日韩三级| 国产网站免费观看| 国产精品福利社| 无码精品一区二区久久久| 国产欧美网站| 亚洲三级色| 亚洲国产系列| 亚洲黄网在线| 国产一区二区三区日韩精品| 国产十八禁在线观看免费| 国产噜噜噜| 国产色伊人|