楊彬彬, 閆亞光*, 高利民, 邵建恒, 任遠, 解會兵
(1.河北工程大學土木工程學院, 邯鄲 056000; 2.北京交通大學土木建筑工程學院, 北京100044)
列車駛入隧道過程中,由于車前空間的變化,列車在隧內壓縮空氣形成壓縮波,壓縮波以聲速傳播至洞口,一部分能量會形成微氣壓波。微氣壓波不僅對隧道周邊環境造成噪音污染,也會給附近居民生活帶來不利的影響,并且隨著列車速度的不斷提升,隧道微氣壓波的危害也變得日益嚴重。所以有必要研究組合式緩沖結構來進一步緩解微氣壓波的危害。
中外學者提出了多種方法來緩解隧內的氣動效應。駱建軍等[1-2]運用數值模擬方法得出了橫通道的斷面積、位置和橫通道與隧道斜交角度的變化都能對隧道內壓力梯度產生影響,并得出當橫通道的長度為20~30 m時,對隧內的壓力值降低效果較明顯。史憲明等[3]采用數值模擬的方法對內置開孔隔墻隧道車體壓力波動特性進行研究,得出開孔間距和開孔距離對車體壓力波的影響較為明顯。王英學等[4]提出了一種經濟、高效的間縫式開口緩沖結構,與常規的開口型相比,其延米降低率更好,能進一步提高緩沖結構的降低效率。閆亞光等[5-6]基于氣動聲學方程對喇叭型緩沖結構的橫斷面積、入口面積、長度參數進行優化,使壓力曲線成線性增長,進而大幅度降低壓力梯度值,并對10種不同開孔參數的緩沖結構作對比得出最優開孔形式。楊偉超等[7]提出了等截面帽檐斜切開孔組合型緩沖結構與單一類型的緩沖結構相比,能進一步緩解隧道的氣動效應,并對泄壓孔的參數進行了優化。張潔等[8]基于數值模擬的方法對600km/h磁浮列車通過截面擴大型緩沖結構的初始壓縮波波前特性進行研究,得出當緩沖結構長度為100m時對微氣壓波的緩解效果最好。李文輝等[9]對變截面隧道進行研究,得出在車體和隧內的壓力緩解方面變截面隧道優于典型緩沖結構,但是對微氣壓波的緩解效果弱于典型緩沖結構。張童童等[10-11]把外緩沖結構內置,提出了內階梯形緩沖結構,能用在隧道入口地形復雜不便設置緩沖結構處,能有效地緩解隧道內的氣動效應。并提出了一種聯通式內緩沖結構,對其緩沖結構的結構形式進行優化,得出了最優的結構形式。任文強[12]對高鐵隧道頂部開口緩解微氣壓波的規律進行具體分析,得出了單開口、雙開口的最優參數。李慧君[13]對臺階緩沖結構進行了研究,得出了此緩沖結構的最佳長度、階數和橫截面積。Howe[14-16]運用理論基礎對多開口緩沖結構進行分析,得出了最優參數。Miyachi[17]基于理論分析的研究方法,推導出考慮地形因素的微壓波預測公式。
中外學者對緩解隧道氣動效應的各種方法進行了積極探索,但是對組合型式的緩沖結構研究較少,為了進一步減緩隧道入口微氣壓波的危害,提出臺階開孔式緩沖結構。基于FLUENT軟件的κ-ε兩方程(κ為湍動能,ε為耗散率),建立列車-隧道計算模型,通過與試驗對比驗證模型的可行性,然后對不同工況下的開孔參數進行對比分析,最終得出最優的設計參數,為組合型緩沖結構的研究提供了新思路。
列車以350 km/h的速度駛入隧道過程中,由于車前空間變化,會在車前壓縮空氣,因此隧內流場假設為非穩態、黏性、可壓縮流的三維流場,采用Navier-Stokes方程和κ-ε兩方程進行求解,描述如下。
(1)連續性方程為

(1)
(2)動量方程為

(2)

(3)

(4)
(3)能量方程為
(5)
(4)狀態方程為
P=ρRT
(6)
式中:ρ為密度;P為壓力;v為氣流速度;vx、vy、vz為氣流速度在x、y、z坐標軸方向的分量;t為時間;▽為哈密頓算子;R為氣體常數;μ為氣體的黏度系數;μ為紊流黏度;Pr為氣體定壓比熱比;σ為紊流普朗特數;T為熱力學溫度。
選用中國自主研發的復興號CR400-BF動車組為列車模型,車速為350 km/h,采用三車編組的列車模型,總長74.6 m。隧道為中國標準雙線隧道,斷面積為100 m2,隧道全長500 m,測點位于隧道內,距離隧道入口100 m處的隧道頂部。臺階開孔式緩沖結構為三階等長,總長為40 m,各階斷面分別為170、145、120 m2,列車和緩沖結構模型如圖1所示。
臺階開孔式緩沖結構主要從以下兩個方面緩解隧內氣動效應。一方面由于緩沖結構斷面的突變,使得壓縮波在斷面突變處部分發生反射,一部分形成新的壓縮波繼續在隧內傳播,反射部分傳播至隧道入口會形成膨脹波,壓縮波和膨脹波在隧內進行反復的交替傳播,使得壓縮波能量耗散,從而使得壓力梯度最大值降低;另一方面,由于泄壓孔的存在使得隧道內受壓縮的氣體由泄壓孔排到隧道外,從而能進一步緩解初始壓縮波的壓力梯度。
采用結構化網格和非結構化網格對計算模型進行劃分,列車的頭尾部由于結構復雜,采用非結構化網格劃分,其余部分用結構化網格進行劃分。為了使數值模擬結果更加準確,模型中網格最小尺寸為0.05 m,時間步長設為0.005 s。
采用滑移網格技術進行模擬,列車與隧道之間的信息交換通過滑移交界面interface來完成。計算模型的邊界條件分為兩種類型:計算域頂面、側面、遠端界面設定為Pressure-far-field邊界條件,計算域底面、隧道底面設置為wall邊界條件。計算域尺寸為240 m(長)×120 m(寬)×60 m(高),無緩沖結構計算域和邊界尺寸如圖2所示。

圖2 無緩沖結構計算域示意圖Fig.2 Diagram of computation domain of unhood
氣體介質為理想氣體ideal-gas,黏滯系數為1.789 4×10-5kg/(m·s),導熱系數為0.024 2 W/(m·K)。靜壓設置為標準大氣壓101 325 Pa。
通過中南大學模型試驗數據與本文的數值模擬進行對比,驗證數值計算方法的可行性。模型試驗采用兩車編組,列車長2.92 m,速度為55.98 m/s,隧道斷面積為0.258 m2,隧道長28 m,縮尺比例為1∶17.6,測點距離隧道入口約14.2 m。圖3給出了試驗結果和本文計算值的比較。

圖3 試驗結果和計算結果對比Fig.3 Comparison of test results and calculated results
從圖3分析可知,通過數值模擬得出的計算初始壓縮波曲線與驗證模型的試驗結果基本吻合,但兩者的曲線存在細微的不同,可能是由試驗環境和模擬環境的誤差所引起的,但兩者的最大差值保持在3%以內,不會對結果造成顯著影響,因此驗證了計算模型的可行性。
通過具體分析不同工況下初始壓縮波的壓力和壓力梯度值的變化情況,得出了不同開孔參數下臺階開孔式緩沖結構對初始壓縮波的減緩效果,并優化了臺階開孔式緩沖結構的最優開孔參數,其中包括:開孔距離、開孔率、開孔數量、開孔位置,共13種工況,具體工況參數如表1所示。

表1 三階開孔式緩沖結構工況參數Table 1 Parameters of three-order open-hole hood structure
三階等長開孔式緩沖結構如表1所示,緩沖結構的開孔率α為36%,開孔數量為2孔,開孔位置為頂部開孔,為了探討不同開孔距離對隧道氣動效應的影響,開孔距離分別取1、2、3、4 m,4種工況討論開孔距離對隧道氣動效應的影響。
圖4為不同開孔距離下,測點位置處的壓力和壓力梯度曲線,圖4分析可得以下結論。

圖4 不同開孔距離下壓力和壓力梯度曲線Fig.4 Pressure and pressure gradient curves at different opening distances
(1)初始壓縮波。隨著開孔距離的增加,初始壓縮波波前厚度增大,壓力曲線上升平緩。無緩沖結構時,最大壓力值為2 044.3 Pa,工況1~4的最大壓力分別為2 021.5、2 022.4、2 023.0、2 023.9 Pa,測點處最大壓力值差值較小,說明開孔距離的變化對初始壓縮波峰值影響較小。
(2)壓力梯度。壓力梯度曲線出現了明顯的兩個峰值A1、A2,各波峰值出現時間差異不大,基本一致。當開孔距離從1 m增加到4 m時,列車進入隧道所產生的壓縮波的波峰值A1不斷減小,A2則不斷增大,當開孔距離為4 m(工況4)時,A1、A2波峰值基本相等,此時對壓力梯度最大值的緩解效果最好,緩解率為60.14%。
三階等長開孔式緩沖結構如表1所示,其中開孔距離為4 m,開孔數量為2孔,開孔位置選擇頂部開孔。為了研究不同開孔率對隧道氣動效應的影響,總開孔率α分別取28%、32%、36%、40%,從第一第二開孔率兩個方面討論開孔率對隧道氣動效應的影響。
3.2.1 第一開孔率對隧道氣動效應的影響
開孔寬度B=4 m,第一開孔長度分別取5、6、7 m,第一開孔率α1分別為20%、24%、28%,第二開孔長度為3 m,第二開孔率α2為12%。總開孔率α為32%、36%、40%,3種工況討論第一開孔率對隧道氣動效應的影響。
圖5為不同開孔率下,測點位置處的壓力和壓力梯度曲線,圖5分析可得以下結論。

圖5 不同開孔率下壓力和壓力梯度曲線Fig.5 Pressure and pressure gradient curves at different opening rates
(1)初始壓縮波。初始壓縮波壓力曲線的上升速率并非隨著第一開孔率的增加而增加。不同開孔率下初始壓縮波的壓力曲線變化基本一致,與無緩沖結構相比,壓力曲線波前厚度增大,壓力曲線上升平緩,壓力最大值基本相同。
(2)壓力梯度。壓力梯度曲線出現了明顯的兩個波峰值A1、A2,各波峰值出現時間基本一致,但是壓力梯度最大值略有不同。當開孔率α為32%(工況5)時,A1波峰值最大,但是A2值最小,當開孔率α為40%(工況6)時,A1波峰值最小,但是A2波峰值最大,并且超過了A1波峰值。當開孔率α為36%(工況4)時,A1、A2波峰值基本相同,此時對壓力梯度最大值的緩解效果最好,緩解率為60.14%。
3.2.2 第二開孔率對隧道氣動效應的影響
開孔寬度B=4 m,第二開孔長度分別取1、2、3 m,第二開孔率α2分別為4%、8%、12%,第一開孔長度為6 m,第一開孔率α1為24%,總開孔率α為28%、32%、36%,分別為工況7、工況8、工況4,3種工況討論開孔率對隧道氣動效應的影響。
圖6為不同開孔率下,測點位置處的壓力和壓力梯度曲線,圖6分析可得以下結論。

圖6 不同開孔率下的壓力和壓力梯度曲線Fig.6 Pressure and pressure gradient curves at different opening rates
(1)初始壓縮波。不同開孔率下初始壓縮波的波前厚度基本相同,與無緩沖結構相比,壓力曲線波前厚度增大,壓力曲線上升平緩,壓力最大值略有不同,但是基本一致。
(2)壓力梯度。壓力梯度曲線出現了明顯的兩個峰值A1、A2,不同開孔率α2下,各峰值出現的時間基本一致,但壓力梯度最大值存在差異。隨著開孔率的變化A1波峰值逐漸降低,A2波峰值則是不斷升高,但是A2波峰值的增長率明顯大于A1波峰值的減少率,說明第二開孔率對A2波峰值的影響較強。
綜上所述,當臺階開孔式緩沖結構第一開孔為4 m×6 m,第二開孔為4 m× 3m,總開孔率α為36%(工況4)時,能較好的緩解初始壓縮波壓力梯度最大值,緩解率為60.14%。
三階等長開孔式緩沖結構,緩沖結構的開孔距離為4 m,開孔率α為36%,開孔位置選擇頂部開孔。為了探討不同開孔數量對隧道氣動效應的影響,開孔數量分別取2孔、3孔、6孔,分別為工況4、工況9、工況10,3種工況討論開孔數量對隧道氣動效應的影響。
圖7為不同開孔數量下,測點位置處的壓力和壓力梯度曲線,分析圖7可得以下結論。

圖7 不同開孔數量下壓力和壓力梯度曲線Fig.7 Pressure and pressure gradient curve under different number of openings
(1)初始壓縮波。不同開孔數量下初始壓縮波的壓力曲線變化規律基本相同,壓力曲線上升平緩,壓力最大值略有不同,但基本一致,說明開孔數量對初始壓縮波的壓力影響不大。
(2)壓力梯度。不同開孔數量下的壓力梯度曲線略有不同,當開孔數量為2孔時,壓力梯度存在兩個波峰值A1、A2,且波峰值A1、A2基本相同。當開孔數量為3孔和6孔時,兩者的初始壓縮波壓力梯度曲線變化基本一致,壓力梯度波峰值A1、A2逐漸變為一個峰值,但是6孔的壓力梯度峰值較2孔的壓力梯度值增長1.2%。3孔與2孔的壓力梯度峰值基本相同,說明開孔數量對壓力梯度峰值的影響不大。
綜上所述,當臺階開孔式緩沖結構開孔數量為2孔(工況4)時,能較好地緩解初始壓縮波的壓力梯度最大值,緩解率為60.14%。
三階等長開孔式緩沖結構,緩沖結構的開孔距離為4 m,開孔率α為36%,開孔數量為2孔。為了探討開孔位置對隧道氣動效應的影響,分別從頂部、側面、頂部側面交叉開孔和側面頂部交叉開孔,分別為工況4、工況11、工況12、工況13,4種工況討論開孔位置對隧道氣動效應的影響。
圖8為不同開孔位置下,測點位置處的壓力和壓力梯度曲線,分析圖8可得如下結論。
(1)初始壓縮波。不同開孔位置下初始壓縮波的壓力曲線變化規律基本相同,但是頂部開孔與其他幾種開孔位置相比壓力曲線上升更平緩。與無緩沖結構相比壓力最大值均有小幅度下降,但相差不大。說明開孔位置對初始壓縮波的壓力影響較小。
(2)壓力梯度。不同開孔位置下的壓力梯度曲線略有不同,頂部開孔(工況4)時,A1、A2波峰值基本相同。側面開孔(工況11)時,A1波峰值與頂部開孔時基本相同,但A2波峰值較頂部開孔增4.5%。
頂部側面交叉開孔(工況12)時,A1波峰值最小,較頂部開孔降低1.6%,但A2波峰值最大,較頂部開孔增長6.9%。側面頂部交叉開孔(工況13)時,A1波峰值最大,較頂部開孔增長3.45%,A2波峰值最小,較頂部開孔降低3.5%。開孔位置減緩微氣壓波效果由強到弱為:頂部開孔、側面開孔、側面頂面開孔、頂面側面開孔。
綜上所述,當臺階開孔式緩沖結構采用頂部開孔(工況4)時,能較好地緩解初始壓縮波的壓力梯度最大值,緩解率為60.14%。
(1)在隧道入口設置臺階開孔緩沖結構對初始壓縮波壓力最大值的影響不大,不同參數下的最大壓力值差值較小,但對壓力梯度最大值降低效果明顯,最優的開孔型式對壓力梯度的緩解率為60.14%。
(2)隨著緩沖結構開孔距離的增加,A1波峰值逐漸減小,A2波峰值逐漸增大,當開孔距離為4 m時,A1、A2波峰值基本相同,此時對壓力梯度的減緩效果最好。
(3)隨著緩沖結構開孔率的增加,緩沖結構對壓力梯度的減緩效果并非隨著開孔率的增加而增加,而是在第一開孔為4 m×6 m,第二開孔為4 m×3 m時,開孔率為36%,緩解效果最好。
(4)不同開孔數量對壓力梯度峰值的影響不大,當開孔數量為2孔和3孔時,A1、A2波峰值基本相同,開孔數量為6孔時較開孔數量為2孔時壓力梯度值增長1.2%,因此開孔數量為2孔時,緩解效果最優。
(5)不同開孔位置對A1、A2波峰值的影響比較明顯,側面頂部交叉開孔較頂部開孔A1波峰值增加3.45%,頂部側面開孔較頂部開孔A2波峰值增長6.9%,開孔位置減緩微壓波效果由強到弱為:頂部開孔、側面開孔、側面頂面開孔、頂面側面開孔。