曾品棚,陳樹生,*,李金平,賈苜梁,高正紅
1.西北工業大學 航空學院,西安 710072
2.空軍工程大學 航空工程學院,西安 710038
在高超聲速飛行時,飛行器前緣產生的激波會使空氣介質劇烈滯止,導致阻力激增、溫度超限。熱防護系統設計已成為高超聲速飛行器極為重要的關鍵技術之一。比較典型的主動熱防護技術方案有減阻桿、逆向噴流、能量沉積、迎風凹腔及其組合構型等。迎風凹腔和能量沉積因其流場結構十分不穩定[1-2],尚不具備工程應用的能力。目前,研究的熱點更多集中在減阻桿和逆向噴流降熱方案上。
在高超聲速飛行器頭部安裝針狀減阻桿,飛行器頭部弓形激波轉變成斜激波,氣動加熱效應大幅減弱[3]。Yamauchi 等[4]研究了減阻桿長度和來流馬赫數對鈍頭體頭部的熱防護表現,發現熱流密度和壓力峰值發生在激波-激波相互作用位置附近。Motoyama 等[5]在減阻桿端頭加裝氣動盤,研究結果表明:加裝氣動盤既能降低激波-激波相互作用,也會增強降熱效果。
但現有研究中也發現,在有迎角來流條件下,駐點向迎風一側移動,減阻桿的降熱特性急劇下降。針對這一問題,目前有學者提出自適應減阻桿策略[6]。數值研究結果表明自適應減阻桿能有效地解決降熱效率急劇下降的問題,但自適應減阻桿的機械結構設計復雜,需進一步研究。
逆向噴流將高超聲速飛行器頭錐前方的弓形激波推離物面,能有效地降低高超聲速飛行器的激波阻力和壁面熱流,從20 世紀60 年代起受到廣泛關注。Hayashi 等[7]通過試驗和數值方法改變噴流的壓比,研究了逆向噴流對鈍頭體降熱的影響,結果表明用冷噴流覆蓋機體表面及其形成的回流區域對鈍頭壁面有顯著的降熱特性。
Huang[8]、周超英等[9]通過數值模擬研究了不同噴流總壓比和噴口尺寸對流場結構、噴流模態的影響。數值研究結果表明無論有無迎角,逆向噴流流場結構總會隨著噴流壓比的增加先后經歷長穿透模態和短穿透模態。張道毅和周超英[10]數值研究了環形噴流下高超聲速逆向噴流流場模態變化以及表面熱流變化,得到了環形噴流下長短穿透模態的臨界壓比值會減小的結論。
張旭東[11]、馬正雪等[12]研究了等離子體合成射流對流場長短穿透模態的轉換機制的影響。吳憂等[13]研究了非平衡流場下噴流對流場結構及飛行器氣動力/熱特性的影響規律。
近年來一些學者開始研究組合構型的降熱技術方案,Zhu 等[14]數值研究了在減阻桿上側向噴流的組合構型,發現組合構型的再附激波明顯弱于傳統減阻桿構型。Zhu 等[15]提出了在減阻桿前逆向噴流的降熱技術方案。數值結果表明減阻桿前逆向噴流的組合構型能改善鈍頭體壁面的降熱性能。
綜合上述研究進展,減阻桿構型具有較好的實用價值,但在有迎角來流條件下,單一減阻桿構型降熱效果急劇下降。單一逆向噴流構型存在復雜的多模態轉化問題,流場結構不穩定且在長穿透模態下降熱效果差。在減阻桿上噴流的組合構型更多表現減阻桿的特性,同樣在迎角來流條件下,有降熱效果差的問題。
針對單一減阻桿構型在有迎角來流條件下降熱效果急劇下降的問題,提出了減阻桿與環形噴流組合構型的降熱方案,數值研究了不同噴流條件和來流條件下組合構型的降熱效率。
數值方法采用雷諾平均Navier-Stockes(RANS)方程,三維笛卡爾直角坐標系下的方程為
式中:Q為守恒變量,Fc、Gc、Hc分別表示3 個方向無黏通量,Fv、Gv、Hv分別表示3 個方向黏性通量。
采用自研CFD 求解器評估高超聲速氣動熱及噴流的復雜流場結構,前期已通過一系列數值模擬驗證了求解器的可靠性[16-17]。黏性通量采用二階中心差分格式,隱式時間格式采用LU-SGS方法。對于無黏通量計算,原始變量通過二階MUSCL 重建和minmod 限制器進行插值,通量格式采用寬速域AUSMPW+APC 格式[17]。湍流模型采用高精度的SST(Shear Stress Transfer)模型[18-19],SST 模型被證實對計算噴流有較好的適應性[20-21]。壁面熱流分布采用斯坦頓數St來描述,St的定義為
式中:Ma表示來流馬赫數,γ是比熱比,qw表示壁面的熱流密度,Taw是壁面絕熱溫度,Tw是壁面溫度,cp、ρ∞、u∞和T∞分別表示來流定壓比熱、來流密度、來流速度和來流溫度,Pr是普朗特數。
物理模型選取文獻[5]中的基準減阻桿構型,計算物理模型如圖1[5]所示,減阻桿圓心位于x軸線上,以x軸線為0°,鈍頭體壁面環線與x軸線呈θ角。環形噴口位置選取為鈍頭體θ=45°環線和θ=47°環線之間。噴流方向為負x方向,噴口在x方向上的投影面積為43.82 mm2。

圖1 計算物理模型[5]Fig.1 Computational physics model[5]
采用結構化對接網格,第1 層網格高度為10-6m,y+<1。流場網格分布和壁面網格分布如圖2 所示,總網格量535 萬。

圖2 流場和壁面網格Fig.2 Flow field mesh and wall mesh
為了盡可能模擬高超聲速飛行器的真實工作狀態,選取自由來流條件參照海拔高度為30 km的高空大氣環境。選取的來流參數和噴流條件如表1 所示。

表1 來流參數和噴流條件Table 1 Incoming flow parameters and jet conditions
噴流壓比的表達式為
式中:P0J表示噴流的總壓,P0表示來流總壓。
第1 個驗證算例選用馬赫數為5.01 的高超聲速來流在中空帶裙部上的流動試驗[22]。試驗的來流總壓為3.5×106Pa,來流總溫為500 K,壁面溫度為300 K。
圖3 是CFD 計算結果和試驗值的對比,壓強用無量綱化參數P/P∞來表示,P∞為來流壓強。從壓強分布(圖3(a))中可以看出CFD 結果與試驗值趨勢吻合較好,精確地模擬了分離點的位置和壁面壓強分布。從St數分布(圖3(b))中可以看出,數值計算準確模擬出了壁面熱流的變化趨勢。

圖3 試驗與計算結果對比Fig.3 Comparison of experimental and simulation results
第2 個驗證算例選用逆向噴流的經典試驗[7]。試驗的來流總壓為1.37 MPa,來流總溫為397 K,馬赫數為3.98,噴流壓比為0.40。
圖4 給出了試驗紋影圖與CFD 計算得到的流場密度梯度云圖的對比(上圖為試驗紋影圖,下圖為CFD 計算流場密度梯度圖),可以看出CFD 計算結果清晰地捕捉了弓形激波、馬赫盤、再附激波等復雜的流場結構,流場圖與紋影圖吻合較好。

圖4 CFD 計算流場密度梯度云圖和試驗紋影圖對比Fig.4 Comparison of flow field density gradient cloud calculated by CFD and experimental schlieren picture
為了探究環形噴流和減阻桿組合構型的作用機理,研究了0°迎角來流條件下,單一減阻桿構型和不同噴流壓比下組合構型的流場特性和壁面熱流分布。流場云圖中的溫度用無量綱化參數T/T∞來表示,T∞為來流溫度。壁面的熱流分布用無量綱St數來表示。
圖5 給出了0°迎角來流條件下,無噴流和噴流壓比為0.2 的流場結構。θ=45°~47°環線間為噴口。相較于單一減阻桿構型,組合構型減阻桿后回流區范圍擴大;噴流噴出后膨脹加速形成馬赫盤,馬赫盤兩側形成兩個回流區。再附激波和分離激波被推離壁面更遠;從組合構型的流線分布中可以看出自由來流未直接作用在鈍頭壁面上,噴流包覆了鈍頭和減阻桿壁面。

圖5 流場結構Fig.5 Flow field structures
圖6 是無噴流和組合構型的鈍頭壁面St數分布,可以看出組合構型的鈍頭壁面St數要顯著低于單減阻桿構型,單減阻桿構型的壁面熱流峰值出現在再附激波附近。鈍頭為旋成體,選取y=0 截線分析St數分布。

圖6 壁面St 數分布Fig.6 Distributions of wall St number
圖7 是鈍頭壁面壓強分布和St數分布,可以看出:無噴流單減阻桿構型壁面在再附著點處附近壓強和St數最大;θ<45°靠近減阻桿一側,減阻桿和環形噴流組合構型壓強增大,θ>45°遠離減阻桿一側壓強減小。說明噴流對壁面的包覆造成了噴口旁靠近減阻桿一側的壓強上升,再附激波被推離壁面,噴流的引射作用會使遠離減阻桿一側的壓強降低。組合構型的壁面St數要低于無噴流單減阻桿構型。

圖7 鈍頭壁面壓強和St 數分布Fig.7 Wall pressure and St number distributions on blunt-headed body
圖8 給出了不同噴流壓比下的流場結構。可以看出不同噴流壓比下,流場結構相似,隨著噴流壓比的增加,馬赫盤和回流區范圍逐漸增大,再附激波和分離激波被推離壁面更遠。流場圖中未出現長穿透模態和短穿透模態轉化的情況,說明在減阻桿后、在弓形激波內噴流未與自由來流直接作用,相較于單一逆向噴流的構型流場結構更穩定。從溫度云圖中可以看出,噴流與自由來流相互作用,在遠離壁面處出現高溫區域,噴流對壁面形成包覆作用,熱量難以傳遞到鈍頭體壁面上。

圖8 不同噴流壓比下流場結構Fig.8 Flow field structures with different jet pressure ratios
圖9 給出了不同噴流壓比鈍頭壁面壓強分布和St數分布。可以看出,隨著噴流壓比的增加,0°~45°噴口旁靠近減阻桿一側壓強上升明顯,說明噴流對鈍頭體壁面的包覆能力增強。大于45°遠離減阻桿一側壓強隨噴流壓比的增加逐漸減小;隨著噴流壓比的增加,噴口兩側St數逐漸減小。噴流壓比為0.05 相對于無噴流的工況,鈍頭壁面熱流峰值明顯降低,說明了由于噴流對鈍頭體壁面的包覆作用,在小噴流壓比下也有明顯的降熱效果。隨著噴流壓比的增加,壁面熱流進一步降低;增加相同的噴流壓比,鈍頭體壁面的降熱效果逐漸降低。

圖9 不同噴流壓比鈍頭壁面壓強和St 數分布Fig.9 Wall pressure and St number distributions on blunt-headed body with different jet pressure ratios
選取了4°和8°迎角來流條件、無噴流和噴流壓比分別為0.10、0.20、0.40 的工況,得到了組合構型的流場結構圖和鈍頭體壁面的熱流分布。圖10是4°迎角來流條件下鈍頭體壁面St數和壓強分布,鈍頭體壁面的熱流分布沿著z方向不再對稱,選擇y=0 截線,以z軸負半軸迎風一側θ為負值,z軸正半軸背風一側θ為正值分析壁面熱流分布。

圖10 4°迎角來流條件下鈍頭體壁面St 數和壓強分布Fig.10 Wall St number and pressure distributions on blunt-headed body with 4° angle of attack incoming flow conditions
圖11 是4°迎角來流條件下流場結構。從無噴流的流場圖中可以看出,相對于0°迎角來流的工況,駐點向迎風一側移動,減阻桿后分離激波和弓形激波直接作用在鈍頭壁面上,減阻桿后回流區范圍減小;背風一側分離激波,弓形激波等激波結構與鈍頭體壁面的距離更遠。

圖11 4°迎角來流條件下流場結構Fig.11 Flow fields under 4° angle of attack incoming flow conditions
組合構型的流場結構圖中,相對于0°迎角來流的工況,迎風一側的壓力上升,噴口處的背壓升高,噴流對流場的干擾效應減弱;背風一側流場激波結構被推離壁面更遠。
圖12 給出4°和8°迎角下不同噴流壓比鈍頭體壁面St數分布。可以看出,在迎風一側單減阻桿構型熱流急劇上升,背風一側熱流峰值不大。鈍頭體壁面熱流峰值增加且逐漸靠近減阻桿;隨著迎角的增加,更大的噴流壓比才能達到有效的降熱效果。

圖12 不同迎角下不同噴流壓比壁面St 數分布Fig.12 Distributions of wall St number with different jet pressure ratios at different angles of attack
隨著來流迎角的增加,熱流峰值逐漸靠近減阻桿,說明在不同迎角來流條件下,噴口位置的設置對降熱效果有很大的影響。
為了進一步探究噴口位置對降熱效果的影響,選取3 種物理模型的噴口起始位置分別為θ=30°環線、θ=45°環線和θ=60°環線。噴口起始位置為θ=45°環線的噴口終止位置為θ=47°環線,保持噴口的面積不變,其余兩種物理模型的噴口終止位置由計算得到。
圖13 給出了噴流壓比為0.20、0°迎角來流條件下不同噴口位置的流場結構。可以看出在鈍頭壁面30°處噴流,馬赫盤最大,噴流的影響范圍最廣。說明在再附著點前噴流,噴流的膨脹效果更好;從溫度云圖中可以看出,在鈍頭壁面30°處噴流流場溫度最低。

圖13 PR=0.20 時不同噴口位置流場結構Fig.13 Flow field structures at different nozzle positions with PR=0.20
圖14 給出了0°迎角來流條件、PR=0.20 時不同噴口位置壁面St數分布。可以看出,隨著噴口位置與減阻桿距離的增加,熱流峰值增加,在鈍頭壁面30°處噴流的降熱效果最好;鈍頭壁面60°處噴流降熱效果不明顯。

圖14 PR=0.20 時不同噴口位置壁面St 數分布Fig.14 Distributions of wall St number with PR=0.20 at different nozzle positions
圖15 是噴流壓比為0.20、噴口位置為θ=45°環線和θ=47°環線之間、不同減阻桿長度下組合構型的流場結構圖,隨著減阻桿長度的增加,減阻桿后回流區增大;弓形激波與減阻桿的夾角減小;3 種桿長的流場結構和溫度分布相近。


圖15 PR=0.20 時不同減阻桿長流場結構Fig.15 Flow field structures of different drag reduction spike lengths with PR=0.20
圖16 是不同桿長壁面St數分布,可以看出,隨著桿長的增加,減阻桿和環形噴流組合構型噴口后熱流分布相近,噴口前熱流隨著桿長的增加而減小,熱流峰值降低。

圖16 不同減阻桿長壁面St 數分布Fig.16 Wall St number distributions with different drag reduction spike lengths
表2 給出了0°迎角來流條件下不同構型的阻力系數。選取構型分別為鈍頭體、減阻桿長為40 mm 的單一減阻桿構型、減阻桿長為40 mm 且噴口位置為θ=45°環線和θ=47°環線之間的組合構型。阻力系數CD由壁面阻力系數CD1和噴流反推力系數CD2兩部分構成,其表達式為

表2 0°迎角下不同構型的阻力系數Table 2 Drag coefficients of different configurations at 0° angle of attack
式中:FD1為壁面阻力,FJ為噴流反推力,S選取鈍頭體沿x方向的投影面積,V∞為來流速度。
從表2 中可以看出單一減阻桿構型相較于鈍頭體有很好的減阻效果;減阻桿和環形噴流組合構型在小噴流壓比下減阻效果進一步提升;噴流反推力系數隨噴流壓比系數倍增,在大噴流壓比下,噴流反推力成為主要阻力來源。
針對單一減阻桿構型在有迎角來流條件下降熱效果急劇下降的問題,提出了減阻桿和環形噴流組合構型的降熱方案,主要結論如下:
1)在減阻桿和環形噴流組合構型流場中,噴流受減阻桿后低壓區的影響,未直接與自由來流作用,噴流壓比從0.05 至0.40,組合構型流場未出現長穿透模態和短傳透模態轉變,相較于單逆向噴流的構型,噴流的流場結構更為穩定。
2)在減阻桿和環形噴流組合構型流場中,噴流包覆了減阻桿和鈍頭體壁面,同時在逆向噴流的作用下,再附激波和分離激波被推離壁面,能有效降低壁面熱流。數值結果表明:0°迎角來流條件下小噴流壓比也有顯著的降熱效果。
3)在有迎角來流條件下,單一減阻桿構型后分離激波和再附激波直接作用在鈍頭體壁面上,鈍頭體壁面的熱流急劇上升;在相同迎角來流條件下,組合構型有明顯的降熱效果。
4)相同的噴流壓比,在再附著點前噴流,噴流膨脹更完全,噴流的影響范圍更廣,降熱效果更好。
5)減阻桿長度分別為30、40、50 mm 的流場結構相近,隨著桿長的增加,壁面熱流峰值降低。減阻桿和環形噴流組合構型相對于單一減阻桿構型,在小噴流壓比下減阻效果增強。