999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

棉花秸稈的應用研究進展

2024-01-01 00:00:00丁凱澤么錚錚吐爾洪·努爾吐爾遜江·艾依旦
棉花學報 2024年3期

收稿日期:2024-01-22" " "第一作者簡介:丁凱澤(2000―),男,碩士研究生,dingkaize001@sohu.com" " " " "*通信作者:tursun714@xju.edu.cn

基金項目:新疆維吾爾自治區自然科學基金(2022D01C29)

摘要:棉花秸稈(棉稈)是棉花生產的副產物,是1種重要的可再生性生物質資源,其綜合利用研究對于優化能源結構和實現“雙碳”戰略目標具有重要意義。由于結構上的差異,玉米、小麥、水稻等秸稈的成功利用方式難以在棉稈上直接重現,而傳統的棉稈處理和應用方式會造成資源浪費和環境污染,因此加強棉稈的綜合利用研究在提升農業廢棄物利用率、改善能源結構、降低環境污染等方面具有重要作用。從提高棉稈綜合利用效率的角度出發,介紹了棉稈在還田、飼料化、能源化、基料化、原料化等方面的利用模式,并對未來的發展方向進行了展望,為棉稈的多元化利用提供方法參考和研究思路。

關鍵詞:生物質;棉花秸稈;預處理;綜合利用;再生能源

Research progress in the application of cotton straw

Ding Kaize1, Yao Zhengzheng1, Tuerhong Nuer2, Tursunjan Aydan1*

(1. School of Chemical Engineering and Technology, Xinjiang University/State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Urumqi 830017, China;2. Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi 830011, China)

Abstract: Cotton straw is a by-product of cotton production and an important renewable biomass resource, and the study on its comprehensive utilization is of great significance to optimize energy structure and achieve 'dual carbon' goals. Due to the structural differences, the successful application methods of corn, wheat, and rice straw cannot be directly applied to cotton straw. Traditional treatment and application of cotton straw cause resource waste and environmental pollution. Therefore, it is essential to enhance the comprehensive utilization of cotton straw to improve agricultural waste utilization efficiency, optimize energy structure, and reduce environmental pollution. From the perspective of enhancing the comprehensive utilization efficiency of cotton straw, this article summarizes various utilization modes, including straw returning to the field, using them as feed, energy substrate, and raw material, and prospects the future multiuse of cotton straw which will provide methodological reference and research ideas for the diversified utilization of cotton straw.

Keywords: biomass; cotton straw; pretreatment; comprehensive utilization; renewable energy

根據聯合國糧食及農業組織(Food and Agriculture Organization, FAO)提供的數據[1],2020年棉花總產量排名前5的國家依次是印度、中國、美國、巴西、巴基斯坦(表1)。相應地,各國棉花秸稈(以下簡稱棉稈)資源總量排名同上。

國家統計局統計數據顯示[2],2023年全國棉花播種面積為278.81萬hm2,棉花總產量為561.8萬t;新疆棉花播種面積為236.93萬hm2,棉花總產量為511.2萬t,約占全國棉花總產量的91.0%。按照棉花的草谷比為5[3]計算,2023年新疆理論棉稈資源總量為2 556.0萬t。綜合2019―2023年新疆棉花播種面積、棉花總產量和理論棉稈資源總量(表2)可得,理論年棉稈資源總量維持在2 500萬t以上,若能將其高效利用,可產生巨大的經濟效益。但每年棉花采收后,剩下大量的棉稈沒有被系統地充分利用,造成資源浪費和環境污染。隨著不可再生的化石能源不斷被消耗以及人們環保意識的日益提高,棉稈綜合開發利用研究的重要性逐漸凸顯。

棉稈主要含有纖維素、半纖維素和木質素,還含有少量的蛋白質、果膠、脂質和灰分等,具有低污染、高熱值、易獲取和來源廣等特點,受到研究者的廣泛關注。由于棉稈的木質化程度高于其他農作物秸稈,難以直接采用玉米、小麥、水稻等作物秸稈的綜合利用方式,相關的技術和生產工藝(設備)還不成熟,導致棉稈的綜合利用程度較低、利用方式較為落后,所以開發和完善棉稈的綜合利用已成為亟待解決的問題[4]。

棉稈的應用范圍非常廣泛,目前主要有還田、飼料化和能源化,還有基料化與原料化方面的應用。此外,棉稈還可用于制備生物炭、填料、氣凝膠和水凝膠等[5-6](圖1)。

1 棉稈還田

棉稈還田分為直接還田與間接還田2種方式。直接還田是在棉花采摘后,棉稈經過機械粉碎撒回田間,包括將粉碎的秸稈直接覆蓋在土壤表面、淺旋滅茬式秸稈還田和將秸稈粉碎后深翻入土3種方式。間接還田是秸稈經過處理后再還田,包括堆漚式還田、過腹式還田和秸稈生物質炭化還田等方式[7]。

1.1 棉稈還田對土壤的影響

棉稈還田具有增加土壤中的有機質含量和含水量、降低pH等優點[8]。唐鵬飛等[9]通過長期田間定位試驗和室內培養試驗,研究棉稈不同還田年限對土壤有機碳及其礦化特征的影響,發現棉稈還田可以有效增加土壤中的有機質含量,提高土壤肥力;棉稈還田還可降低土壤有機碳累積礦化量,使土壤中的有機碳更穩定,增強土壤固碳能力與穩定性,棉稈連續還田20年對土壤肥力的提升效果較強。王美琦等[10]研究發現棉稈還田能夠為微生物的生長提供養分,使土壤中微生物大量生長繁殖,在土壤中分泌更多的酶,并增強多種酶的活性。

1.2 棉稈還田對棉花生長發育的影響

Mao等[11]進行了1項為期5年的研究,探究濱海鹽堿地區棉稈留茬還田對棉花產量的影響。經研究發現,連續留茬還田的第4年和第5年,皮棉產量分別增加了22.7%和47.3%。Zhang等[12]在鹽堿地探究了連續留茬還田與土壤深松對棉花產量的影響,發現短期棉稈留茬還田提高了棉花產量。但由于地下水位較高,土壤返鹽影響了長期棉稈留茬還田對濱海鹽堿地土壤理化性質與棉花產量的改良效果,而土壤深松可以切斷土壤中的毛細管,抑制季節性返鹽。因此采用棉稈留茬還田與土壤深松相結合的方式,可優化土壤理化性質、促進根系生長進而提高棉花產量。Wang等[13]研究發現,在棉稈還田時配施氮肥,對棉花冠層光合能力和產量形成起關鍵作用,可顯著增加棉花的葉面積指數、葉片氮素含量、比葉面積和單位面積結鈴數,且在上述條件下進行連續還田,籽棉產量逐年增加。

2 棉稈飼料化

棉稈中含有纖維素、半纖維素、木質素、粗蛋白質、鈣和磷等營養物質,具有作為反芻動物優質飼料的潛力。棉稈的飼料化利用主要有2個難點。首先,棉稈中木質素較多,導致適口性較差且直接食用的消化率低。其次,棉稈內還含有有毒的游離棉酚[14]。游離棉酚可以惰化消化道中一些酶的活性并損害腸道上皮細胞,導致動物消化不良與生長遲緩;還會抑制胃泌素的分泌,引起動物腹脹;游離棉酚進入動物體內還會和血液中的鐵結合,導致動物出現缺鐵性貧血、免疫功能下降、生長遲緩甚至死亡[15-17]。所以要對棉稈進行飼料化處理。

2.1 物理處理法

利用粉碎機切割、粉碎,通過高溫高壓、擠壓、摩擦等手段破壞各組分之間的作用力,使棉稈變得柔軟蓬松、脫毒熟化,從而改善適口性。在此過程中部分纖維素、半纖維素和木質素發生水解,可以縮短后續微生物處理時間,提高棉稈在動物體內的利用效率[18]。研究表明,秸稈經過膨化與微生物處理后生產出來的飼料對肉羊的生長與胃腸道發育有明顯的促進作用[19]。但僅依靠切斷、粉碎、膨化等物理處理法不能提高棉稈的營養價值,同時膨化、蒸汽爆破等方法需要高溫高壓,導致處理成本增加。

2.2 化學處理法

化學處理法包括酸處理、堿處理、臭氧處理、氨處理和硫酸亞鐵處理等。其中氨處理是使用一定濃度的含氨溶液(通常為尿素或氨水)浸泡秸稈,比酸堿處理溫和。氨處理能使秸稈中的纖維素、半纖維素和木質素等組分分離,從而增大消化液和酶類與秸稈之間的接觸面積,增加消化率,優化反芻動物的瘤胃功能[20],并且還能提高秸稈的粗蛋白含量與營養價值[21]。

2.3 生物處理法

生物處理法包括青貯、酶解和微貯等。青貯是在密封的條件下,施加特定的溫度和濕度,利用微生物發酵。青貯飼料具有適口性好、營養豐富、易被消化吸收、可長期保存等優良特性,在畜牧業發展中發揮著重要作用[22-23]。萬江春等[24]研究發現,青貯處理可有效降低棉稈中的游離棉酚含量,添加纖維素酶可顯著降低棉稈青貯飼料的pH和半纖維素含量;纖維素酶與植物乳桿菌可協同增加棉稈青貯飼料的體外粗蛋白消化率。綜上,添加纖維素酶配合植物乳桿菌處理得到的棉稈青貯飼料的品質較好。因此在棉稈飼料化利用方面,可考慮生物發酵法,并根據地區差異開發特定的微生物處理棉稈,在提高飼料營養價值、改善動物腸道菌群結構的同時,使棉稈擁有更好的適口性、更易于消化。

3 棉稈能源化

在當今全球化石能源不斷枯竭與環境惡化的雙重壓力下,生物質能源作為世界第4大能源,可以部分替代傳統化石能源。生物質能源通常是由含有可發酵糖、脂質或碳水化合物的生物原料發酵產生的[25]。作為重要的生物質,秸稈能源化利用具有重要意義。與玉米秸稈相比,棉稈的燃燒效率更高,燃燒時間更長[26]。棉稈的能源化利用主要包括直接燃燒、氣化、固化和液化等。

3.1 直接燃燒

棉稈直接燃燒是較為傳統的能源化利用模式。通常是將田間收獲的棉稈收集并燃燒以滿足農戶生活所需。棉稈直接燃燒亦可用于發電。與燃煤發電類似,直接燃燒發電是指將棉稈直接送入秸稈直燃鍋爐內燃燒,產生的高壓過熱蒸汽推動汽輪機做功,帶動發電機發電。由于受到原料供應和工藝流程的限制,該發電方式產生的電量一般不超過30 kW·h[27]。該方法下秸稈的利用率低,生態效益與經濟效益較差[28]。

3.2 氣化

棉稈的氣化主要包括熱解氣化和沼氣化。熱解氣化是將棉稈粉碎后在熱解氣化爐中進行燃燒,分解為以一氧化碳(CO)和氫氣(H2)為主的氣體燃料,在棉稈熱解氣化過程中加入催化劑可以提高氣體產率,并減少副產物的生成[29]。Hamad等[30]在氧/燃料當量比為0.25、溫度為800 ℃、反應時間為90 min的條件下,使用泥灰巖黏土、氫氧化鈣、白云石、氯化鋅和煅燒水泥窯灰催化劑進行生物質熱解氣化,結果表明,氫氧化鈣和水泥窯灰能有效增加氣體產率并且減少焦炭和焦油的產生。棉稈沼氣化是將棉稈通過多種厭氧微生物協同發酵,最終轉化為沼氣(以甲烷和二氧化碳為主的混合氣體),其中甲烷含量通常為50%~60%,運用此項技術可大幅減少碳排放[31]。在厭氧發酵之前,對秸稈進行物理、化學、生物或者聯合預處理可以提高厭氧消化速率并增加沼氣產量[32]。在沼氣發電方面,我國積極推動生物質發電,先后出臺了《可再生能源發展“十三五”規劃》、《完善生物質發電項目建設運行的實施方案》和《產業結構調整指導目錄(2024年本)》等政策鼓勵秸稈沼氣發電,對農林生物質發電項目實行標桿上網電價政策,統一執行電價0.75元·(kW·h)-1 [33]。截至2020年,全國沼氣直燃發電裝機容量達到了50萬kW[34]。

3.3 固化

棉稈的固化是利用機械設備將棉稈粉碎后再加工成塊狀、棒狀或粒狀燃料的技術[27],其影響因素包括原料種類、溫度、成型壓力、含水率、粒度、黏合劑和原料顆粒形狀等[35]。在節能減排方面,由秸稈生產的固化成型燃料的年均碳減排量最大,該技術對于實現“碳中和”具有重大意義[36]。

在固化前,對棉稈進行適當的預處理可以提高固化成型燃料的質量和熱值。Shi等[37]用水熱法和添加過氧化氫(H2O2)的水熱氧化法預處理棉稈,發現水熱法和水熱氧化法預處理對固化成型燃料的力學性能、熱穩定性、燃燒性能具有顯著影響;230 ℃的水熱預處理和200 ℃的水熱氧化預處理棉稈,得到的固化成型燃料的機械性能最佳。此外,棉稈中的堿金屬和堿土金屬可能在燃燒過程中發揮催化作用。原料的含水率是影響固化的1個重要因素,過高或過低的含水率會導致固化成型燃料成型困難且機械強度低。根據原料不同,固化時的含水率應在8%~20%,其中棉稈固化時的最佳含水率為10%,此時顆粒密度與顆粒耐久性分別為1 368 kg·m-3和98.70%[38]。在固化過程中,添加黏合劑可以大幅降低工藝能耗。棉稈中的木質素是天然的黏合劑,此外還可以添加淀粉、氫氧化鈣、氫氧化鈉、膨潤土和羧甲基纖維素鈉等[39]。

3.4 液化

棉稈的液化主要包括快速熱解液化和水熱液化。經過液化形成的熱解液體(生物油)含有烷烴、芳香族化合物、酚類衍生物以及少量的酮、酯、醚、胺和醇等[40]。快速熱解液化是指將原料在無氧或缺氧環境下進行熱降解,并生成以生物油為主的熱化學過程,產生液體(60%~70%)、固體(30%~40%)和氣體(20%~30%)。棉稈快速熱解得到的液化產物熱值與棉稈相同,但能量密度比棉稈大[41]。快速熱解液化的理想條件為中等溫度、較大的升溫速率、極短的停留時間和快速冷凝[42]。改變快速熱解工藝可以得到不同比例的產物,可用于提煉高附加值的工業產品。王俊淇[43]通過優化反應時間、熱解溫度、反應物顆粒大小與酸洗濃度等快速熱解的條件,制備內醚糖含量較高的生物油,并對內醚糖進行提純分析,探究出最佳的工藝條件,在此條件下,內醚糖得率達到19.86%(質量分數)。

水熱液化是生物質原料在亞超臨界水和超臨界水、溶劑和催化劑中穩定轉化為固體、液體和氣體產物的過程,該過程在250~380 ℃和4~230 bar條件下進行[40]。棉稈中的各組分在熱解液化時存在相互作用。Yang等[44]以棉稈為原料在220 ℃條件下進行水熱轉化,探究纖維素、半纖維素、木質素和蛋白質的熱解行為和相互作用,結果表明,在水熱過程中,纖維素和半纖維素之間相互抑制,這降低了生物油中酮、醛、醚和醇的含量;纖維素與木質素之間的相互作用明顯,促進了酮、醛、酯、酚、脂肪族等低聚物的形成,同時抑制了芳香族和多雜化合物的生成;半纖維素與木質素、木質素與蛋白質之間沒有明顯的交互作用。

棉稈沼氣化技術按照提純天然氣并網的形式進行估算,沼氣提純成本為0.4元·m-3,天然氣價格為3元·m-3;固化成型技術中固體燃料價格為600 元·t-1,成本包括磨具費、電費等;為方便統計,將熱解產物——熱解氣、生物油和半焦合并計算,其價格分別為1元·m-3、3 000元·t-1和600元·t-1[45],經濟效益如表3所示。可以看出除了熱解產物外,在沒有政府補貼的情況下,利用棉稈制備沼氣與固化成型顆粒是處于虧損狀態的,這是因為棉稈的能源化技術水平限制且規模較小導致成本居高不下。所以在棉稈能源化方面,需研發新技術,提高能源轉化效率;從政府與社會層面加大棉稈能源化研發投入力度,實現棉稈能源化降本增效。

4 棉稈基料化

棉稈中含有纖維素、半纖維素和木質素等主要組分與氮、磷、鉀等元素,其中纖維素、半纖維素和木質素這些天然高分子難以自然分解,而真菌是天然的分解者,可以有效地分解棉稈中的天然高分子作為自身的營養來源[46]。目前,秸稈的基料化主要用于食用菌菇、蔬菜和花卉等的栽培。其中,秸稈基料化栽培食用菌應用最為廣泛[47]。由于棉稈中的木質素含量高于其他農作物秸稈,所以棉稈常用于栽培平菇、香菇、木耳、金針菇和靈芝等木生菌[48]。

Li等[49]通過培養基優化實驗篩選出在棉稈基質中種植的蘇平1號平菇的最佳高產配方:培養基中棉稈顆粒直徑為0.75 mm,培養基中的固液比為1∶3,吐溫80含量為0.25 g·L-1,培養溫度為26 ℃。并分析了平菇Lacc1基因在棉稈木質素降解過程中的分子作用機制,為了解白腐真菌降解木質素的機理提供了參考。Li等[50]后續又探究了8種菌株對棉稈基質木質素降解率的影響,發現皖平1號、黑平A和蘇平1號在15 d內對木質素的降解率均大于13%。因此,這3種菌株具有在秸稈上正常生長和回收木質素的潛力,可用于將木質素轉化為反芻動物飼料,或作為生物質能源工業中脫木質素的預處理方法。Rashad等[51]用棉稈、蠶豆秸稈、玉米秸稈、水稻秸稈、甘蔗渣、小麥秸稈添加麥麩或玉米面筋來栽培靈芝,研究靈芝菌絲在這6種生物質基料上的生長情況,發現以棉稈作為基料時,靈芝生長情況最佳;并且發現棉稈+水稻秸稈+甘蔗渣+麥麩組合下靈芝生長情況更佳,生物學效率為19.52%,靈芝產量為195.16 g·kg-1,蛋白質含量為16.69%,多糖含量為3.613%,礦物質含量為343.3 mg·kg-1,并且種植完的基料可用于土壤改良。

在棉稈基料化利用方面,研究可在棉稈基質上正常生長的新型食用菌種與新型植物(如蔬菜、果樹和觀賞植物等),可增加棉稈基料化利用方面的商業價值,此外還可以將棉稈的基料化、飼料化和還田進行結合,構建循環利用體系。秸稈的循環利用模式主要有飼料-肥料模式、沼氣-肥料模式、基料-肥料模式、生物炭-肥料模式,可進一步提高棉稈的綜合利用效率并促進秸稈資源的綜合利用與產業化發展[52]。

5 棉稈原料化

棉稈的木質化程度高,其化學成分及含量接近于闊葉木材。與其他農作物秸稈相比,棉稈具有與常見的硬木材相似的纖維特性。因此,棉稈可用于制造人造板材、紙張、包裝材料、建筑材料、保溫材料等[53]。此外,利用棉稈生產化學品也是原料化利用的1種途徑,常用于生產乙醇、5-羥甲基糠醛(5-hydroxymethyl furfural, 5-HMF)、乙酰丙酸、己二醇和乳酸等。

5.1 人造板材

棉稈纖維的長度較長、韌性強、質量輕、附著力強、易結團,導致棉稈的加工較為困難。需先去除棉稈的皮層和髓心,再將其切成20~40 mm長的小段,干燥到含水率為15%以下,然后篩去棉稈段中的雜質和塵土,加濕使其含水率在20%~25%,隨后將棉稈段刨成片狀,再將木質部和韌皮纖維分離,將木質部送入料倉備用[54]。

棉稈的粒徑與黏合劑對板材的機械性能具有重要影響。Nguyen等[55]研究了棉稈的粒徑和棉球殘留率對板材性能的影響。該研究使用可乳化的聚異氰酸酯(emulsifiable polymeric isocyanate, eMDI)作為黏合劑并使用4種不同的粒徑(6 mm、8 mm、10 mm和20 mm)與4種不同的棉球殘留率(0%、5%、10%和15%)的棉稈,結果表明,8 mm粒徑生產出的板材性能最佳;棉球殘留物對板材機械性能具有不利影響,應盡量去除。Popescu等[56]使用生物衍生黏合劑代替市面上常用的但難以降解且易導致環境污染的黏合劑。以糠醇預聚物為原料,采用化學熱磨機械漿和呋喃樹脂濕法制備纖維板,纖維板的平均密度為9 560 kg·m-3。為改善黏結性能,加入了纖維素納米晶體和碳納米管,發現添加的纖維素納米晶體可通過改善纖維之間的結合提高復合材料的強度,增強纖維板的機械性能。

5.2 造紙

大多數造紙企業使用木材纖維生產紙漿與紙張,然而我國森林資源短缺,無法提供充足的木漿纖維用于造紙[5]。因此,使用非木材的農作物廢棄物(如稻草、玉米秸稈、棉稈、甘蔗渣等)造紙可以大大緩解木材資源的短缺。其中棉稈纖維的平均長度為0.6~0.8 mm,平均直徑為0.02~0.03 mm。Afrifah等[57]研究發現采用纖維長徑比(長度與直徑比)大于33的原料制成的紙張,其撕裂強度大。因此,由棉稈制備的紙漿可以作為造紙原材料生產優質紙張[58]。

造紙過程中最重要的一步就是制漿,制漿的工藝包括機械制漿、化學制漿和半化學制漿。化學制漿是最常用的制漿工藝,是將半纖維素和木質素分解,最后得到纖維素。制漿需要去除木質素與半纖維素,留下纖維素。秸稈相較于木材具有較高的纖維素含量與較低的木質素含量,是制漿的良好選擇[59]。房桂干[60]利用化學與機械制漿法對棉稈、麥草和玉米秸稈的制漿性能進行了比較,發現棉稈的制漿得率與松厚度均最高,磨漿電耗最低。因此棉稈在制漿與造紙方面具有明顯的優勢和良好的發展潛力。

5.3 棉稈生產乙醇

生物乙醇是石油、天然氣、煤等傳統化石燃料的良好替代品。在全球范圍內,美國是世界上最大的生物乙醇(原料為玉米)生產國,其次是巴西(原料為甘蔗)。由于以作物為原料生產乙醇面臨“與人爭糧,與糧爭地”的問題,農作物秸稈在生物乙醇的生產中成為關注的熱點[61]。棉稈富含纖維素和半纖維素,作為原料生產乙醇具有很大的潛力[53]。Petrou等[62]使用玉米秸稈和棉稈為原料,通過相同的預處理、糖化和共發酵過程對二者的環境效益和經濟效益進行對比,發現玉米秸稈的環境效益好,但棉稈的經濟效益更優。棉稈轉化為生物乙醇主要包括以下步驟:對棉稈進行預處理使得棉稈中各組分更容易分離;用酶催化或酸水解法將多糖轉化為單糖;單糖(己糖和戊糖)經微生物發酵作用生成乙醇;分離和濃縮乙醇[63](圖2)。

預處理是棉稈生產生物乙醇中重要的一步。目前的預處理技術包括稀酸、堿、離子液體和生物預處理以及上述方法的聯合預處理,還可加上微波、超聲等輔助方法[64]。由于棉稈中的纖維素、半纖維素和木質素之間形成了復雜且緊湊的網絡結構,并且木質素的存在會阻礙纖維素和半纖維素的可及性,不經過預處理直接轉化生物乙醇會導致產率低[65]。因此探索合理的預處理和微生物發酵途徑,提高木質素的高值化利用程度,有望實現利用棉稈規模化生產生物乙醇。

5.4 棉稈生產5-HMF

5-HMF是1種高附加值的平臺化合物,5-HMF分子的呋喃環上有1個醛基和羥甲基,性質活潑,可以通過加氫、氧化、酯化、聚合、水解等反應,合成燃料、新型高分子、醫藥等,如2, 5-二甲基呋喃、2, 5-二羥甲基四氫呋喃、2, 5-呋喃二甲酸、乙酰丙酸、1, 6-己二醇等(圖3)。

利用棉稈制備5-HMF的步驟:首先,將棉稈進行預處理,去除半纖維素和木質素等組分,保留纖維素;其次,將纖維素在質子酸(布朗斯特酸,Bronsted acid)如HCl、H2SO4和H3PO4等的催化作用下,通過攻擊C-O-C鍵上的氧原子從而削弱β-1, 4糖苷鍵,使纖維素水解產生葡萄糖單體;葡萄糖在路易斯酸(Lewis acid),如AlCl3、CrCl3和BCl3等的催化作用下異構化形成果糖(控速步驟);最后,在質子酸的催化作用下,果糖脫水形成5-HMF[66-68](圖4)。其中需要重點關注的是棉稈預處理方法、纖維素轉化為5-HMF的催化劑和溶劑體系[69]。

5.4.1 預處理。預處理的主要目的是去除棉稈中除纖維素以外的組分(如半纖維素、木質素和灰分等)。常見的預處理方法有酸、堿、離子液體和生物預處理,還有高壓、超聲波和微波等輔助預處理方法。半纖維素在酸性條件下發生水解,但木質素在酸性條件下的溶解度較低;木質素在氫氧化鈉溶液中表現出較高的溶解度[70]。所以可以進行酸-堿聯合預處理去除半纖維素和木質素,還可以使用微波或超聲波達到更高的去除率。Cheng等[71]采用微波輔助堿/乙醇預處理方法在160 ℃下處理棉稈15 min,可去除大部分的半纖維素和木質素。

離子液體可以通過破壞纖維素分子間的氫鍵,使得纖維素溶于離子液體,由結晶態變為無定形態,增加纖維素的表面積,有利于纖維素與催化劑的接觸[72]。Xie等[73]采用1-丁基-3-甲基咪唑氯鹽對棉稈進行預處理,研究發現,在液固比為10∶1、反應溫度為120 ℃、反應時間為5 h的條件下,酶促反應后還原糖的得率為29.72%,顯著高于天然棉稈,預處理后的棉稈孔隙和裂紋明顯,結晶度低,便于后續的催化轉化。

5.4.2 催化劑。因為纖維素中的β-1, 4糖苷鍵和氫鍵構成了緊密網絡,致使纖維素不溶于水和大多數溶劑,并且具有較高的耐水解性[74]。Xu等[75]使用Hf/ZSM-5催化劑在120 min、190 ℃、加有NaCl的水/四氫呋喃(tetrahydrofuran, THF)雙相溶劑條件下催化纖維素轉化為5-HMF,其產率達到67.50%;額外添加AlCl3,5-HMF的產率高達70.95%。Hou等[76]先通過球磨預處理降低纖維素的結晶度,隨后使用具有路易斯酸與質子酸雙功能的催化劑硫酸氧鈦(TiOSO4)催化纖維素轉化為5-HMF,5-HMF的產率為45.4%。因此研發具有最佳比例的質子酸和路易斯酸催化劑對于提高5-HMF的產率至關重要[77]。

5.4.3 溶劑體系。將纖維素轉化為5-HMF的溶劑主要有單相溶劑體系、雙(多)相溶劑體系和離子液體溶劑體系這3大類。目前關于雙(多)相溶劑體系和離子液體溶劑體系的研究報道較多。Wu等[78]使用SnNb2O6-ZrO2催化劑在水/THF雙相溶劑體系中加入NaCl催化纖維素制備5-HMF,通過改變反應溫度、反應時間、NaCl用量和H2O/THF體積比,發現最佳條件下纖維素的轉化率高達85%,5-HMF的選擇性為41.8%,5-HMF的收率為35.5%。

6 棉稈的其他利用方式

棉稈還可制成生物炭用作吸附劑或超級電容器,還可制成作為復合材料的填料、氣凝膠和水凝膠等。

6.1 生物炭

6.1.1 吸附劑。生物炭是由生物質材料在有限的氧氣環境下經過熱處理或熱解獲得的材料。通過物理或化學手段對生物質材料進行活化,獲得具有較大表面積和孔隙率的活性炭,可用于吸附重金屬離子(如鉛離子、鎘離子、汞離子和銅離子等)[79]。使用不同生物質制備的生物炭對重金屬的吸附機制不同,并且熱解溫度對生物炭的吸附能力具有顯著影響[80]。在熱解時采用過低的溫度(<300 ℃)雖可獲得較高的生物炭產率,但生物炭結構變化不明顯;在過高的溫度(>700 ℃)下生物炭產率較低,并且生物炭的微孔結構會發生熔融,只有在合適的溫度下才能獲得較高的出炭率與良好的生物炭結構[81-82]。Wang等[83]以棉稈為原料,利用熱解技術制備生物炭,發現在最佳條件(600 ℃,pH為5.5)下獲得的生物炭最大吸附容量為124.7 mg·g-1,還研究了不同操作條件下制備的生物炭對鉛離子的吸附效果,結果表明低溫下制成的生物炭的吸附過程以有機基團絡合與離子交換為主,吸附速率較小,但吸附容量較大;高溫下制成的生物炭的吸附過程涉及有機基團和無機鹽的相互作用,吸附速率較大。

除重金屬離子外,生物炭還可以用于吸附CO2。Pramanik等[84]以棉稈為原料,用KOH+明礬于700 ℃、90 min條件下采用一步法制備生物炭。其Brunauer-Emmett-Teller(BET)比表面積為2 695 m2·g-1,在273 K、1 bar條件下和298 K、1 bar條件下CO2吸附容量分別為6.90 mmol·g-1和4.24 mmol·g-1,可實現對CO2的有效吸附。此外,棉稈與污泥共熱解制備生物炭還可以增強土壤中重金屬的穩定性,降低重金屬對環境的污染[85]。Wang等[86]使用K2CO3作為活化劑與污泥和棉稈共熱解,改善了生物炭的孔隙率,增加了生物炭的比表面積。此外,K2CO3活化顯著增加了生物炭中幾種重金屬的含量,并增強了重金屬的穩定性,降低了重金屬的移動性和生物有效性,降低了重金屬所帶來的環境風險。

6.1.2 超級電容器。超級電容器具有極長的循環壽命、快速充放電能力、無污染、高功率密度和良好的操作安全性等優良性能。與普通電容器相比,超級電容器具有更大的電容和功率密度[87]。而生物基活性炭由于具有豐富的多孔結構、較低的生產成本、高電導率和熱導率、強化學穩定性、優異的功率密度和良好的可逆性而被用作超級電容器的電極材料[88]。活性炭的孔結構與比表面積是影響超級電容器性能的重要因素。Yan等[89]研究發現較大的比表面積與中等的孔體積賦予棉稈基碳材料最佳的電容。活性炭電極材料的合成通常包括生物質原料的碳化和活化過程,不同的活化劑會導致孔結構、比表面積大小與官能團的改變,進而影響活性炭性能[90]。Cheng等[91]用棉稈為原料,使用KOH作為活化劑,發現KOH與炭的質量比為2∶1時,活性炭材料的比電容最大。Guo等[92]以棉稈為原料,采用KOH與KMnO4雙重活化劑制備較大比表面積和高比電容的活性炭,并且在使用6 mol·L-1 KOH電解質的雙電極系統中循環10 000次后僅有2%的電容耗散,證明其具有優異的循環穩定性。

6.2 填料

近年來,由于“限塑令”的實施,聚乳酸(polylactic acid, PLA)、聚丁二酸丁二醇酯(poly butylenes succinate, PBS)和聚己二酸對苯二甲酸丁二酯(polybutylene adipate terephthalate, PBAT)等可降解材料的研究受到了更為廣泛的關注。秸稈等農作物廢棄物具有價格低廉、生物可降解性和可再生性等優點,經過處理后常用作復合材料的填料[93-94]。Raza等[95]將酸解棉紗制得的納米纖維素與聚乳酸復合,制成納米纖維素/聚乳酸復合膜。經過分析發現,納米纖維素的加入提高了聚乳酸膜的玻璃化轉變溫度,降低了熔融溫度和結晶溫度。結晶溫度降低表明復合膜內分子鏈的運動能力增強;經過力學測試發現,復合膜的強度比聚乳酸膜更高。

此外,棉稈還可用于高性能水泥和混凝土的制備。低聚物可以作為1個很有前景的水泥替代品。Zhou等[96]對棉稈分別進行3種預處理后將其粉碎、過篩用于制備低聚物,結果表明棉稈粉末能有效提高低聚物的力學強度,但降低了其耐酸腐蝕性能。未經處理的棉稈纖維降低了低聚物的密度與抗壓強度,略微增大了彎曲強度;對比3種預處理方式,堿處理的樣品力學性能最佳,壓縮強度和彎曲強度分別提高了4.8%和11.5%。Amin等[97]以納米棉稈灰與棕櫚葉灰為填料,按不同比例添加,制備超高性能的混凝土,發現當棉稈灰與棕櫚葉灰的添加量分別為5%和20%時,水泥的最高抗壓強度為170.1 MPa,填料的加入在降低生產成本的同時還能提高水泥的性能。

6.3 氣凝膠

氣凝膠由于具有較大的孔隙率、低密度、較大的比表面積與良好的隔熱性能等顯著特點受到相關行業的關注[98]。近年來,由于生物基材料具有生物相容性、生物降解性和易于改性等特點,在氣凝膠的制備與應用方面已得到較為廣泛的研究,并且在染料吸附、藥物遞送、組織工程、生物醫學與生物傳感器領域中得到廣泛應用[99-101]。棉稈經過處理后提取的納米纖維素可用于制備氣凝膠[102-103]。Mussana等[104]以棉稈為原料,采用離子液體/二甲基亞砜共溶劑體系制備纖維素氣凝膠,并對常規凍融和液氮凍融這2種凍融條件下的氣凝膠孔徑和比表面積進行了測定,研究發現,與在-20 ℃下進行循環常規冷凍、20 ℃下緩慢解凍處理相比,在液氮中進行循環冷凍、20 ℃下緩慢解凍處理的氣凝膠具有更大的比表面積與更均勻、更小的孔徑。此外,共溶劑體系解決了離子液體成本高、離子液體/纖維素溶液體系粘度大等問題,對于氣凝膠的產業化發展具有重要作用。

6.4 水凝膠

水凝膠是由親水性聚合物鏈組成的1種三維網狀結構,可以儲存大量的水。水凝膠可以由天然高分子或合成高分子制備而成,天然高分子水凝膠具有低成本、良好的生物相容性和生物可降解性等優點[105]。纖維素是天然的親水性高分子,可以從多種農作物及農作物廢棄物(如秸稈)中經過預處理和提取得到,經過不同的處理與改性手段可應用于制備電池電解質[106]、傷口敷料[107]和仿生電子皮膚[108]等或用來緩解植物干旱[109]等。

7 結語與展望

我國擁有豐富的棉稈資源,具有較大的市場潛力。棉稈資源的充分利用將會極大地推動棉花產業的發展,增加農民收入。雖然我國在棉稈綜合利用方面積累了一定的經驗,但目前仍處于初級階段。受制于技術與成本,現有的棉稈綜合利用市場規模較小,并且在應用方面發展不均衡,集中于還田與飼料化領域,在其他方面發展較慢。在棉稈的收割、處理與儲運方面也缺乏相關的大型設備,導致棉稈收集成本高。部分企業無法優化現有的生產工藝,過度依賴政府補貼。

因此,應鼓勵利用棉稈生產高價值產品(如乙醇、5-HMF等)和可降解材料等技術的研發,并注重成果轉化,使技術應用到生產實際中。此外,棉稈綜合利用的激勵政策應當以補貼為主轉向市場驅動,推動規模化生產,起到降本增效的作用。把棉稈的多種利用模式有機地結合起來,形成多元化、多途徑的綜合利用方式,是實現棉稈資源化、高值化和產業化發展的重要途徑。在大力推行構建固體廢棄物循環利用體系的政策背景下,棉稈的綜合利用迎來了巨大的機遇與挑戰,抓住機遇,迎接挑戰,發展棉稈綜合利用產業,將成為推進鄉村振興、打造生態產業的重要途徑。

參考文獻:

[1] 聯合國糧食及農業組織. 糧農組織統計數據庫: 作物和牲畜產品[DB/OL]. [2023-11-15]. https://www.fao.org/faostat/zh/#

data/QCL.

Food and Agriculture Organization of the United Nations. FAO statistical database: Crops and livestock products[DB/OL]. [2023-

11-15]. https://www.fao.org/faostat/zh/#data/QCL.

[2] 國家統計局. 國家統計局關于2023年棉花產量的公告[EB/OL]. (2023-12-25) [2024-03-13]. https://www.stats.gov.cn/

sj/zxfb/202312/t20231225_1945745.html.

National Bureau of Statistics. Announcement of the National Bureau of Statistics on cotton production in 2023[EB/OL]. (2023-

12-25) [2024-03-13]. https://www.stats.gov.cn/sj/zxfb/202312/

t20231225_1945745.html.

[3] 畢于運. 秸稈資源評價與利用研究[D]. 北京: 中國農業科學院, 2010.

Bi Yuyun. Research on evaluation and utilization of straw resources[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010.

[4] 白志剛, 劉帥, 胡啟星, 等. 棉花秸稈利用的主要途徑及存在的問題[J/OL]. 棉花科學, 2021, 43(5): 11-15[2024-03-13]. https://

doi.org/10.3969/j.issn.2095-3143.2021.05.002.

Bai Zhigang, Liu Shuai, Hu Qixing, et al. Main ways and pro-

blems of cotton straw utilization[J/OL]. Cotton Sciences, 2021, 43(5): 11-15[2024-03-13]. https://doi.org/10.3969/j.issn.2095-

3143.2021.05.002.

[5] 李海亮, 汪春, 孫海天, 等. 農作物秸稈的綜合利用與可持續發展[J/OL]. 農機化研究, 2017, 39(8): 256-262[2024-01-02]. https://doi.org/10.13427/j.cnki.njyi.2017.08.054.

Li Hailiang, Wang Chun, Sun Haitian, et al. Comprehensive utilization and sustainable development of agriculture straw[J/OL]. Journal of Agricultural Mechanization Research, 2017, 39(8): 256-262[2024-01-02]. https://doi.org/10.13427/j.cnki.njyi.

2017.08.054.

[6] 趙樹琪, 李蔚, 戴寶生, 等. 棉花秸稈綜合利用現狀分析[J/OL]. 湖北農業科學, 2017, 56(12): 2201-2203[2024-01-02]. https://

doi.org/10.14088/j.cnki.issn0439-8114.2017.12.001.

Zhao Shuqi, Li Wei, Dai Baosheng, et al. The analysis of comprehensive utilization present situation of cotton stalk[J/OL]. Hubei Agricultural Sciences, 2017, 56(12): 2201-2203[2024-

01-02]. https://doi.org/10.14088/j.cnki.issn0439-8114.2017.12.

001.

[7] 郭振威, 李永山, 陳夢妮, 等. 棉花秸稈還田對棉花生長和土壤的影響研究進展[J]. 農學學報, 2022, 12(12): 18-22.

Guo Zhenwei, Li Yongshan, Chen Mengni, et al. Effects of cotton straw returning on cotton growth and soil: research progress[J]. Journal of Agriculture, 2022, 12(12): 18-22.

[8] 朱倩倩, 冉彤彤, 許詠梅, 等. 棉花秸稈利用現狀及其還田技術[J]. 農業科技通訊, 2022, 604(4): 39-41, 45.

Zhu Qianqian, Ran Tongtong, Xu Yongmei, et al. Current status of cotton straw utilization and its returning technology[J]. Bulletin of Agricultural Science and Technology, 2022, 604(4): 39-41, 45.

[9] 唐鵬飛, 韓兵兵, 王佳敏, 等. 棉稈還田不同年限對土壤有機碳及其礦化特征的影響[J/OL]. 干旱區資源與環境, 2021, 35(12): 127-133[2024-03-13]. https://doi.org/10.13448/j.cnki.jalre.2021.336.

Tang Pengfei, Han Bingbing, Wang Jiamin, et al. Effects of cotton straw returning on the soil organic carbon and organic carbon mineralization dynamics[J/OL]. Journal of Arid Land Resources and Environment, 2021, 35(12): 127-133[2024-03-13]. https://

doi.org/10.13448/j.cnki.jalre.2021.336.

[10] 王美琦, 劉銀雙, 黃亞麗, 等. 秸稈還田對土壤微生態環境影響的研究進展[J/OL]. 微生物學通報, 2022, 49(2): 807-816[2024-03-13]. https://doi.org/10.13344/j.microbiol.china.210390.

Wang Meiqi, Liu Yinshuang, Huang Yali, et al. Research progress on effects of straw incorporation on soil micro-

ecological environment[J/OL]. Microbiology China, 2022, 49(2): 807-816[2024-03-13]. https://doi.org/10.13344/j.microbiol.china.210390.

[11] Mao L L, Guo W J, Yuan Y C, et al. Cotton stubble effects on yield and nutrient assimilation in coastal saline soil[J/OL]. Field Crops Research, 2019, 239: 71-81[2024-01-19]. https://

doi.org/10.1016/j.fcr.2019.05.008.

[12] Zhang L, Mao L L, Yan X Y, et al. Long-term cotton stubble return and subsoiling increases cotton yield through improving root growth and properties of coastal saline soil[J/OL]. Industrial Crops amp; Products, 2022, 177: 114472[2024-01-19]. https://doi.org/10.1016/j.indcrop.2021.114472.

[13] Wang Z, Wang Z, Ma L J, et al. Straw returning coupled with nitrogen fertilization increases canopy photosynthetic capacity, yield and nitrogen use efficiency in cotton[J/OL]. European Journal of Agronomy, 2021, 126: 126267[2024-01-19]. https://

doi.org/10.1016/j.eja.2021.126267.

[14] 王方正, 師勇強, 王文魁, 等. 棉花秸稈飼料化前景與技術分析[J/OL]. 中國棉花, 2022, 49(11): 37-41[2024-03-13]. https://

doi.org/10.11963/cc20220164.

Wang Fangzheng, Shi Yongqiang, Wang Wenkui, et al. Analysis of the utilization prospect and technology of cotton straw in feed[J/OL]. China Cotton, 2022, 49(11): 37-41[2024-03-13]. https://doi.org/10.11963/cc20220164.

[15] Wang L, Li A, Shi J J, et al. Effects of different levels of cotton seed meal on laying performance, egg quality, intestinal immunity and hepatic histopathology in laying hens[J/OL]. Food and Agricultural Immunology, 2020, 31(1): 803-812[2024-01-19]. https://doi.org/10.1080/09540105.2020.1774745.

[16] Wang K Z, Feng L, Jiang W D, et al. Dietary gossypol reduced intestinal immunity and aggravated inflammation in on-

growing grass carp (Ctenopharyngodon idella) [J/OL]. Fish amp; Shellfish Immunology, 2019, 86: 814-831[2024-01-19]. https://

doi.org/10.1016/j.fsi.2018.12.014.

[17] Rehemujiang H, Yimamu A, Wang Y L. Effect of dietary cotton stalk on nitrogen and free gossypol metabolism in sheep[J/OL]. Asian-Australasian Journal of Animal Sciences, 2019, 32(2): 233-240[2024-01-19]. https://doi.org/10.5713/ajas.18.0057.

[18] 楊建中, 張俊瑜. 膨化秸稈在動物飼料中的研究進展[J/OL]. 草食家畜, 2017(3): 35-38[2024-03-13]. https://doi.org/10.16863/j.cnki.1003-6377.2017.03.006.

Yang Jianzhong, Zhang Junyu. Research progress of expanded straw in animal feed[J/OL]. Grass-Feeding Livestock, 2017(3): 35-38[2024-03-13]. https://doi.org/10.16863/j.cnki.1003-6377.

2017.03.006.

[19] 王曉飛, 高源, 田豐, 等. 膨化秸稈微生物發酵飼料對杜寒雜交肉羊生長性能和胃腸道發育的影響[J/OL]. 畜牧與飼料科學, 2022, 43(2): 28-34[2024-03-13]. https://doi.org/10.12160/j.issn.1672-5190.2022.02.005.

Wang Xiaofei, Gao Yuan, Tian Feng, et al. Effects of microbial fermented expanded straw feed on growth performance and gastrointestinal tract development of Dorper and Thin-tailed Han crossbred sheep[J/OL]. Animal Husbandry and Feed Science, 2022, 43(2): 28-34[2024-03-13]. https://doi.org/10.12160/j.issn.

1672-5190.2022.02.005.

[20] Belanche A, Martín-García I, Jiménez E, et al. A novel ammoniation treatment of barley as a strategy to optimize rumen pH, feed degradability and microbial protein synthesis in sheep[J/OL]. Journal of the Science of Food and Agriculture, 2021, 4: 47-68[2024-01-19]. https://doi.org/10.1002/jsfa.11205.

[21] 許秀花. 氨化秸稈飼喂牛羊技術探討[J/OL]. 中國乳業, 2022(5): 43-47, 53[2024-03-13]. https://doi.org/10.12377/1671-

4393.22.05.09.

Xu Xiuhua. Prevention and treatment of common parasitic diseases in dairy goats[J/OL]. China Dairy, 2022(5): 43-47, 53[2024-03-13]. https://doi.org/10.12377/1671-4393.22.05.09.

[22] 王雨晴, 韓學平. 玉米秸稈飼料化途徑的研究進展[J/OL]. 飼料研究, 2019, 42(7): 117-120[2024-03-13]. https://doi.org/10.13557/j.cnki.issn1002-2813.2019.07.032.

Wang Yuqing, Han Xueping. Research advance on pathway of corn straw for feed[J/OL]. Feed Research, 2019, 42(7): 117-120[2024-03-13]. https://doi.org/10.13557/j.cnki.issn1002-2813.2019.07.032.

[23] 盤道興, 楊云, 韋繼雯, 等. 青貯飼料資源開發利用的研究現狀[J/OL]. 糧食與飼料工業, 2018(11): 52-57[2024-03-13]. https://doi.org/10.7633/j.issn.1003-6202.2018.11.013.

Pan Daoxing, Yang Yun, Wei Jiwen, et al. Research status of exploitation and utilization of silage resources[J/OL]. Cereal amp; Feed Industry, 2018(11): 52-57[2024-03-13]. https://doi.org/10.7633/j.issn.1003-6202.2018.11.013.

[24] 萬江春, 于輝, 張延輝, 等. 纖維素酶及乳酸菌對棉花秸稈青貯飼料發酵品質及體外消化率的影響[J/OL]. 中國畜牧雜志, 2019, 55(4): 101-106[2024-03-13]. https://doi.org/10.19556/j.

0258-7033.2019-04-101.

Wan Jiangchun, Yu Hui, Zhang Yanhui, et al. Effects of cellulase and lactic acid bacteria on the fermentation quality and in vitro digestibility of cotton straw silage[J/OL]. Chinese Journal of Animal Science, 2019, 55(4): 101-106[2024-03-13]. https://

doi.org/10.19556/j.0258-7033.2019-04-101.

[25] Nurul S M A, Kuan S K, Kit W C, et al. Sustainability of the four generations of biofuels: a review[J/OL]. International Journal of Energy Research, 2020, 44(12): 9266-9282[2024-03-13]. https://doi.org/10.1002/er.5557.

[26] Hamawand I, Sandell G, Pittaway P, et al. Bioenergy from cotton industry wastes: a review and potential[J/OL]. Renewable and Sustainable Energy Reviews, 2016, 66: 435-448[2024-01-19]. https://doi.org/10.1016/j.rser.2016.08.033.

[27] 劉凱凱, 廖培旺, 宮建勛, 等. 棉稈燃料化利用關鍵技術及設備的研究分析[J/OL]. 中國農機化學報, 2018, 39(1): 78-83[2024-

03-13]. https://doi.org/10.13733/i.jcam.issn.2095-5553.2018.01.

016.

Liu Kaikai, Liao Peiwang, Gong Jianxun, et al. Research and analysis of the key technologies and equipment with fuel utilization of cotton stalk[J/OL]. Journal of Chinese Agricultural Mechanization, 2018, 39(1): 78-83[2024-03-13]. https://doi.org/10.13733/i.jcam.issn.2095-5553.2018.01.016.

[28] 張曉慶, 王梓凡, 參木友, 等. 中國農作物秸稈產量及綜合利用現狀分析[J/OL]. 中國農業大學學報, 2021, 26(9): 30-41[2024-03-13]. https://doi.org/10.11841/i.issn.1007-4333.2021.

09.04.

Zhang Xiaoqing, Wang Zifan, Canmuyou, et al. Analysis of yield and current comprehensive utilization of crop straws in China[J/OL]. Journal of China Agricultural University, 2021, 26(9): 30-41[2024-03-13]. https://doi.org/10.11841/i.issn.1007-

4333.2021.09.04.

[29] Deng W P, Feng Y C, Fu J, et al. Catalytic conversion of lignocellulosic biomass into chemicals and fuels[J/OL]. Green Energy amp; Environment, 2023, 8(1): 10-114[2024-01-19]. https://doi.org/10.1016/j.gee.2022.07.003.

[30] Hamad M A, Radwan A M, Heggo D A, et al. Hydrogen rich gas production from catalytic gasification of biomass[J/OL]. Renewable Energy, 2016, 85: 1290-1300[2024-01-19]. https://

doi.org/10.1016/j.renene.2015.07.082.

[31] 柳麗, 孟艷, 李屹, 等. 秸稈厭氧消化產沼氣研究進展[J/OL]. 現代農業科技, 2021(24): 113-119[2024-03-13]. https://doi.org/

10.3969/i.issn.1007-5739.2021.24.045.

Liu Li, Meng Yan, Li Yi, et al. Research progress on biogas production by anaerobic digestion of straw[J/OL]. Modern Agricultural Science and Technology, 2021(24): 113-119[2024-03-13]. https://doi.org/10.3969/i.issn.1007-5739.2021.

24.045.

[32] Andersen L F, Parsin S, Lüdtke O. Biogas production from straw-the challenge feedstock pretreatment[J/OL]. Biomass Conversion and Biorefinery, 2022, 12: 379-402[2024-01-19]. https://doi.org/10.1007/s13399-020-00740-y.

[33] 中華人民共和國國家發展和改革委員會. 國家發展改革委關于完善農林生物質發電價格政策的通知[EB/OL]. (2010-07-

18) [2024-03-13]. https://zfxxgk.ndrc.gov.cn/web/iteminfo.jsp?id=19663.

National Development and Reform Commission of the People's Republic of China. National Development and Reform Commission on improving agricultural and forestry biomass power generation price policy notice[EB/OL]. (2010-07-18) [2024-

03-13]. https://zfxxgk.ndrc.gov.cn/web/iteminfo.jsp?id=19663.

[34] 馬國杰, 朱琳影, 張苗苗, 等. 秸稈沼氣化發電技術生命周期評估及經濟分析[J/OL]. 農業工程學報, 2022, 38(24): 162-

168[2024-03-13]. https://doi.org/10.11975/i.issn.1002-6819.

2022.24.018.

Ma Guojie, Zhu Linying, Zhang Miaomiao, et al. Life cycle assessment and economic analysis of straw biogasification power generation technology[J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(24): 162-168[2024-03-13]. https://doi.org/10.11975/i.issn.1002-6819.2022.

24.018.

[35] 許桂英, 王山, 余紹輝, 等. 生物質材料固化成型的有限元分析研究進展[J/OL]. 重慶理工大學學報(自然科學), 2020, 34(1): 205-218[2024-03-13]. https://doi.org/10.3969/i.issn.1674-

8425(z).2020.01.028.

Xu Guiying, Wang Shan, Yu Shaohui, et al. Progress in finite element analysis of solidification forming of biomass materials[J/OL]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(1): 205-218[2024-03-13]. https://doi.org/10.3969/i.issn.1674-8425(z).2020.01.028.

[36] 馬銘婧, 郗鳳明, 尹巖, 等. 碳中和視角下秸稈處置方式對碳源匯的貢獻[J/OL]. 應用生態學報, 2022, 33(5): 1331-1339[2024-03-13]. https://doi.org/10.13287/i.1001-9332.202205.

025.

Ma Mingjing, Xi Fengming, Yin Yan, et al. Contribution of straw disposal to carbon source and sink under the framework of carbon neutrality[J/OL]. Chinese Journal of Applied Ecology, 2022, 33(5): 1331-1339[2024-03-13]. https://doi.org/10.13287/

i.1001-9332.202205.025.

[37] Shi Y, Zhang S Y, Xu J Q, et al. Effect of hydrothermal and hydrothermal oxidation pretreatment on the physicochemical properties of biofuel pellet[J/OL]. Analytical and Applied Pyrolysis, 2022, 165: 105566[2024-01-19]. https://doi.org/10.1016/j.jaap.2022.105566.

[38] Yilmaz H, Topakci M, Karayel D, et al. Comparison of the physical properties of cotton and sesame stalk pellets produced at different moisture contents and combustion of the finest pellets[J/OL]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020: 1-19[2024-03-13]. https://doi.

org/10.1080/15567036.2020.1850931.

[39] Zhu Y J, Yang W, Fan J Y, et al. Effect of sodium carboxymethyl cellulose addition on particulate matter emissions during biomass pellet combustion[J/OL]. Applied Energy, 2018, 230: 925-934[2024-03-13]. https://doi.org/10.1016/j.apenergy.2018.09.013.

[40] Zadeh Z E, Abdulkhani A, Aboelazayem O, et al. Recent insights into lignocellulosic biomass pyrolysis: a critical review on pretreatment, characterization, and products upgrading[J/OL]. Precesses, 2020, 8: 799[2024-01-19]. https://doi.org/10.3390/pr8070799.

[41] Paul A S, Panwar N L, Salvi B L, et al. Experimental investigation on the production of bio-oil from wheat straw[J/OL]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020: 1-16[2024-03-13]. https://doi.org/10.1080/

15567036.2020.1779416.

[42] 張波. 基于補氫/脫氧的玉米秸稈催化熱解制油和油品提質研究[D]. 南京: 東南大學, 2016.

Zhang Bo. Study on catalytic fast pyrolysis of corn stover for bio-oil production and its upgrading based on hydrogenation and deoxygenation techniques[D]. Nanjing: Southeast University, 2016.

[43] 王俊淇. 棉花秸稈快速熱解制備內醚糖及其過程的評價[D]. 咸陽: 西北農林科技大學, 2019.

Wang Junqi. Fast pyrolysis of cotton straw for levoglucosan production and its evaluation[D]. Xianyang: Northwest A amp; F University, 2019.

[44] Yang X, Chen N H, Ge S B, et al. Components interaction of cotton stalk under low-temperature hydrothermal conversion: a bio-oil pyrolysis behavior perspective analysis[J/OL]. Polymers, 2022, 14: 4307[2024-01-19]. https://doi.org/10.3390/polym

14204307.

[45] 戴曉虎, 陳淑嫻, 蔡辰, 等. 秸稈主流能源化技術研究與經濟性分析[J/OL]. 環境工程, 2021, 39(1): 1-17[2024-03-13]. https://doi.org/10.13205/j.hjgc.202101001.

Dai Xiaohu, Chen Shuxian, Cai Chen, et al. Research and economic analysis of straw mainstream energy technology for straw[J/OL]. Environmental Engineering, 2021, 39(1): 1-17[2024-

03-13]. https://doi.org/10.13205/j.hjgc.202101001.

[46] Rhaman S M S A, Naher L, Siddiquee S. Mushroom quality related with various substrates' bioaccumulation and translocation of heavy metals[J/OL]. Journal of Fungi, 2022, 8: 42[2024-

01-19]. https://doi.org/10.3390/jof8010042.

[47] 劉銀秀, 聶新軍, 葉波, 等. 農作物秸稈“五化”綜合利用現狀與前景展望[J/OL]. 浙江農業科學, 2020, 61(12): 2660-2665[2024-03-13]. https://doi.org/10.16178/i.issn.0528-9017.

20201265.

Liu Yinxiu, Nie Xinjun, Ye Bo, et al. Current situation and prospects of comprehensive utilization of crop straw by “five modes”[J/OL]. Journal of Zhejiang Agricultural Sciences, 2020, 61(12): 2660-2665[2024-03-13]. https://doi.org/10.16178/

i.issn.0528-9017.20201265.

[48] 石祖梁, 王飛, 李想, 等. 秸稈“五料化”中基料化的概念和定義探討[J/OL]. 中國土壤與肥料, 2016(6): 152-155[2024-03-

13]. https://doi.org/10.11838/sfsc.20160625.

Shi Zuliang, Wang Fei, Li Xiang, et al. The discussion on concept and definition of straw substrate utilization[J/OL]. Soil and Fertilizer Sciences in China, 2016(6): 152-155[2024-03-

13]. https://doi.org/10.11838/sfsc.20160625.

[49] Li G Q, Wang Y H, Zhu P L, et al. Functional characterization of laccase isozyme (PoLcc1) from the edible mushroom Pleurotus ostreatus involved in lignin degradation in cotton straw[J/OL]. International Journal of Molecular Sciences, 2022, 23: 13545[2024-03-13]. https://doi.org/10.3390/ijms232113545.

[50] Li G Q, Wang Y H, Yu D S, et al. Ligninolytic characteristics of Pleurotus ostreatus cultivated in cotton stalk media[J/OL]. Frontiers in Microbiology, 2022, 13: 1035040[2024-03-13]. https://doi.org/10.3389/fmicb.2022.1035040.

[51] Rashad F M, Kattan M H E, Fathy H M, et al. Recycling of agro-wastes for Ganoderma lucidum mushroom production and Ganoderma post mushroom substrate as soil amendment[J/OL]. Waste Management, 2019, 88: 147-159[2024-03-13]." https://

doi.org/10.1016/j.wasman.2019.03.040.

[52] 石祖梁, 王飛, 王久臣, 等. 我國農作物秸稈資源利用特征、技術模式及發展建議[J/OL]. 中國農業科技導報, 2019, 21(5): 8-

16[2024-03-13]. https://doi.org/10.13304/j.nykjdb.2018.0314.

Shi Zuliang, Wang Fei, Wang Jiuchen, et al. Utilization characteristics, technical model and development suggestions on crop straw in China[J/OL]. Journal of Agricultural Science and Technology, 2019, 21(5): 8-16[2024-03-13]. https://doi.org/10.13304/j.nykjdb.2018.0314.

[53] Pandirwar A P, Khadatkar A, Mehta C R, et al. Technological advancement in harvesting of cotton stalks to establish sustainable raw material supply chain for industrial applications: a review[J/OL]. BioEnergy Research, 2023, 16: 741-760[2024-

01-19]. https://doi.org/10.1007/s12155-022-10520-3.

[54] 宋睿, 申東江. 棉花秸稈人造板的優勢、存在問題及建議[J/OL]. 河南農業, 2018(34): 58-59[2024-03-13]. https://doi.org/10.15904/j.cnki.hnny.2018.34.053.

Song Rui, Shen Dongjiang. Advantages, existing problems and suggestions of cotton straw artificial panels[J/OL]. Agriculture of Henan, 2018(34): 58-59[2024-03-13]. https://doi.org/10.15904/j.cnki.hnny.2018.34.053.

[55] Nguyen T T, Bailleres H, Redman A, et al. Homogenous particleboard made from whole cotton (Gossypium hirsutum L.) stalk agricultural waste: optimisation of particle size and influence of cotton residue on performance[J/OL]. BioResources, 2020, 15(4): 7730-7748[2024-03-13]. https://doi.org/10.15376/

biores.15.4.7730-7748.

[56] Popescu C M, Jones D, Schalnat J, et al. Structural characterization and mechanical properties of wet-processed fibre board based on chemo-thermo mechanical pulp, furanic resin and cellulose nanocrystals[J/OL]. International Journal of Biological Macromolecules, 2020, 145: 586-593[2024-01-19]. https://doi.org/10.1016/j.ijbiomac.2019.12.199.

[57] Afrifah K A, Adom A N A, Ofosu S. The morphological and pulping indices of bagasse, elephant grass (leaves and stalk), and silk cotton fibers for paper production[J/OL]. Journal of Natural Fibers, 2022, 19(14): 9782-9790[2024-01-19]. https://

doi.org/10.1080/15440478.2021.1993408.

[58] Kamusoko R, Jingura R M, Parawira W, et al. Strategies for valorization of crop residues into biofuels and other value-

added products[J/OL]. Biofuels Bioproducts amp; Biorefining, 2021, 15: 1950-1964[2024-01-19]. https://doi.org/10.1002/bbb.

2282.

[59] Worku L A, Bachheti A, Bachheti R K, et al. Agricultural residues as raw materials for pulp and paper production: overview and applications on membrane fabrication[J/OL]. Membranes, 2023, 13(2): 228[2024-03-13]." https://doi.org/10.3390/membranes13020228.

[60] 房桂干. 化學機械法制漿技術發展趨勢——淺析化機漿生產過程影響因素[J]. 中華紙業, 2019, 40(23): 34-40, 6.

Fang Guigan. Development trend of chemical mechanical pulping technology-analysis of factors affecting chemical mechanical pulping process[J]. China Pulp amp; Paper Industry, 2019, 40(23): 34-40, 6.

[61] Chen H Z, Fu X G. Industrial technologies for bioethanol production from lignocellulosic biomass[J/OL]. Renewable and Sustainable Energy Reviews, 2016, 57: 468-478[2024-01-19]. https://doi.org/10.1016/j.rser.2015.12.069.

[62] Petrou E C, Pappis C P. Bioethanol production from cotton stalks or corn stover? A comparative study of their sustainability performance[J/OL]. ACS Sustainable Chemistry amp; Engineering, 2014, 2(8): 2036-2041[2024-01-19]. https://doi.org/10.1021/

sc500249d.

[63] Keshav P K, Banoth C, Kethavath S N, et al. Lignocellulosic ethanol production from cotton stalk: an overview on pretreatment, saccharification and fermentation methods for improved bioconversion process[J/OL]. Biomass Conversion and Biorefinery, 2023, 13: 4477-4493[2024-01-19]. https://doi.org/10.1007/s13399-021-01468-z.

[64] Niyaz A M L, Pranjali D M, Giovanna A, et al. Effect of frequency and reaction time in focused ultrasonic pretreatment of energy cane bagasse for bioethanol production[J/OL]. Bioresource Technology, 2016, 200: 262-271[2024-03-13]. https://

doi.org/10.1016/j.biortech.2015.10.028.

[65] Malik K, Salamaa E S, Kim T H, et al. Enhanced ethanol production by Saccharomyces cerevisiae fermentation post acidic and alkali chemical pretreatments of cotton stalk lignocellulose[J/OL]. International Biodeterioration amp; Biodegradation, 2020, 147: 104869[2024-01-19]. https://doi.org/10.1016/j.ibiod.

2019.104869.

[66] Yu I K M, Tsang D C W. Conversion of biomass to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms[J/OL]. Bioresource Technology, 2017, 238: 716-

732[2024-01-19]. https://doi.org/10.1016/j.biortech.2017.04.

026.

[67] 張聽偉. 碳基固體酸催化生物質制取糠醛、5-羥甲基糠醛的研究[D]. 合肥: 中國科學技術大學, 2019.

Zhang Tingwei. Conversion of biomass into Furfural and 5-

hydroxymethylfurfural using carbon-based solid acids[D]. Hefei: University of Science and Technology of China, 2019.

[68] 蒲紅霞, 戴睿, 韓凱翔, 等. 生物質制備5-羥甲基糠醛(5-

HMF)及其研究進展[J/OL]. 皮革科學與工程, 2020, 30(1): 23-

26[2024-03-13]. https://doi.org/10.19677/i.issn.1004-7964.

2020.01.005.

Pu Hongxia, Dai Rui, Han Kaixiang, et al. Preparation of 5-

hydroxymethylfurfural (5-HMF) from biomass and its research progress[J/OL]. Leather Science and Engineering, 2020, 30(1): 23-26[2024-03-13]. https://doi.org/10.19677/i.issn.1004-7964.

2020.01.005.

[69] Li M, Jiang H N, Zhang L, et al. Synthesis of 5-HMF from an ultrasound-ionic liquid pretreated sugarcane bagasse by using a microwave-solid acid/ionic liquid system[J/OL]. Industrial Crops amp; Products, 2020, 149: 112361[2021-01-19]. https://doi.org/10.1016/j.indcrop.2020.112361.

[70] Silverstein R A, Chen Y, Sharma-Shivappa R R, et al. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks[J/OL]. Bioresource Technology, 2007, 98(16): 3000-3011[2024-01-19]. https://doi.org/10.1016/

j.biortech.2006.10.022.

[71] Cheng J, Hu S C, Geng Z C, et al. Effect of structural changes of lignin during the microwave-assisted alkaline/ethanol pretreatment on cotton stalk for an effective enzymatic hydrolysis[J/OL]. Energy, 2022, 254: 124402[2024-01-19]. https://doi.org/

10.1016/j.energy.2022.124402.

[72] 顧潮, 許多, 魏春艷, 等. 基于棉稈的離子液體溶解及其全纖維素復合材料的制備與性能研究[J/OL]. 上海紡織科技, 2017, 45(2): 11-14[2024-03-13]. https://doi.org/10.16549/i.cnki.issn.1001-2044.2017.02.004.

Gu Chao, Xu Duo, Wei Chunyan, et al. Preparation and properties of all-cellulose composite based on dissolving of cotton stalk with ionic liquid[J/OL]. Shanghai Textile Science and Technology, 2017, 45(2): 11-14[2024-03-13]. https://doi.org/

10.16549/i.cnki.issn.1001-2044.2017.02.004.

[73] Xie W, Zhou D Y, Ren Y J, et al. 1-Butyl-3-methylimidazolium chloride pretreatment of cotton stalk and structure characterization[J/OL]. Renewable Energy, 2018, 125: 668-674[2024-01-

19]. https://doi.org/10.1016/j.renene.2018.03.011.

[74] Kougioumtzis M A, Marianou A, Atsonios K, et al. Production of 5-HMF from cellulosic biomass: experimental results and integrated process simulation[J/OL]. Waste and Biomass Valorization, 2018, 9: 2433-2445[2024-01-19]. https://doi.org/

10.1007/s12649-018-0267-0.

[75] Xu L L, Pan X M, Wu N X, et al. Synergistic effect of metal chloride for the generation of HMF from cellulose[J/OL]. Catalysis Letters, 2023, 154: 674-684[2024-01-19]. https://doi.org/10.1007/s10562-023-04320-3.

[76] Hou Q D, Bai C Y L, Bai X Y, et al. Roles of ball milling pretreatment and titanyl sulfate in the synthesis of 5-hydroxymethylfurfural from cellulose[J/OL]. ACS Sustainable Che-

mistry amp; Engineering, 2022, 10(3): 1205-1213[2024-01-19].

https://doi.org/10.1021/acssuschemeng.1c06936.

[77] Liu X F, Luo H Y, Yu D Y, et al. The development of novel ionic liquid-based solid catalysts and the conversion of 5-

hydroxymethylfurfural from lignocellulosic biomass[J/OL]. Frontiers in Chemistry, 2022, 10: 1084089[2024-01-19]. https://

doi.org/10.3389/fchem.2022.1084089.

[78] Wu M, Huang M Y, Chen L, et al. Direct conversion of cellulose to 5-hydroxymethylfurfural over SnNb2O6-ZrO2 catalyst[J/OL]. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130: 903-918[2024-01-19]. https://doi.org/10.1007/s11144-

020-01823-7.

[79] Akpomiea K G, Conradie J. Advances in application of cotton-based adsorbents for heavy metals trapping, surface modifications and future perspectives[J/OL]. Ecotoxicology and Environmental Safety, 2020, 201: 110825[2024-03-13]. https://doi.org/10.1016/j.ecoenv.2020.110825.

[80] Gao L, Li Z H, Yi W M, et al. Impacts of pyrolysis temperature on lead adsorption by cotton stalk-derived biochar and related mechanisms[J/OL]. Journal of Environmental Chemical Engineering, 2021, 9: 105602[2024-03-13]. https://doi.org/10.1016/

j.jece.2021.105602.

[81] 劉杰, 施勝利, 賈月慧, 等. 不同熱解溫度生物炭對Pb(II)的吸附研究[J/OL]. 農業環境科學學報, 2018, 37(11): 2586-2593[2024-03-13]. https://doi.org/10.11654/jaes.2018-0900.

Liu Jie, Shi Shengli, Jia Yuehui, et al. Effect of the pyrolysis temperature on biochar adsorption of Pb2+ [J/OL]. Journal of Agro-Environment Science, 2018, 37(11): 2586-2593[2024-

03-13]. https://doi.org/10.11654/jaes.2018-0900.

[82] Cheng J, Hu S C, Sun G T, et al. The effect of pyrolysis temperature on the characteristics of biochar, pyroligneous acids, and gas prepared from cotton stalk through a polygeneration process[J/OL]. Industrial Crops amp; Products, 2021, 170: 113690[2024-03-13]. https://doi.org/10.1016/j.indcrop.2021.113690.

[83] Wang Z Z, Xu J, Dominic Y, et al. Effects of cotton straw-

derived biochar under different pyrolysis conditions on Pb(II) adsorption properties in aqueous solutions[J/OL]. Journal of Analytical and Applied Pyrolysis, 2021, 157: 105214[2024-03-

13]. https://doi.org/10.1016/j.jaap.2021.105214.

[84] Pramanik P, Patel H, Charola S, et al. High surface area porous carbon from cotton stalk agro-residue for CO2 adsorption and study of techno-economic viability of commercial production[J/OL]. Journal of CO2 Utilization, 2021, 45: 101450[2024-03-

13]. https://doi.org/10.1016/j.jcou.2021.101450.

[85] Wang Z P, Shen R, Ji S B, et al. Effects of biochar derived from sewage sludge and sewage sludge/cotton stalks on the immobilization and phytoavailability of Pb, Cu, and Zn in sandy loam soil[J/OL]. Journal of Hazardous Materials, 2021, 419: 126468[2024-03-13]. https://doi.org/10.1016/j.jhazmat.2021.126468.

[86] Wang Z P, Tian Q M, Guo J, et al. Co-pyrolysis of sewage sludge/cotton stalks with K2CO3 for biochar production: improved biochar porosity and reduced heavy metal leaching[J/OL]. Waste Management, 2021, 135: 199-207[2024-03-13]." https://doi.org/10.1016/j.wasman.2021.08.042.

[87] Jiang G S, Senthil R A, Sun Y Z, et al. Recent progress on porous carbon and its derivatives from plants as advanced electrode materials for supercapacitors[J/OL]. Journal of Power Sources, 2022, 520: 230886[2024-03-13]." https://doi.org/10.1016/j.jpowsour.2021.230886.

[88] Mandal S, Hu J Y, Shi S Q. A comprehensive review of hybrid supercapacitor from transition metal and industrial crop based activated carbon for energy storage applications[J/OL]. Materials Today Communications, 2023, 34: 105207[2024-03-13]. https://doi.org/10.1016/j.mtcomm.2022.105207.

[89] Yan L H, Liu A, Ma R, et al. Regulating the specific surface area and porous structure of carbon for high performance supercapacitors[J/OL]. Applied Surface Science, 2023, 615: 156267[2024-03-13]." https://doi.org/10.1016/j.apsusc.2022.156267.

[90] Tian J S, Zhang T, Talifu D, et al. Porous carbon materials derived from waste cotton stalk with ultra-high surface area for high performance supercapacitors[J/OL]. Materials Research Bulletin, 2021, 143: 111457[2024-03-13]. https://doi.org/10.1016/j.materresbull.2021.111457.

[91] Cheng J, Hu S C, Sun G T, et al. Comparison of activated carbons prepared by one-step and two-step chemical activation process based on cotton stalk for supercapacitors application[J/OL]. Energy, 2021, 215: 119144[2024-03-13]. https://doi.org/

10.1016/j.energy.2020.119144.

[92] Guo R H, Guo N N, Luo W X, et al. A dual-activation strategy to tailor the hierarchical porous structure of biomass-derived carbon for ultrahigh rate super capacitor[J/OL]. International Journal of Energy Research, 2021, 45(6): 9284-9294[2024-03-

13]. https://doi.org/10.1002/er.6458.

[93] Sharifi A, Mousavi S R, Ghanemi R, et al. Extruded biocomposite films based on poly (lactic acid)/chemically-modified agricultural waste: tailoring interface to enhance performance[J/OL]. International Journal of Biological Macromolecules, 2023, 233: 123517[2024-03-13]. https://doi.org/10.1016/j.

ijbiomac.2023.123517.

[94] Yu W W, Dong L L, Lei W, et al. Effects of rice straw powder (RSP) size and pretreatment on properties of FDM 3D-printed RSP/poly (lactic acid) biocomposites[J/OL]. Molecules, 2021, 26(11): 3234[2024-03-13]. https://doi.org/10.3390/molecules

26113234.

[95] Raza Z A, Aslam M, Azeem A, et al. Development and characterization of nano-crystalline cellulose incorporated poly (lactic acid) composite films[J/OL]. Materials Science amp; Engineering Technology, 2019, 50(1): 64-73[2024-03-13]. https://doi.org/

10.1002/mawe.201800081.

[96] Zhou B Y, Wang L, Ma G W, et al. Preparation and properties of bio-geopolymer composites with waste cotton stalk materials[J/OL]. Cleaner Production, 2020, 245: 118842[2024-03-13]. https://doi.org/10.1016/j.jclepro.2019.118842.

[97] Amin M, Zeyad A M, Tayeh B A, et al. Effects of nano cotton stalk and palm leaf ashes on ultrahigh-performance concrete properties incorporating recycled concrete aggregates[J/OL]. Construction and Building Materials, 2021, 302: 124196[2024-

03-13]. https://doi.org/10.1016/j.conbuildmat.2021.124196.

[98] Tafreshi O A, Mosanenzadeh S G, Karamikamkar S, et al. A review on multifunctional aerogel bers: processing, fabrication, functionalization, and applications[J/OL]. Materials Today Chemistry, 2022, 23: 100736[2024-03-13]. https://doi.org/10.1016/j.mtchem.2021.100736.

[99] Wei G, Zhang J M, Usuelli M, et al. Biomass vs inorganic and plastic-based aerogels: structural design, functional tailoring, resource-efficient applications and sustainability analysis[J/OL]. Progress in Materials Science, 2022, 125 : 100915[2024-03-13]. https://doi.org/10.1016/j.pmatsci.2021.100915.

[100] Khalill H P S A, Yahya E B, Jummaat F, et al. Biopolymers based aerogels: a review on revolutionary solutions for smart therapeutics delivery[J/OL]. Progress in Materials Science, 2023, 131: 101014[2024-03-13]. https://doi.org/10.1016/j.pmatsci.2022.101014.

[101] Liang L, Zhang S Y, Goenaga G A, et al. Chemically cross-linked cellulose nanocrystal aerogels for effective removal of cation dye[J/OL]. Frontiers in Chemistry, 2020, 8: 570[2024-03-13]. https://doi.org/10.3389/fchem.2020.00570.

[102] Miao X R, Lin J Y, Tian F, et al. Cellulose nanofibrils extracted from the byproduct of cotton plant[J/OL]. Carbohydrate Poly-mers, 2016, 136: 841-850[2024-03-13]. https://doi.org/10.1016/j.carbpol.2015.09.056.

[103] Shamskara K R, Heidarib H, Rashidi A. Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk[J/OL]. Industrial Crops and Products, 2016, 93: 203-211[2024-03-13]. https://doi.org/10.1016/j.indcrop.2016.01.044.

[104] Mussana H, Yang X, Tessima M, et al. Preparation of lignocellulose aerogels from cotton stalks in the ionic liquid-based co-solvent system[J/OL]. Industrial Crops and Products, 2018, 113: 225-233[2024-03-13]. https://doi.org/10.1016/j.indcrop.2018.01.025.

[105] Zainal S H, Mohd N H, Suhaili N, et al. Preparation of cellulose-

based hydrogel: a review[J/OL]. Journa of Materials Research and Technology, 2021, 10: 935-952[2024-03-13]. https://doi.org/10.1016/j.jmrt.2020.12.012.

[106] Chen M F, Chen J Z, Zhou W J, et al. Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries[J/OL]. Advanced Materials, 2021, 33(9): 2007559[2024-03-13]. https://doi.org/10.1002/adma.202007559.

[107] Yang Z F, Huang R K, Zheng B N, et al. Highly stretchable, adhesive, biocompatible, and antibacterial hydrogel dressings for wound healing[J/OL]. Advanced Science, 2021, 8(8): 2003627[2024-03-13]. https://doi.org/10.1002/advs.202003627.

[108] Zhang Z H, Chen Z Y, Wang Y, et al. Bioinspired conductive cellulose liquid-crystal hydrogels as multifunctional electrical skins[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(31): 18310-18316[2024-03-13]. https://doi.org/10.1073/pnas.

2007032117.

[109] Seleiman M F, Al-suhaibani N, Ali N, et al. Drought stress impacts on plants and different approaches to alleviate its adverse effects[J/OL]. Plants, 2021, 10(2): 259[2024-03-13]. https://doi.org/10.3390/plants10020259.

(責任編輯:王小璐 責任校對:王國鑫)

主站蜘蛛池模板: 国产高清不卡视频| 国产乱肥老妇精品视频| 午夜少妇精品视频小电影| 奇米影视狠狠精品7777| 久草视频福利在线观看| 青青操国产| 亚洲成a人片| 精品三级在线| 免费观看男人免费桶女人视频| 亚洲成aⅴ人在线观看| 日韩毛片基地| 亚洲一区二区无码视频| 亚洲天堂网视频| 国产黄色免费看| AV在线天堂进入| 色爽网免费视频| 国产亚洲精久久久久久无码AV| 亚洲日韩精品无码专区97| 91成人在线免费观看| 四虎永久在线精品影院| 久久精品丝袜| 天天综合网亚洲网站| 国产中文一区a级毛片视频| 在线a视频免费观看| 国产亚洲一区二区三区在线| 露脸真实国语乱在线观看| 怡春院欧美一区二区三区免费| 国产自在线拍| 国国产a国产片免费麻豆| 国产一区二区三区免费观看| 欧美综合成人| 高清视频一区| 日本高清在线看免费观看| 老司机午夜精品网站在线观看| 又黄又湿又爽的视频| 四虎影视8848永久精品| 亚洲欧美成人综合| 婷婷综合亚洲| 666精品国产精品亚洲| 欧美性猛交xxxx乱大交极品| 天堂成人av| 国产精品福利社| 欧美一级高清片欧美国产欧美| 国产99精品久久| 欧美亚洲第一页| 国产麻豆永久视频| 国产精品成人免费综合| 国产日韩丝袜一二三区| 超薄丝袜足j国产在线视频| 国内精品久久久久鸭| 欧美色丁香| 久青草免费在线视频| 国产在线一区视频| 国产又黄又硬又粗| 久久永久视频| 无码专区在线观看| 欧美午夜视频| 国产激爽爽爽大片在线观看| 精品国产成人a在线观看| 天天做天天爱天天爽综合区| 欧美亚洲另类在线观看| 国产成人综合日韩精品无码不卡| 国产高清无码麻豆精品| 五月天天天色| 九九九九热精品视频| 怡春院欧美一区二区三区免费| 亚洲三级视频在线观看| 亚洲精品日产AⅤ| 69av在线| 日韩人妻无码制服丝袜视频| 亚洲第一页在线观看| 欧美日韩午夜视频在线观看| 三上悠亚精品二区在线观看| 99精品免费在线| 91探花国产综合在线精品| 日韩在线中文| 久久午夜影院| 91探花国产综合在线精品| 亚洲一区毛片| 国产亚洲高清视频| 亚洲人成高清| 在线观看欧美国产|