




Research on Optimization of Inbound Logistics Path for Auto Parts Based on Milk-run
SUN Hui," WANG Xuemin," SUN Bingqi
(山東科技大學 交通學院,山東 青島 266590)
(Transportation College, Shandong University of Science and Technology, Qingdao 266590, China)
摘" 要:由于汽車零部件入廠物流在總物流成本中占比較大,所以國內外學者不斷提出多種汽車零部件入廠物流優化問題和解決方法以降低物流成本。文章基于循環取貨的要求設計數學模型,并根據問題的特點來設計遺傳算法中編碼、適應度函數、初始種群等進行求解,最后,結合相關案例以及模型算法,使用MATLAB進行求解,從而得到最優路徑。通過對數據結果的分析表明,循環取貨能大幅降低物流成本,實現準時化生產;文章設計的數學模型和構造遺傳算法進行求解是可行的,能高效地解決路徑規劃問題。
關鍵詞:循環取貨;入廠物流;車輛路徑優化;遺傳算法
中圖分類號:F252.14文獻標志碼:ADOI:10.13714/j.cnki.1002-3100.2023.19.005
Abstract: Because the logistics of automobile parts entering the factory is relatively large in total logistics costs, scholars at home and abroad have continued to propose a variety of automotive component logistics optimization problems and solutions to reduce logistics costs. This article is based on the requirements of milk-run to design mathematical models, and designed the coding, adaptation function, initial population, etc. in the genetic algorithm according to the characteristics of the problem. Finally, combined with relevant cases and model algorithms to solve unexpected path. According to the analysis of data results, milk-run can significantly reduce logistics costs and achieve timely production; it is feasible to solve the mathematical model and constructing genetic algorithm designed in this article, which can efficiently solve path planning problems.
Key words: milk-run; inbound logistics; vehicle routing optimization; genetic algorithm
0" 引" 言
入廠物流是汽車生產的開端,是將汽車零部件從供應商運送到總裝廠的物流運輸環節。對于如何降低零部件入廠物流成本的同時提高管理效率也成為各大汽車制造商追求的目標。為了改善這一現象,比較高效的循環取貨開始得到了眾多企業的關注。在循環取貨過程中,通過合理的車輛路徑規劃可以有效地提高循環取貨的效率,從而降低企業的物流成本。車輛路徑規劃問題起初由Glover等[1]提出,它屬于NP-Hard難題,通常用啟發式算法來解決。劉云等[2]在VRP模型的基礎上加入了車輛等待的最大容忍時間和最大運輸時間的約束,建立了以總行駛路徑最短和車輛使用數量最小的雙目標數學模型。Bocewicz[3]提出了一種陳述性模型來求解正向和反向的循環取貨問題,通過該模型可以確定向裝卸點運輸物料所需的頻次和時間?!?br>