王芳 崔廣娟 呂順 曾莉莎 陳東儀 黃曉彥 曾國玲 劉文清 何建齊



摘? ? 要:【目的】由于香蕉高度不育和無性繁殖,經過長期的進化,導致許多資源來源不清晰。開發大蕉資源特異性分子靶標,為香蕉資源鑒定和遺傳改良提供技術支撐。【方法】利用香蕉線粒體cox2/2-3基因序列,根據大蕉在該序列的特異性位點進行分子靶標設計,采用37份大蕉,以及香牙蕉、粉蕉、貢蕉、尖苞片蕉(Musa acuminata)、長梗蕉(M. balbisiana)、芭蕉(M. basjoo)以及阿寬蕉(M. itinerans)等共計59份其他類型香蕉資源進行鑒定篩選,獲得特異性鑒定大蕉的分子靶標DcR/DcF,并進行評價?!窘Y果】通過對共計96份香蕉資源的檢測,發現37份大蕉均出現634 bp特異性條帶,香牙蕉、粉蕉、貢蕉未出現該條帶。在應用該標記對野生蕉檢測中發現僅有阿寬蕉出現該特異性條帶,長梗蕉、尖葉蕉、芭蕉均未出現該特異條帶,同時大蕉和阿寬蕉的雜交后代出現了該特異條帶?!窘Y論】成功開發了一個大蕉特異性分子靶標DcR/DcF,可以在栽培蕉中特異性地鑒定大蕉,并具有快速、簡便、準確的特點,該技術對香蕉種質資源鑒定、新品種選育等具有重要的應用價值。
關鍵詞:大蕉;分子靶標;特異性鑒定,線粒體基因,評價
中圖分類號:S668.1 文獻標志碼:A 文章編號:1009-9980(2023)12-2661-11
收稿日期:2023-09-05 接受日期:2023-10-23
基金項目:東莞市2021年度省鄉村振興戰略專項資金“大專項+任務清單”(20211800400052);廣東省級農業科技創新及推廣項目-香蕉菠蘿產業技術體系創新團隊(2023KJ109);廣東省基礎與應用基礎研究基金項目(2022A1515140114)
作者簡介:王芳,女,正高級農藝師,碩士,研究方向為香蕉分子生物技術。E-mail:29333689@qq.com。#為共同第一作者。崔廣娟,女,碩士,研究方向為分子育種。
*通信作者 Author for correspondence. E-mail:shunlv@qq.com
Development and evaluation of specific molecular target of Dajao
WANG Fang, CUI Guangjuan#, L? Shun*, ZENG Lisha, CHEN Dongyi, HUANG Xiaoyan, ZENG Guoling, LIU Wenqing, HE Jianqi
(Dongguan Agricultural Research Centre, Dongguan 523000, Guandong, China)
Abstract: 【Objective】Banana is an important fruit and food crop in the world, but it is facing the technical bottleneck of resource identification and genetic improvement. Banana plants are asexual and highly sterile. Because of long-term cultivation and exchanging between different regions, the origin of banana varieties is not clear. China has abundant cultivated and wild banana resources. Dajiao (Musa) is one of widely distributed banana resources in China which is different from plantain abroad, and there are many different types of Dajiao in different growing areas. Dajiao has many advantages, such as high yield, cold resistance, and strong disease resistance, so Dajiao is an important genetic resource. The aim of this study was to develop a specific molecular target of Dajiao for the rapid identification and genetic improvement of Chinese banana resources. 【Methods】 The 96 samples of different banana resources used in this experiment included 6 cultivars of Cavendish, 9 cultivars of Pisang Awak, 1 cultivar of Longya banana, 4 cultivars of Pisang Mas, 37 cultivars of Dajiao, 3 wild resources of Musa acuminata, 6 wild resources of Musa balbisiana, 5 wild resources of Musa basjoo, 21 wild resources of Musa itinerans and 3 hybrids, which were collected from different producing areas of China. The genomic DNA from each sample was isolated from fresh young cigar leaves using CTAB method. The concentration and purity of each DNA were checked with BioDrop μLite. First, we selected eight varieties of four groups, including Huanong Zhongba Dajiao, Dongguan Zhongba Dajiao, 8818-1, Beida Aijiao, Zhongfen No. 1, Fenza No. 1, Gongjiao and Gongxuan as representatives, through cloning and sequencing of the mitochondrial gene cox2/2 -3, and aligning the sequences by Mega 5.0. We found the specific base sequence in Dajiao from the results. Then Primer Premier 5.0 was used to design the specific primer, the optimal PCR amplification system and agarose gel electrophoresis detection method were optimized. At last, we obtained the specific detection target through a certain range of screening and expanded range of validation. 【Results】 The concentration of DNA extraction reached 500-1000 ng·μL-1, OD260/OD280 = 1.8-2.0, and the quality was good, which met the requirements of the experiment. The DNA was finally diluted into 50 ng·μL-1 and used for the experiments. PCR amplification of the cox2/2-3 region produced a single fragment of about 750-1200 bp in all the samples, and the gene fragment of Dajiao was longest, about 1200 bp. Through comparing the gene sequence of eight banana resources, we found 9 different insertional mutations (175 bp in total) in Dajiao, located at 229-985 bp of this gene. The abundant variation facilitated the design of specific primers. According to the specificity of cox2/2-3 gene sequence in Dajiao, a pair of primers was designed, the forward primer was DCR: TATTGACCGGTATGTCGGTA, and the rewerse primer was DCF: AGGTATTAATTGGCGGCCTAA. The optimal PCR procedure was: 94 ℃ predenaturation for 3 min, 94 ℃ denaturation for 30 s, 60 ℃ annealing for 30 s, 72 ℃ extension for 1 min, 30 cycles, 72 ℃ extension for 10 min, 94 ℃ denaturation for 30 s, 60 ℃ annealing for 30 s, 72 ℃ extension for 10 min. The optimal PCR system was: 10×PCR reaction buffer 2.5 μL, 2.5 nmol·L-1 dNTPs 2 μL, 10 μmol·L-1 primer 1 μL, 50 ng·μL-1 template DNA 1 μL, 5 U·μL-1 TaqDNA polymerase 0.5 μL, the volume was replenished to 25 μL with sterilized double-distilled water. The optimal detection method was: 1.2% agarose gel, 0.5×TBE electrode buffer, 110 V electrophoresis for 30 min. Through the examination, a 634 bp specific band was found in all 37 banana resources of Dajiao, but not in banana resources of Cavendish, Pisang Awak, Pisang Mas and Longyajiao. The target band was clear, no miscellaneous band and the detection accuracy was 100% in cultivated species. Only M. itinerans showed this specific band in the detection of wild banana using this marker, no specific band was found in M. acuminata, M. balbisiana and M. basjoo. At the same time, the specific band appeared in 3 hybrid progenies, so this fragment would be also suitable for the identification of hybrid progenies from Dajiao × M. itinerans. Banana had a unique inheritance mode of mitochondrial paternal inheritance as reported early, and this specific molecular target was derived from mitochondrial genes. On the whole, the 634 bp special band appeared in 37 cultivars of Dajiao and 22 wild resources of M. itinerans, so there should be a certain relationship between the paternal origin of Dajiao and M. itinerans. 【Conclusion】 Compared with traditional evaluation method using morphological markers, this specific molecular target of Dajiao would be more stable, sensitive and accurate and could be efficiently used in selection of parents and early identification of hybrid offspring in cross breeding , the results of this study about Dajiao and M. itinerans would provide information for studying the origin and evolution of bananas.
Key words: Dajiao; Molecular target; Specificity identification; Mitochondrial gene; Evaluation
香蕉(Musa spp.)是芭蕉科(Musaceae)芭蕉屬(Musa L.)植物,不僅是世界上重要的水果之一,更是世界第四大糧食作物,全球4億人的主食[1-2]。香蕉栽培種主要是由尖苞片蕉Musa acuminata Colla.(記為A基因組)和長梗蕉M. balbisiana Colla.(記為B基因組)這兩個原始野蕉種內或種間雜交后代演化發展而來的[3]。香蕉屬于無性繁殖,高度不育,經過長期的栽培,再加上不同地域之間的交流,導致了許多來源不明的品種和資源,并且出現了很多同名異種和同種異名的現象[4-6],這種情況給香蕉種質資源的鑒定和遺傳育種的研究帶來了很多困難。1955年,Simmonds等[7]根據不同香蕉品種的形態,包括葉片、蕉蕾和假莖等相關性狀,結合染色體倍性,將栽培蕉分為了AA、BB、AB、AAA、AAB、ABB、AAAA、AAAB、AABB、ABBB。在之后廣大學者的研究中,不斷地補充和完善該種分類方法。然而,僅通過這些形態性狀判定并不精確,并且該方法難以準確反映不同基因型香蕉的基因組來源和組成[8]。之后的研究結果證實了這一點,利用形態特征和分子標記技術手段,發現了香蕉中還具有不同于A和B基因組的其他基因組,如有的香蕉品種帶有S(M. Schizocarpa)或者T(M. Textilis)基因組的特征[9-10]。
據報道,我國香蕉的種質資源間的遺傳多樣性比較豐富,種類繁多[11],栽培蕉主要有香牙蕉(AAA)、粉蕉(ABB)、粉大蕉(ABB)、大蕉(基因型不確定)、龍牙蕉(AAB)、貢蕉(AA)等[12]。而形態分類法在調查研究時工作量大,并且耗費時間久,容易受環境影響,存在一定的主觀性,因此需要進一步發展其他更可靠的研究方法。隨著科學技術的進步、分子生物學的快速發展,各類分子標記已經被應用于分析香蕉品種(系)的種群鑒定與分類、遺傳多樣性研究[13-16],利用分子手段研究香蕉的基因組可以更直觀地呈現,并且分子生物技術手段的出現加速了植物品種改良進程[17]。筆者研究團隊前期收集了大量我國各香蕉產區的大蕉資源,在對香蕉線粒體基因片段cox2/2-3序列的研究中(論文尚未發表),發現大蕉的該序列具有特異性,根據這段序列設計了可以特異性鑒定大蕉的靶標引物,并對其檢測效果進行了分析評價,以期為香蕉種質資源的鑒定和新品種的選育提供更加快速精準的技術手段。
1 材料和方法
1.1 試驗材料
于2019年3—6月采樣于東莞市農業科學研究中心萬江基地香蕉資源圃以及廣東省農科院果樹所國家果樹種質廣州香蕉荔枝圃。其中雜1、雜2、雜4為大蕉和阿寬蕉類野蕉的雜交后代。
1.2 方法
1.2.1 香蕉基因組的DNA提取 選取香蕉無病蟲害的嫩葉,分別進行DNA提取。DNA提取方法采用十六烷基三甲基溴化銨(cetyltrimethylammonium bromide,CTAB)法[18]。
1.2.2 特異性序列測序 目的片段擴增:采用線粒體基因組中細胞色素氧化酶亞基Ⅱ基因中的1個內含子(cox2/2-3),PCR反應體系及電泳檢測參考Duminil等[19]的方法。
目的片段測序:cox2/2-3片段經DNA膠回收試劑盒回收純化后,克隆到pMD18-T載體中,陽性克隆送至Invitrogen公司廣州分公司測序。為確保測序結果的準確性,分別用引物對每個擴增片段進行正反鏈測序,將兩條鏈比對拼接。
1.2.3 特異性靶標引物設計及PCR擴增 采用MEGA 5進行序列比對;引物設計采用Primer premier 5.0,并對PCR退火溫度及體系中DNA模板和酶量進行優化;檢測采用瓊脂糖凝膠電泳。
1.2.4 香蕉資源的鑒定評價 采用1.2.3引物及擴增檢測方法,進行96個香蕉資源(表1,表2)的鑒定評價。
2 結果與分析
2.1 香蕉基因組DNA的提取
采用改良CTAB法提取香蕉葉片DNA,用BioDrop μLite(超微量蛋白核酸分析儀)檢測其質量濃度和純度,DNA質量濃度為500~1000 ng·μL-1,OD260/OD280=1.8~2.0,質量較好,符合試驗要求;
根據測得的濃度,吸取適量體積的DNA樣品,稀釋成質量濃度50 ng·μL-1的工作液備用。
2.2 香蕉cox2/2-3基因測序
采用cox2/2-3基因對不同香蕉資源進行分析,不同香蕉資源該片段大小在750~1200 bp;大蕉與其他香蕉資源相比,基因片段最長,約1200 bp,大蕉的序列基本一致,序列為:TATGAGAGCCTTTCA
GCTCGTACTGCTCACACTCCTAGATCTGAACTAAGAGACCTCTGCGACCATAGTTTGAGCTGGGAGTTGCTCCTAGAATCCTTCCAAATGAGCTTGAAAGTCAACGTCAACAACACGAAAAGTACACGTTGGTTGCCTACTAATCAGATAATAGGTGAAATCCCTTCGCCTCTCGGAAGCTTGAAAGGGAGCTGAAAGTTTAGGGTGAGAAAGGTGAGAAAAGAGATTAGCTGGAGGTAGGGCGGGTCCTGAAACTAAGGTGTACATACATCAAAGCAGATTATGTCGGTATCCTTCCAATCCATATTGACCGGTATGTCGGTATCCTTCCAATCCATATTGACCGGGAAGAGTGGGGAGGCTAATGCAGAAGTATCTATGTATTAGAGAGATCCCTTATATTGATGATTGCTGGCTTCCCGGACTTGTCACAGATGGCTAGGAAGAAGAATAGGAGAAGTAGTCTCTGCCGTAGCAGGTCCTTCTCCTGTAGCTAAGACTGCCCTTACTTTGATTATTGTTCGTTCAGTTCACCGCGGCACTAATGAATAAGCTTGAGAATAACTTAGAGTGGCGCCTAACCTTTGAGAGCGTCTCTTGTCTTTGAATTTCAGAAGAAGAGTTGTAGATCTTGGACTGGCCCCCTTCGCATGACCTAGAATGAAAGGTCTGTGCTACTATAAGGCCTCTAAACTCCTTCCTCAGGACACTGTTGCGTTGCCATGGGACGGGGTATCCCCGACTTCTATAGTTCCTTGGTTCGACCTCCTAATGAGAATTGAGGTCCTTGCGCGGGCGTCTCATCCCTAAGACGAGTTTGCCTTTGTTTGTATGGAGTGTCCCGTGGTTACTCTAGTGCCAGCCGCAGAGAGGAATGCCATCAACTAGGGCGCTATTTGCCACTAACCACTCGCTCTTAGGCCGCCAATTAATACCTCCTCCGCGTTTCAAGTTGGTTATCCTAACCATTTCCCCTGCTCTACCGGGAGCCTGGCCCAATATTCGATCTTATATACTGCCTTGCTCCTCGGCTCCCTACTGCTCAAGCGGCTCGCTGTAATAGCTTGCTTATCGGGTGGCTCGCACCCCGACCACGGGTGGTGCGGC
TAAGCCAGAGTGGGCTCAGCTGTCGGCCTATG
TATCCGG。
2.3 特異性靶標引物設計及檢測方法
通過對東莞中把大蕉、華農中把大蕉、8818-1、北大矮、中粉1號、粉雜1號、貢蕉、貢選等8個香蕉資源cox2/2-3核苷酸序列的比對,發現在該基因229~985 bp處,大蕉存在9處的插入突變(圖1),共計175 bp,可以進行特異性靶標引物設計。根據大蕉cox2/2-3核苷酸序列的特異性,設計了1對引物,上游引物為DcR:TATTGACCGGTATGTCGGTA;下游引物為DcF:AGGTATTAATTGGCGGCCTAA。上游引物位于336~355 bp處;下游引物位于948~969 bp處(見圖1黑色方框)。
經過優化獲得最優的PCR程序:94 ℃預變性3 min;94 ℃變性30 s,60 ℃退火30 s,72 ℃延伸1 min,循環30次;72 ℃延伸10 min;其最優的PCR體系:10×PCR反應緩沖液2.5 μL、2.5 nmol·L-1 dNTPs 2 μL、10 μmol·L-1引物各1 μL、50 ng·μL-1模板DNA 1 μL、5 U·μL-1 TaqDNA聚合酶[TIANGEN,天根生化科技(北京)有限公司]0.5 μL,滅菌雙蒸水補足體積至25 μL;最優檢測方法為:1.2%瓊脂糖凝膠、電極緩沖液為0.5×TBE、110 V電壓電泳30 min。
2.4 特異性靶標的PCR擴增
對46份不同基因型的香蕉資源進行分析,分別選用部分大蕉和香牙蕉、粉蕉、貢蕉等栽培蕉和BB、AAw、basjoo類野蕉類進行對比檢測,結果顯示只有大蕉在634 bp處出現特異的條帶,而其余蕉類均沒有條帶出現(圖2、圖3)。
2.5 擴大群體進行特異性靶標引物準確性的檢測
對37份大蕉資源以及3個雜交種進行特異性擴增,所有供試大蕉品種均出現634 bp特異性條帶(圖4、圖5)。雜1、雜2、雜4為大蕉和阿寬蕉的雜交后代,這3份資源也出現了634 bp特異性條帶(圖4),檢測準確率100%。
2.6 利用特異性靶標引物對阿寬蕉類野蕉的檢測
對從我國各地收集的22份阿寬蕉類野蕉資源進行特異性擴增,所有供試品種均出現634 bp特異性條帶(圖6)。
3 討 論
近年來,應用單個或多個分子標記技術來鑒定香蕉種質資源的研究逐漸增多[20-23],但是多數是針對不同香蕉基因組的鑒定,而對某一類香蕉的快速鑒定分子標記研究比較少。本研究利用cox2/2-3基因序列,根據大蕉在序列上的特異性位點進行大蕉特異性分子靶標設計,獲得了可以在香蕉栽培種中特異性鑒定大蕉的一對引物,具有快速、簡便、準確的特點,該類分子標記對香蕉種質資源鑒定、新品種選育等具有重要的應用價值。
研究表明,根據香蕉的植株形態和經濟性狀,栽培蕉主要分為香牙蕉、龍牙蕉、粉蕉、大蕉、粉大蕉、和貢蕉等[12]。國內易把我國大蕉和國外煮食蕉中作糧食用的飯蕉(Plantain,AAB)混淆[24-25],我國的大蕉一般鮮食用,不同于國外的飯蕉。受到消費市場的限制,大蕉的種植相對較少,傳播范圍也較小,對其研究不多,但是我國的大蕉具有抗病、高產、耐貧瘠、抗寒等多個優點[26-29]。大蕉大多為三倍體,具有單性結果和高度不育性。目前研究表明少量三倍體的栽培品種具有較微弱的雌性可育性[30-32],其中大蕉與野生蕉雜交可少量結籽[33]。筆者研究組也開展了相關雜交試驗,大蕉和尖苞片蕉、長梗蕉及阿寬蕉等野生蕉雜交均能結籽,結籽率較低。可見我國大蕉是一類具有特殊性及重要研究利用價值的香蕉種質資源。通常,國內外學者普遍認為大蕉是ABB基因型,與粉蕉的基因型一致;但是王正詢等[34]通過對廣東大蕉的形態、染色體配對及核型分析,認為是BBB型;也有研究人員通過形態學指標觀察、測量,按照“Simmonds”標準分類法評分,結合染色體計數,判定三江大蕉基因型為AAB[35];筆者研究組按照“Simmonds”標準分類法對香蕉品種資源表型基因型進行調查和評價,大部分大蕉的得分介于AAB與ABB之間,偏向AAB,利用流式細胞技術對香蕉倍性分析結果顯示大蕉DNA相對含量(或倍性值)與其他ABB基因型資源有一定差異,基因組更大一些[36]。筆者在本研究中通過分析發現該來源于線粒體的大蕉分子靶標在栽培種香蕉資源中只有大蕉出現特異性條帶,在野生種香蕉資源中僅有阿寬蕉類野蕉出現了該特異性條帶,同時以大蕉為母本、阿寬蕉為父本獲得的雜交種也出現了該特異性條帶,而香蕉具有線粒體父本遺傳的獨特遺傳方式[37],因此推測阿寬蕉類野蕉與大蕉的父本來源存在一定的關系。
4 結 論
栽培蕉遺傳背景狹窄,病蟲害高發,亟須引入新的遺傳基因,雜交育種是根本、有效的途徑。目前國內育種者開始嘗試香蕉雜交育種,從大量的雜交后代中篩選優良種質,工作量大、周期長,精確高效的早期篩選技術對雜交種的鑒定和篩選十分重要,目前這方面的研究還比較少,筆者在本研究中成功開發了一個大蕉特異性分子靶標(DcR/DcF),可以在栽培蕉中特異性地鑒定大蕉,并具有快速、簡便、準確的特點,該特異性分子靶標為具有多種優異性狀的大蕉類資源的應用提供了技術支撐,該類技術的開發在香蕉改良工程中具有重要的意義。
參考文獻 References:
[1] MAYMON M,SELA N,SHPATZ U,GALPAZ N,FREEMAN S. The origin and current situation of Fusarium oxysporum f. sp. cubense tropical race 4 in Israel and the Middle East[J]. Scientific Reports,2020,10(1):1590.
[2] 黃媛媛,徐小俊. 全球香蕉產業現狀與發展趨勢[J]. 熱帶農業工程,2021,45(5):34-38.
HUANG Yuanyuan,XU Xiaojun. Current situation and development trend of banana industry in global[J]. Tropical Agricultural Engineering,2021,45(5):34-38.
[3] SIMMONDS N W. The evolution of the bananas[M]. London:Longmans,1962:1-16.
[4] 牟海飛,林貴美,鄒瑜,李小泉,李朝生,韋華芳,吳代東,張進忠,王趣有,潘永杰,陳忠良. 利用 ISSR 分子標記分析香蕉品種的遺傳多樣性[J]. 西南農業學報,2010,23(4):1206-1210.
MOU Haifei,LIN Guimei,ZOU Yu,LI Xiaoquan,LI Chaosheng,WEI Huafang,WU Daidong,ZHANG Jinzhong,WANG Quyou,PAN Yongjie,CHEN Zhongliang. Genetic diversity analysis of banana (Musa spp.) based on ISSR molecular marker[J]. Southwest China Journal of Agricultural Sciences,2010,23(4):1206-1210.
[5] 郭計華. 不同基因組類型香蕉抗旱的遺傳物質分析[D]. ??冢汉D洗髮W,2012.
GUO Jihua. Genetic material analysis of drought resistance different genotypes banana[D]. Haikou:Hainan University,2012.
[6] 姚錦愛,蔡鴻嬌,石妞妞,甘林,楊秀娟,陳福如. 香蕉種質資源親緣關系的ISSR分析[J]. 福建農業學報,2012,27(1):37-42.
Yao Jinai,CAI Hongjiao,SHI Niuniu,GAN Lin,YANG Xiujuan,CHEN Furu. Genetic Relationship among Banana (Musa spp.) germplasms revealed by iSSR analysis[J]. Fujian Journal of Agricultural Sciences,2012,27(1):37-42.
[7] SIMMONDS N W,SHEPHERD K. The taxonomy and origins of the cultivated bananas[J]. Botanical Journal of the Linnean Society,1955,55(359):302-312.
[8] PILLAY M,OGUNDIWIN E,NWAKANMA D C,UDE G,TENKOUANO A. Analysis of genetic diversity and relationships in East African banana germplasm[J]. Theoretical and Applied Genetics,2001,102(6):965-970.
[9] SHEPHERD K,FERREIRA F R. The Papua New Guinea biological foundations banana collection at Laloki,Port Moresby,Papua New Guinea[J]. IBPGR/SEAN Newsletter,1982,8(4):28-34.
[10] DHONT A,PAGET-GOY A,ESCOUTE J,CARREEL F. The interspecific genome structure of cultivated banana,Musa spp. revealed by genomic DNA in situ hybridization[J]. Theoretical and Applied Genetics,2000,100(2):177-183.
[11] 李錫文. 云南芭蕉科植物[J]. 植物分類學報,1978,16(3):54-64.
Li Xiwen. Musaceae from Yunnan[J]. Acta Phytotaxonomica Sinica,1978,16(3):54-64.
[12] 寧淑萍,許林兵,魏平,葛學軍. 中國主栽香蕉品種和INIBAP引進品種的SSR分析研究[J]. 熱帶亞熱帶植物學報,2007,15(1):16-22.
NING Shuping,XU Linbing,WEI Ping,GE Xuejun. Genetic diversity of Chinese main banana cultivars (Musa spp.) and introduced accessions from INIBAP using simple sequence repeats(SSRs)[J]. Journal of Tropical and Subtropical Botany,2007,15(1):16-22.
[13] 孫嘉曼,尹玲,張進忠,韋紹龍,李朝生,劉金成,盧江. 廣西香蕉種質資源的SSR分析[J]. 西南農業學報,2016,29(8):1952-1957.
SUN Jiaman,YIN Ling,ZHANG Jinzhong,WEI Shaolong,LI Chaosheng,LIU Jincheng,LU Jiang. SSR analysis of banana cultivars/accessions in Guangxi[J]. Southwest China Journal of Agricultural Sciences,2016,29(8):1952-1957.
[14] 譚衛萍,張秋明,于曉英,曾繼吾,黃秉智,易干軍. 香蕉種質遺傳多樣性與親緣關系的AFLP分析[J]. 植物遺傳資源學報,2010,11(6):715-720.
TAN Weiping,ZHANG Qiuming,YU Xiaoying,ZENG Jiwu,HUANG Bingzhi,YI Ganjun. Studies on the genetic diversity and relationship of banana by AFLP[J]. Journal of Plant Genetic Resources,2010,11(6):715-720.
[15] 藺維成,郭計華. ISSR技術應用于香蕉種質資源的研究進展[J]. 興義民族師范學院學報,2021(3):116-119.
LIN Weicheng,GUO Jihua. Research progress of ISSR technology applied to banana germplasm resources[J]. Journal of Xingyi Normal University for Nationalities,2021(3):116-119.
[16] 漆艷香,張欣,彭軍,張賀,謝藝賢. 香蕉種質資源的SRAP遺傳多樣性分析[J]. 分子植物育種,2017,15(10):4220-4227.
QI Yanxiang,ZHANG Xin,PENG Jun,ZHANG He,XIE Yixian. Genetic diversity analysis of banana germplasms based on SRAP molecular markers[J]. Molecular Plant Breeding,2017,15(10):4220-4227.
[17] 李歡,張文洋,田志強,張震,葉文超,周子鍵,陳甲法,吳建宇. 高通量分子標記檢測方法的研究進展[J],玉米科學,2022,30(3):1-9.
LI Huan,ZHANG Wenyang,TIAN Zhiqiang,ZHANG Zhen,YE Wenchao,ZHOU Zijian,CHEN Jiafa,WU Jianyu. Research progress of high-throughput molecular marker detection methods[J]. Journal of Maize Sciences,2022,30(3):1-9.
[18] 李英豪. 福建香蕉種質資源遺傳多樣性的RAPD分析[D]. 福州:福建農林大學,2007.
LI Yinghao. RAPD analysis of genetic diversity in Fujian banana germplasm resources[D]. Fuzhou:Fujian Agriculture and Forestry University,2007.
[19] DUMINIL J,PEMONGE M H,PETIT R J. A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA[J]. Molecular Ecology Notes,2002,2(4):428-430.
[20] 吳斌,陳漢清,王必尊,曾會才,謝藝賢,黃秉智. 19個華蕉類栽培品種的SCAR標記鑒別[J]. 分子植物育種,2015,13(5):1053-1059.
WU Bin,CHEN Hanqing,WANG Bizun,ZENG Huicai,XIE Yixian,HUANG Bingzhi. Identifying 19 cultivars of Musa acuminata subgroup cavendish (AAA) by using SCAR molecular markers[J]. Molecular Plant Breeding,2015,13(5):1053-1059.
[21] 王芳,牛玉清,黃秉智,崔廣娟,張珂恒,曾莉莎,劉文清,呂順,郭權香,何建齊. 香蕉與B基因組相關的SCAR標記研究[J]. 園藝學報,2019,46(3):577-589.
WANG Fang,NIU Yuqing,HUANG Bingzhi,CUI Guangjuan,ZHANG Keheng,ZENG Lisha,LIU Wenqing,L? Shun,GUO Quanxiang,HE Jianqi. Studies on SCAR marker related with B genome in Musa[J]. Acta Horticulturae Sinica,2019,46(3):577-589.
[22] BORBORAH K,SAIKIA D,REHMAN M,ISLAM M A,MAHANTA S,CHUTIA J,BORTHAKUR S K,TANTI B. Comparative analysis of genetic diversity in some non-commercial cultivars of Musa L. from Assam,India,using morphometric and ISSR markers[J]. International Journal of Fruit Science,2020,20(Suppl. 2):1814-1828.
[23] 況夢宇,詹妮,范迎康,易干軍,羅充,盛鷗. 香蕉栽培品種基因組類型的分子標記鑒定體系建立[J]. 分子植物育種,2022,20(9):3011-3018.
KUANG Mengyu,ZHAN Ni,FAN Yingkang,YI Ganjun,LUO Chong,SHENG Ou. Establishment of an integrated molecular marker system for identifying genomic composition of banana accessions[J]. Molecular Plant Breeding,2022,20(9):3011-3018.
[24] 許林兵,黃秉智,楊護. 香蕉品種與栽培彩色圖說[M]. 北京:中國農業出版社,2008:28-29.
XU Linbing,HUANG Bingzhi,YANG Hu. Color illustration of banana varieties and cultivation [M]. Beijing:China Agriculture Press,2008:28-29.
[25] 陳才林. 烏干達農產品降價[J]. 世界熱帶農業信息,2002(9):22.
CHEN Cailin. Uganda cuts prices for agricultural products [J]. World Tropical Agriculture Information,2002(9):22.
[26] 黃秉智,許林兵,楊護,唐小浪,魏岳榮,邱繼水,李貫球. 香蕉種質資源枯萎病抗性田間評價初報[J]. 廣東農業科學,2005,(6) :9-10.
HUANG Bingzhi,XU Linbing,YANG Hu,TANG Xiaolang,WEI Yuerong,QIU Jishui,LI Guanqiu. Prelimiary results of field evaluation of banana germplasm resistant to Fusarium wilt disease[J]. Guangdong Agricultural Science,2005,2(6):9-10.
[27] 劉文清,余銘,李洪波,呂順,周建坤,向欣葉,劉建平,何建齊. 與東莞大蕉加工適宜性相關的農藝性狀研究[J]. 廣東農業科學,2012,39(14):29-31.
LIU Wenqing,YU Ming,LI Hongbo,L? Shun,ZHOU Jiankun,XIANG Xinye,LIU Jianping,HE Jianqi. Study of the procession-associated agronomic characteristics of Musa sapientum Linn. (Dongguan)[J]. Guangdong Agricultural Sciences,2012,39(14):29-31.
[28] 劉凱,胡春華,杜發秀,張玉娥,魏岳榮,易干軍. 東莞大蕉超表達擬南芥CBF1基因及其抗寒性檢測[J]. 中國農業科學,2012,45(8):1653-1660.
LIU Kai,HU Chunhua,DU Faxiu,ZHANG Yue,WEI Yuerong,YI Ganjun. Over-expression of the Arabidopsis CBF1 gene in Dongguandajiao (Musa spp. ABB group) and detection of its cold resistance[J]. Scientia Agricultura Sinica,2012,45(8):1653-1660.
[29] 吳爍凡,何維弟,李春雨,董濤,畢方鋮,盛鷗,鄧貴明,胡春華,竇同心,高慧君,劉思文,易干軍,姚振,楊喬松. 香蕉抗寒分子機制研究進展[J]. 果樹學報,2022,39(3):483-494.
WU Shuofan,HE Weidi,LI Chunyu,DONG Tao,BI Fangcheng,SHENG Ou,DENG Guiming,HU Chunhua,DOU Tongxin,GAO Huijun,LIU Siwen,YI Ganjun,YAO Zhen,YANG Qiaosong. Research progress in molecular mechanism of cold resistance in banana[J]. Journal of Fruit Science,2022,39(3):483-494.
[30] RABOIN L M,CARREEL F,NOYER J L,BAURENS F C,HORRY J P,BAKRY F,DU MONTCEL H T,GANRY J,LANAUD C,LAGODA P J L. Diploid ancestors of triploid export banana cultivars:molecular identification of 2n restitution gamete donors and n gamete donors[J]. Molecular Breeding,2005,16(4):333-341.
[31] PILLAY M,TRIPATHI L. Banana breeding[M]. Boston:Blackwell,2007:393-428.
[32] PILLAY M,TENKOUANO A. Banana breeding:Progress and challenges[M]. Boca Raton:CRC Press,2011:21-39.
[33] 李偉明,胡會剛,胡玉林,段雅婕,陳晶晶,謝江輝,王文華. 3個野生近緣種與不同栽培蕉的雜交親和性[J]. 熱帶作物學報,2021,42(12):3500-3507.
LI Weiming,HU Huigang,HU Yulin,DUAN Yajie,CHEN Jingjing,XIE Jianghui,WANG Wenhua. Cross-compatibility among three wild banana species and various cultivars[J]. Chinese Journal of Tropical Crops,2021,42(12):3500-3507.
[34] 王正詢,駱慧明,吳淑淳,潘坤清. 廣東大蕉分類位置的探討[J]. 熱帶亞熱帶植物學報,1995,3(1):49-53.
WANG Zhengxun,LUO Huiming,WU Shuchun,PAN Kunqing. The taxonomic position of Guangdong plantain[J]. Journal of Tropical and Subtropical Botany,1995,3(1):49-53.
[35] 孫長君,程志號,孫佩光,吳瓊. ‘三江大蕉植物學性狀觀察及分類學地位[J]. 中國熱帶農業,2018(2):35-38.
SUN Changjun,CHENG Zhihao,SUN Peiguang,WU Qiong. Botanical characters and taxonomic status of ‘Sanjiang Dajiao[J]. China Tropical Agriculture,2018(2):35-38.
[36] 呂順,任毅,王芳,胡桂兵,黃秉智,劉文清,何建齊,劉建平,曾莉莎,周建坤,麥景郁,張珂恒. 利用流式細胞術快速鑒定 169 份香蕉種質資源的染色體倍性[J]. 果樹學報,2018,35(6):668-684.
L? Shun,REN Yi,WANG Fang,HU Guibing,HUANG Bingzhi,LIU Wenqing,HE Jianqi,LIU Jianping,ZENG Lisha,ZHOU Jiankun,MAI Jingyu,ZHANG Keheng. Ploidy identification of 169 Musa germplasms by flow cytometry[J]. Journal of Fruit Science,2018,35(6):668-684.
[37] FAUR? S,NOYER J L,CARREEL F,HORRY J P,BAKRY F,LANAUD C. Maternal inheritance of chloroplast genome and paternal inheritance of mitochondrial genome in bananas (Musa acuminata)[J]. Current Genetics,1994,25(3):265-269.