999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

鷹嘴桃果實組織海綿化病害相關基因差異表達分析

2023-12-29 09:51:00盧錦明林心悅廖永林
果樹學報 2023年12期

盧錦明 林心悅 廖永林

摘? ? 要:【目的】明確鷹嘴桃果實組織海綿化的分子機制?!痉椒ā繉椬焯也『>d組織、非病害組織和健康果實組織進行轉錄組測序?!窘Y果】在病害果海綿組織vs健康果實組織、非病害組織vs健康果實組織、病害果海綿組織vs非病害組織的轉錄組比較中,分別鑒定到4557、4446、672個差異表達基因。病害果海綿組織與健康果的差異表達基因主要富集在新陳代謝、碳水化合物代謝、能量代謝、光合作用等通路。與健康果或病害果非病變組織相比,鑒定出12個與細胞壁代謝相關的差異表達基因(PG-At1g48100、PG-QRT3、PG、6個XET2、BXL7、2個EXP-A4)在鷹嘴桃病害果海綿組織表達上調;此外,3個鈣轉運基因(ACA13)和2個鈣傳感器基因(CaM11、CML18)在鷹嘴桃病害果海綿組織表達上調。其他鈣傳感器相關基因的表達水平在病害果中出現不同程度的上調和下調。【結論】鑒定出12個與細胞壁代謝、3個與鈣轉運和23個與鈣傳感器相關的差異表達基因,推測鈣代謝以及細胞壁代謝異常在果實組織海綿化過程中發揮關鍵作用。

關鍵詞:鷹嘴桃;海綿組織;生理性病害;轉錄組;基因分析

中圖分類號:S662.1 文獻標志碼:A 文章編號:1009-9980(2023)12-2524-12

收稿日期:2023-08-10 接受日期:2023-11-03

基金項目:連平縣鷹嘴蜜桃產業園專家工作站(2021工作站09);2021年廣東省農村科技特派員駐鎮幫鎮扶村項目(KTP20210015)

作者簡介:盧錦明,男,博士,研究方向為生物入侵。E-mail:67698321@qq.com

*通信作者 Author for correspondence. E-mail:liaoyonglin@gdppri.com

Transcriptome sequencing analysis of differentially-expressed genes involved in the spongy tissue of Olecranon peach (Prunus persica L.)

LU Jinming1, 2, LIN Xinyue3, LIAO Yonglin1*

(1Institute of Plant Protection, Guangdong Academy of Agricultural Sciences/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory High Technology for Plant Protection, Guangzhou 510640, Guangdong, China; 2College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China; 3Guangdong Yueke Plant Protection Agricultural Technology Co., Ltd, Guangzhou 510640, Guangdong, China)

Abstract: 【Objective】Spongy tissue is a serious physiological disorder in Olecranon peach (Prunus persica L.). The symptom occurs about 10 days before fruit ripening, and the pulp becomes spongy in texture and brown in colour, causing significant economic losses in peach production. However, little has been known about the underlying mechanism causing spongy tissue up to now. Here, the comparative transcriptomics was used to explore the molecular mechanism of spongy tissue formation. 【Methods】 Samples from spongy tissue (BGHM) and non-spongy tissue (BGFB) in unhealthy flesh, and tissue in healthy fruit flesh (JKG) of Olecranon peach were collected and used for total RNA extraction. The high-throughput sequencing (HTS) data of transcriptome was generated with HiSeq 6000 platform. The published genome of P. persica (GenBank accession: GCF_000346465.2) was used as a reference. The HTS reads were mapped to the reference genome and the expression level of each transcript was determined by calculating transcript per million (TPM) with FADU. Differentially-expressed genes (DEGs) were identified using DESeq with the screening criteria of p<0.01 and |log2FC|>1.0. For functional analyses, GO and KEGG enrichment analyses were performed to investigate the major pathways of DEGs. 【Results】 Clean reads per sample generated by RNA-seq ranged from 18.4 to 30.5 million reads, and the mapping rate ranged from 95.08% to 95.67%. A total of 4557 DEGs were identified between spongy tissue and healthy fruit flesh (BGHM vs JKG), 2410 genes were up-regulated and 2127 genes were down-regulated. 672 DEGs were identified between spongy tissue and non-spongy tissue (BGHM vs BGFB), including 539 up-regulated genes and 133 down-regulated genes. 4446 DEGs were identified between non-spongy tissue and healthy fruit flesh (BGFB vs JKG), with 2121 up-regulated and 2323 down-regulated genes. The GO terms enriched for DEGs of BGHM vs JKG were 190. In molecular function, ion binding, oxidoreductase activity, and inorganic molecular entity transmembrane transporter activity were significantly enriched. In biological process, the responses to stimulus, chemicals and organic substance were significantly enriched. In cellular component, cytoplasm, obsolete cytoplasmic part and membrane were significantly enriched. The 4557 DEGs were significantly enriched in the 11 pathways through the KEGG analysis. Most of the DEGs were significantly enriched in metabolism, carbohydrate metabolism, and energy metabolism. In the comparison between spongy tissue and non-spongy tissue (BGHM vs BGFB), 21 GO terms were enriched from 672 DEGs. The top three GO terms of molecular function were glycosyltransferase activity, hexosyltransferase activity and glucosyltransferase activity. In biological process, most of the DEGs were classified into the response to stimulus, organic substance and oxygen-containing compound. In cellular component, the DEGs were mainly annotated into cell periphery, endoplasmic reticulum and external encapsulating structure. The KEGG results revealed that most of the DEGs were significantly enriched in metabolism, biosynthesis of other secondary metabolites and phenylpropanoid biosynthesis. In this study, 33 DEGs related to cell wall metabolism were identified in BGHM vs JKG, of which 25 genes were up-regulated and 8 genes were down-regulated. 17 DEGs related to cell wall metabolism were found in BGHM vs BGFB, with 17 genes up-regulated and 1 gene down-regulated. These genes included polygalacturonase, pectin methylesterase, β-galactosidase, xyloglucan endotransglucosylase, β-D-xylosidase and expansin. Among them, 12 DEGs (PG-At1g48100, PG-QRT3, PG, 6 XET2, BXL7 and 2 EXP-A4) were found at a higher expression level in BGHM than BGFB or JKM. Furthermore, the expression level of genes associated with calcium transport showed that 5 DEGs were up-regulated in BGHM vs JKG, including calcium-transporting ATPase 1, 3 calcium-transporting ATPase 13 and cation/calcium exchanger 5 and 6 DEGs were down-regulated including 5 calcium-transporting ATPase and cation/calcium exchanger 2. Only 3 up-regulated DEGs were found in BGHM vs BGFB, and they belonged to calcium-transporting ATPase 13. In the transcriptome, genes involved in calcium sensors were detected in the DEGs: Calcineurin-B-like protein, Calmodulin protein and Calmodulin-like protein. Among them, 15 up-regulated and 13 down-regulated DEGs were found in BGHM vs JKG, while 13 up-regulated and 13 down-regulated DEGs were detected in BGHM vs BGFB. 【Conclusion】In the present study, our data provided the most comprehensive transcriptomic resource of spongy tissue and non-spongy tissue in unhealthy flesh, and tissue in healthy fruit flesh of Olecranon peach. A set of DEGs were identified through comparative transcriptome analyses, which were potentially involved in the metabolism, carbohydrate metabolism and energy metabolism process. Furthermore, 12 genes associated with cell wall modifying enzymes were found up-regulated in the spongy tissue and the expression level of 3 genes associated with calcium transport and 23 genes associated with calcium sensor increased or decreased in the spongy tissue. It is speculated that the calcium metabolism disorder caused by the up-regulation and down-regulation of calcium transport and calcium sensor genes might result in the reduction of the stress resistance in Olecranon peach. The calcium metabolism disorder and accelerated degradation of the cell wall would lead to the occurrence of spongy tissue. The results provide a reference for the molecular mechanism of spongy tissue of Olecranon peach from the transcriptional level.

Key words: Olecranon peach; Spongy tissue; Physiological disorder; Transcriptome; Gene analysis

鷹嘴桃又名鷹嘴蜜桃,是薔薇科(Rosaceae)李屬(Prunus)桃(Prunus persica L.)下的一個品種。連平鷹嘴桃是廣東省河源市連平縣特產,該縣鷹嘴桃于2015年被評為中國國家地理標志產品[1]。經過30多年的發展,當地相關種植技術已形成一套較成熟的體系。然而,近年來不少果園常常受到果肉組織海綿化病害的危害。據筆者前期研究發現,這是發生危害較重的一種生理性病害,果實成熟前10 d左右開始出現病害,病變果肉顏色變褐,呈海綿狀,表皮甚至出現開裂癥狀[2]。果實海綿組織病害不僅降低了鷹嘴桃的營養價值,而且外部難以鑒別病害癥狀,導致果實分級困難,嚴重影響鷹嘴桃食用價值和商品價值。盡管對鷹嘴桃海綿果實組織病害的認識已經取得一些進展,但是鷹嘴桃海綿果實組織病害的發生原因及機制尚不明確。曾有調查者發現鷹嘴桃海綿組織病害的發生與太陽直射存在相關性,陽面果的發病率明顯高于陰面果[2]。

細胞壁的分解、修飾等代謝作用會影響果肉的力學性能,有研究者發現果實發生海綿組織、裂果均與細胞壁代謝有關[3-6]。細胞壁代謝主要由植物細胞降解酶參與進行,包括多聚半乳糖醛酸酶(polygalacturonase,PG)、果膠甲基酯酶(pectin methylesterase,PME)、β-半乳糖苷酶(β-galactosidase,β-Gal)、木聚糖內切糖苷酶(xyloglucan endotransglucosylase,XET)、β-D-木糖苷酶(β-D-xylosidase,BXL)和膨脹素(expansin,EXP)[7]。先前研究報道杧果海綿組織中PG、PME的表達水平顯著上調,PG和PME的過表達導致果膠降解,從而減少細胞黏附,可能是杧果海綿組織發生的主要原因之一[3-4]。另外,有研究者發現多果實開裂與PG、PME、β-Gal、BXL、XET、EXP等細胞壁代謝酶的過量表達密切相關[5-6,8-9]。

此外,許多研究者發現果肉分解常常是一種或多種礦物質營養缺乏導致的,其中,缺鈣是導致水果生理障礙相關的最常見因素之一[10]。鈣是植物生長發育過程中的重要營養元素,在構建細胞壁、保持細胞膜完整性、信號轉導和維持細胞離子平衡等過程中發揮關鍵作用[11]。果樹缺鈣能引起水心、苦果或內部崩潰等癥狀[4,12-14],其中,缺鈣便是引發杧果海綿化的關鍵因素[4,15]。植物體內鈣離子含量主要受鈣離子運轉蛋白和鈣傳感器調控[16]。植物調節鈣離子跨膜運轉的基因包括鈣運轉ATP酶(calcium-transporting ATPase,ACA)、鈣通道(calcium channel,TPC)、鈣離子/陽離子交換蛋白(cation/calcium exchanger,CAX)和植物V型ATP酶(V-type ATPase,AVP)基因[17]。另外,鈣離子傳感器主要分為4類,包括鈣調蛋白(calmodulin protein,CaM)、類鈣調蛋白(calmodulin-like protein,CML)、類鈣調磷酸酶B蛋白(calcineurin-B-like protein,CBL)和鈣依賴蛋白激酶(calmodulin-dependent protein kinase,CDPK)基因[16]。鈣離子運轉蛋白和鈣傳感器對維持植物的正常生長發育有重要作用[17],鈣離子運轉蛋白和鈣傳感器表達異常會導致鈣離子代謝紊亂,誘發植物生理病害[14,18]。Ma等[4]研究發現鈣運轉ATP酶、鈣離子/陽離子交換蛋白促進鈣離子流向液泡,從而破壞細胞鈣離子穩態,是杧果海綿組織發生的重要原因。

隨著高通量測序技術的發展,轉錄組測序已成為探討果樹病害致病機制的有效途徑[4,14,19]。轉錄組是指特定細胞或組織在某一階段轉錄出的所有信使RNA(mRNA)的總和,能夠揭示特定生物學過程中的分子機制。筆者在本研究中擬對鷹嘴桃海綿果實組織、非病害組織和健康果實組織進行轉錄組測序,比較分析差異表達基因,為進一步了解鷹嘴桃果肉海綿組織發生的分子機制以及采取相應的防治措施提供參考。

1 材料和方法

1.1 試驗材料

2021年7月16日在廣東省河源市連平縣內,選取樹齡相同的鷹嘴蜜桃樹,分別采摘已成熟健康果實和發病果實,帶回室內去皮后分別取健康果實組織(JKG)、病害果海綿組織(BGHM)和病害果非病變組織(BGFB),每種處理取3組重復(圖1)。

1.2 鷹嘴桃果實總RNA提取

將鷹嘴桃樣本加液氮進行研磨,采用Trizol法提取總RNA[20]。利用1.5%瓊脂糖凝膠電泳以及超微量分光光度計分別檢測總RNA的完整性、質量與濃度。測序文庫的構建以及轉錄組測序委托北京貝瑞和康生物技術有限公司完成。利用HiSeq 6000測序儀以配對末端模式(PE150)對構建的文庫進行測序。

1.3 轉錄組數據分析

使用FastQC v0.12.1(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)對下機原始數據進行評估,且使用Trimmomatic v0.39[21]去除接頭,以及對低質量序列(序列質量值低于25或序列長度小于50 bp)進行過濾。使用Hisat2 v2.2.1[22]將過濾后的序列與桃參考基因組(GenBank登錄號:GCF_000346465.2)進行比對。利用FADU v1.8.3[23]對鷹嘴桃轉錄本進行定量,計算TPM(Transcript per million),使用DESeq v1.34.0[24]進行差異基因表達分析,差異表達基因(differentially expressed genes,DEG)的篩選條件為p<0.01以及|log2FC|>1.0。利用eggNOG-mapper v2.1.10[25]篩選到的差異基因進行GO功能注釋和KEGG通路注釋。使用TBtools v.1.112[26]進行GO功能富集分析和KEGG通路富集分析。

2 結果與分析

2.1 鷹嘴桃轉錄組數據比對

對下機數據進行過濾后,鷹嘴桃病害果海綿組織、病害果非病變組織和健康果實組織所獲得的轉錄組序列在18 425 897~30 543 093條之間。轉錄組序列與桃參考基因組進行比對,結果顯示比對率均在95%以上(表1)。

2.2 差異表達分析

根據差異倍數篩選,BGHM vs JKG共篩選到4537個基因差異表達顯著(圖2-A~B),其中2127個基因表達下調,2410個基因表達上調(圖2-C)。BGFB vs JKG共篩選到4446個基因差異表達顯著,其中2323個基因表達下調,2123個基因表達上調(圖2-D)。根據差異倍數篩選,BGHM vs BGFB共篩選到672個基因差異表達顯著,其中133個基因表達下調,539個基因表達上調(圖2-E)。

2.3 差異表達基因功能分析

經過GO功能分析,BGHM vs JKG差異表達基因注釋到35條分子功能術語、50條細胞組分術語以及105條生物過程的術語(圖3)。其中,差異表達基因執行的分子功能前3位是離子結合、氧化還原酶活性、無極分子實體跨膜轉運蛋白活性,所處細胞組分前3位是細胞質、陳舊的細胞質部分、膜,參與的生物學過程前3位是對刺激的應答、對化學物質的應答、對有機物的應答(圖3-A)。BGFB vs JKG差異表達基因注釋到34條分子功能術語、44條細胞組分術語以及161條生物過程的術語,其GO富集結果與BGHM vs JKG差異表達基因GO富集結果相似(圖3-B)。BGHM vs BGFB差異表達基因注釋到9條分子功能術語、4條細胞組分術語以及8條生物過程的術語。其中,差異表達基因執行的分子功能前3位是糖基轉移酶活性、已糖基轉移酶活性、葡糖轉移酶,所處細胞組分前3位是細胞外圍、內質網、外部封裝結構,參與的生物學過程前3位是對刺激的應答、對有機物的應答、對含氧化合物的應答(圖3-C)。

KEGG通路富集分析結果顯示,BGHM vs JKG差異表達基因共注釋到11條通路,其中主要富集在新陳代謝、碳水化合物代謝、能量代謝、光合作用相關通路(圖4-A)。BGFB vs JKG差異表達基因的KEGG通路富集結果與BGHM vs JKG差異表達基因KEGG通路相似(圖4-B)。BGHM vs BGFB差異表達基因注釋到9條通路,主要富集于新陳代謝、次生產物合成、次生產物代謝等通路(圖4-C)。

2.4 細胞壁代謝相關差異表達基因

本研究中,選擇了細胞壁代謝相關的PG、PME、β-Gal、XET、BXL和EXP基因。BGHM vs JKG中發現33個與細胞壁代謝相關的差異表達基因,其中8個基因下調,25個基因上調;BGHM vs BGFB中共鑒定出17個與細胞壁代謝相關的差異表達基因,其中1個基因下調,16個基因上調(圖5)。多聚半乳糖醛酸酶(XP_007217288、XP_007215246、XP_007213880)、β-D-木糖苷酶7(XP_007225247)、木聚糖內切糖苷酶2(XP_007215773、XP_007215791、XP_07215793、XP_007217276、XP_007217342、XP_020409478)、膨脹素A4(XP_007205762、XP_007218834)在BGHM中表達均高于JKG和BGFB。其中,4個木聚糖內切糖苷酶2基因(XP_007215773、XP_007215793、XP_007217276、XP_007217342)在BGHM vs JKG、BGFB vs JKG、BGHM vs BGFB中均顯著上調。

2.5 鈣離子運轉和鈣傳感相關差異表達基因

植物調節鈣離子跨膜運轉的基因包括鈣運轉ATP酶、鈣通道、鈣離子/陽離子交換蛋白、植物V型ATP酶基因。BGHM vs JKG中發現鈣離子運轉相關差異表達基因有11個,其中5個上調,6個下調;BGFB vs JKG中鈣離子中運轉相關差異表達基因有4個,皆為上調基因;BGHM vs BGFB中,鈣離子相關差異表達基因有3個,皆為上調基因(圖6)。這些差異表達基因主要是鈣運轉ATP酶與鈣離子/陽離子交換蛋白基因。3個質膜型鈣運轉ATP酶13基因(XP_007225391、XP_007225392、XP_007225393),在BGHM中表達均高于JKG和BGFB。其中XP_007225391在BGHM vs JKG、BGFB vs JKG、BGHM vs BGFB中均顯著上調。

鈣離子傳感器主要分為4類,包括鈣調蛋白、類鈣調蛋白、類鈣調磷酸酶B蛋白和鈣依賴蛋白激酶基因。轉錄組比較分析結果顯示,BGHM vs JKG鈣傳感相關差異表達基因有28個,其中15個基因上調,13個基因下調;BGFB vs JKG鈣傳感相關差異表達基因有26個,其中13個基因上調,13個基因下調;BGHM vs BGFB鈣傳感相關差異表達基因僅有6個(圖7)。這些差異表達基因包括鈣調蛋白、類鈣調蛋白和類鈣調磷酸酶B蛋白基因。筆者在本研究中發現鈣調蛋白11(XP_007200520)、鈣調蛋白18(XP_020419982)在BGHM中表達量顯著高于JKG、BGFB。其他鈣傳感器蛋白在BGHM和BGFB中出現不同程度的上調與下調:2個類鈣調磷酸B蛋白1、3個鈣調蛋白3、鈣調蛋白24、鈣調蛋白25、鈣調蛋白27、鈣調蛋白31、鈣調蛋白45、鈣調蛋白48基因在BGHM和BGFB均表現上調表達,而8個類鈣調磷酸B蛋白7、2個鈣調蛋白1、鈣調蛋白23、鈣調蛋白29在BGHM和BGFB中均表現下調表達。

3 討 論

果肉海綿組織的形成是一個復雜的過程,而該過程受到內部發育和外界環境因素共同影響。鷹嘴桃果肉海綿組織是發生危害較重的一種生理性病害,然而其發生機制尚不明確[2]。筆者在本研究中通過對病變鷹嘴桃病害組織、非病害組織,以及健康鷹嘴桃進行轉錄組測序和比較分析,初步探討了不同果實組織之間基因表達差異。

鷹嘴桃果實組織海綿化,甚至出現開裂,可能是細胞壁的降解、修飾影響果肉的機械性能所導致。細胞壁降解涉及一系列細胞壁修飾酶、水解酶的調控作用,包括PG、PME、β-Gal、XET和EXP[7]。筆者在本研究中通過比較轉錄組,發現多聚半乳糖醛酸酶At1g4810、多聚半乳糖醛酸酶QRT3、木聚糖內切糖苷酶2、β-D-木糖苷酶7、膨脹素A4在病害果海綿組織中的表達量高于健康果和病害果實非病變組織中的表達量。PG是植物細胞壁降解的關鍵酶,主要促進果膠的水解[27],譬如獼猴桃軟化過程中多聚半乳糖醛酸酶At1g48100呈上調表達[28]。此外,XET主要參與細胞壁降解和重塑的過程,水解木聚糖并重新連接至其他多糖[29-30]。研究表明木聚糖內切糖苷酶2、木聚糖內切糖苷酶5的高表達水平會導致果肉快速軟化[31-32]。BXL是細胞壁修飾酶,與XET功能類似,主要參與分解細胞壁中木聚糖和阿拉伯木聚糖殘基[33-34]。EXP是一種引起植物細胞壁松弛的蛋白,是細胞壁的關鍵調節劑[35],而膨脹素A4表達量上升被證實與木瓜軟化有關[36]。因此,筆者推測鷹嘴桃果實組織海綿化可能與PG、XET、β-Gal、BXT、EXP等一系列細胞壁水解酶基因的上調表達有關。

鈣是調節水果質量的重要礦物質元素,特別是維持水果的硬度,減少腐爛和生理紊亂的發生[16]。鈣代謝失衡是導致水果生理紊亂最常見因素之一,其中,杧果果實海綿組織便是缺鈣引起的[4]。植物體內的鈣離子主要存在于細胞壁,含量高,為60%~75%[37],鈣離子可以與細胞壁成分結合、交聯果膠殘基增強細胞壁結構和通過降低細胞壁降解酶對其底物的可及性來穩定細胞膜[38-39]。調控細胞內和細胞間鈣離子運轉分布,對植物細胞的生長和代謝至關重要,水果鈣代謝失衡可能是細胞水平上鈣離子的異常分布導致局部缺乏所引起的[4,40-41]。植物可以通過一系列的鈣離子跨膜蛋白酶以及鈣離子感受器來調節細胞內鈣離子含量,包括鈣運轉ATP酶、鈣通道、鈣離子/陽離子交換蛋白等鈣轉運跨膜蛋白,以及鈣調蛋白、類鈣調蛋白、類鈣調磷酸酶B蛋白和鈣依賴蛋白激酶等鈣離子傳感器[19,40,42]。鈣轉運ATP酶主要催化ATP水解,并且將鈣從胞質溶膠流出到液泡、內質網、質體和細胞外部分[43]。筆者在本研究中發現,與健康果以及病害果非病變組織相比,3個細胞質膜型鈣運轉ATP酶13基因在病害果海綿組織均表現上調表達。運轉ATP酶13主要表達于質膜上,上調時調控鈣離子流出,與植物缺鈣緊密相關[44]。此外,筆者在本研究中發現類鈣調磷酸酶B蛋白11、類鈣調蛋白18表達量在病害果海綿組織中顯著高于健康果和病害果非病變組織。其他類鈣調磷酸酶B蛋白、鈣調蛋白、類鈣調蛋白等鈣傳感器基因在病害果中出現不同程度的上調和下調。鈣調蛋白、類鈣調蛋白和類鈣調磷酸酶B蛋白是真核細胞中主要的鈣離子傳感器,將鈣離子信號轉化為轉錄反應、蛋白磷酸化和代謝變化等,在調節植物生長發育和非生物脅迫抗性方面發揮重要作用[45-47]。因此,筆者推測鈣運轉與鈣傳感器基因的上調或者下調致使鈣代謝紊亂,從而降低鷹嘴桃的抗逆性,最終導致果實組織海綿化的發生。

4 結 論

筆者在本研究中對鷹嘴桃病害果海綿組織、非病害組織和健康果實組織進行轉錄組測序,在病害果海綿組織與非病害組織,以及與健康果實組織的比較中,鑒定出12個與細胞壁代謝、3個鈣轉運和23個鈣傳感器相關的差異表達基因,推測鈣代謝以及細胞壁代謝異常在果實組織海綿化過程中發揮關鍵作用。

參考文獻 References:

[1] 質檢總局關于批準對西山焦棗等產品實施地理標志產品保護的公告(2015年第96號)[EB]. 2015-8-10 [2023-9-17]. http://cpgi.org.cn/?c=i&a=detail&cataid=3&id=973.

Announcement of the General Administration of Quality Supervision,Inspection and Quarantine on approving the protection of geographical indication products for Xishan jujube and other products (2015 No. 96). 2015-8-10 [2023-9-17]. http://cpgi.org.cn/?c=i&a=detail&cataid=3&id=973.

[2] 廖永林,王龍江,章玉蘋,黃少華,李傳瑛,劉偉玲. 鷹嘴蜜桃果肉海綿組織病害調查[J]. 安徽農業科學,2016,44(33):123-124.

LIAO Yonglin,WANG Longjiang,ZHANG Yuping,HUANG Shaohua,LI Chuanying,LIU Weiling. Investigation on disease condition of spongy tissue in Yingzui peach[J]. Journal of Anhui Agricultural Sciences,2016,44(33):123-124.

[3] OAK P,JHA V,DESHPANDE A,TANPURE R,DAWKAR V,MUNDHE S,GHUGE S,PRABHUDESAI S,KRISHANPAL A,JERE A,GIRI A,GUPTA V. Transcriptional and translational perturbation in abiotic stress induced physiological activities and metabolic pathway networks in spongy tissue disorder of mango fruit[J]. Postharvest Biology and Technology,2022,188:111880.

[4] MA X W,LIU B,ZHANG Y H,SU M Q,ZHENG B,WANG S B,WU H X. Unraveling correlations between calcium deficiency and spongy tissue in mango fruit flesh[J]. Scientia Horticulturae,2023,309:111694.

[5] WANG Y Y,GUO L H,ZHAO X Q,ZHAO Y J,HAO Z X,LUO H,YUAN Z H. Advances in mechanisms and omics pertaining to fruit cracking in horticultural plants[J]. Agronomy,2021,11(6):1045.

[6] YU J,ZHU M T,BAI M,XU Y S,FAN S G,YANG G S. Effect of calcium on relieving berry cracking in grape (Vitis vinifera L.) ‘Xiangfei[J]. PeerJ,2020,8:e9896.

[7] SHI Y N,LI B J,GRIERSON D,CHEN K S. Insights into cell wall changes during fruit softening from transgenic and naturally occurring mutants[J]. Plant Physiology,2023,192(3):1671-1683.

[8] CHEN J J,DUAN Y J,HU Y L,LI W M,SUN D Q,HU H G,XIE J H. Transcriptome analysis of atemoya pericarp elucidates the role of polysaccharide metabolism in fruit ripening and cracking after harvest[J]. BMC Plant Biology,2019,19(1):219.

[9] FAN J,DU W,YANG X P,ZHANG J G,CHEN Q L,HU H J. Changes in calcium content and expression of calcium sensor-related genes during sand pear (Pyrus prifolia) fruit cracking[J]. Scientia Horticulturae,2023,313:111911.

[10] DE BANG T C,HUSTED S,LAURSEN K H,PERSSON D P,SCHJOERRING J K. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants[J]. New Phytologist,2021,229(5):2446-2469.

[11] THOR K. Calcium-nutrient and messenger[J]. Frontiers in Plant Science,2019,10:440.

[12] GRIFFITH C,EINHORN T C. The effect of plant growth regulators on xylem differentiation,water and nutrient transport,and bitter pit susceptibility of apple[J]. Scientia Horticulturae,2023,310:111709.

[13] SINGH A,SHUKLA A K,MEGHWAL P R. Fruit cracking in pomegranate:Extent,cause,and management:A review[J]. International Journal of Fruit Science,2020,20(Suppl. 3):S1234-S1253.

[14] YAO Y L,LI M W,LIN W Q,LIU S H,WU Q S,FU Q,ZHU Z Y,GAO Y Y,ZHANG X M. Transcriptome analysis of watercore in pineapple[J]. Horticulturae,2022,8(12):1175.

[15] SHARMA R R,SINGH R. The fruit pitting disorder:A physiological anomaly in mango (Mangifera indica L.) due to deficiency of calcium and boron[J]. Scientia Horticulturae,2009,119(4):388-391.

[16] GAO Q Y,XIONG T T,LI X P,CHEN W X,ZHU X Y. Calcium and calcium sensors in fruit development and ripening[J]. Scientia Horticulturae,2019,253:412-421.

[17] DE FREITAS S T,JIANG C Z,MITCHAM E J. Mechanisms involved in calcium deficiency development in tomato fruit in response to gibberellins[J]. Journal of Plant Growth Regulation,2012,31(2):221-234.

[18] KURONUMA T,WATANABE H. Identification of the causative genes of calcium deficiency disorders in horticulture crops:A systematic review[J]. Agriculture,2021,11(10):906.

[19] 余賢美,王金政,薛曉敏,陳汝,聶佩顯,王貴平,韓雪平. 基于全轉錄組分析的蘋果苦痘病發生機制初步研究[J]. 植物病理學報,2020,50(4):405-419.

YU Xianmei,WANG Jinzheng,XUE Xiaomin,CHEN Ru,NIE Peixian,WANG Guiping,HAN Xueping. Preliminary studies on the mechanism of bitter pit in apple based on whole-transcriptomic sequencing analysis[J]. Acta Phytopathologica Sinica,2020,50(4):405-419.

[20] SIMMS D,CIZDZIEL P,CHOMCZY?SKI P. TRIzol:A new reagent for optimal single-step isolation of RNA[J]. Focus,1993,15(4):532-535.

[21] BOLGER A M,LOHSE M,USADEL B. Trimmomatic:A flexible trimmer for Illumina sequence data[J]. Bioinformatics,2014,30(15):2114-2120.

[22] KIM D,PAGGI J M,PARK C,BENNETT C,SALZBERG S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype[J]. Nature Biotechnology,2019,37(8):907-915.

[23] CHUNG M,ADKINS R S,MATTICK J S A,BRADWELL K R,SHETTY A C,SADZEWICZ L,TALLON L J,FRASER C M,RASKO D A,MAHURKAR A,DUNNING HOTOPP J C. FADU:A quantification tool for prokaryotic transcriptomic analyses[J]. mSystems,2021,6(1):e00917-e00920.

[24] LOVE M I,HUBER W,ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology,2014,15(12):550.

[25] CANTALAPIEDRA C P,HERN?NDEZ-PLAZA A,LETUNIC I,BORK P,HUERTA-CEPAS J. eggNOG-mapper v2:functional annotation,orthology assignments,and domain prediction at the metagenomic scale[J]. Molecular Biology and Evolution,2021,38(12):5825-5829.

[26] CHEN C J,CHEN H,ZHANG Y,THOMAS H R,FRANK M H,HE Y H,XIA R. TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.

[27] ZHAI Z F,FENG C,WANG Y Y,SUN Y T,PENG X,XIAO Y Q,ZHANG X,ZHOU X,JIAO J L,WANG W L,DU B Y,WANG C,LIU Y,LI T H. Genome-wide identification of the Xyloglucan endotransglucosylase/Hydrolase (XTH) and Polygalacturonase (PG) genes and characterization of their role in fruit softening of sweet cherry[J]. International Journal of Molecular Sciences,2021,22(22):12331.

[28] CHOI H R,BAEK M W,JEONG C S,TILAHUN S. Comparative transcriptome analysis of softening and ripening-related genes in kiwifruit cultivars treated with ethylene[J]. Current Issues in Molecular Biology,2022,44(6):2593-2613.

[29] STRATILOV? B,KOZMON S,STRATILOV? E,HRMOVA M. Plant xyloglucan xyloglucosyl transferases and the cell wall structure:Subtle but significant[J]. Molecules,2020,25(23):5619.

[30] LI X L,SU Q F,FENG Y C,GAO X H,WANG B C,TAHIR M M,YANG H J,ZHAO Z Y. Identification and analysis of the xyloglucan endotransferase/hydrolase (XTH) family genes in apple[J]. Scientia Horticulturae,2023,315:111990.

[31] WANG Y W,NAMBEESAN S U. Full-length fruit transcriptomes of southern highbush (Vaccinium sp.) and rabbiteye (V. virgatum Ait ) blueberry[J]. BMC Genomics,2022,23(1):733.

[32] SANTOS M,EGEA-CORTINES M,GON?ALVES B,MATOS M. Molecular mechanisms involved in fruit cracking:A review[J]. Frontiers in Plant Science,2023,14:1130857.

[33] 蘇菁,莊軍平,陳維信. 香蕉果實成熟軟化過程中β-D-木聚糖苷酶活性變化[J]. 西北植物學報,2007,27(7):1394-1398.

SU Jing,ZHUANG Junping,CHEN Weixin. β-D-xylosidase activity in banana (Musa spp.) fruits during ripening and softening[J]. Acta Botanica Boreali-Occidentalia Sinica,2007,27(7):1394-1398.

[34] CHEN Y H,XIE B,AN X H,MA R P,ZHAO D Y,CHENG C G,LI E M,ZHOU J T,KANG G D,ZHANG Y Z. Overexpression of the apple expansin-like gene MdEXLB1 accelerates the softening of fruit texture in tomato[J]. Journal of Integrative Agriculture,2022,21(12):3578-3588.

[35] ZHANG T,TANG H S,VAVYLONIS D,COSGROVE D J. Disentangling loosening from softening:Insights into primary cell wall structure[J]. The Plant Journal,2019,100(6):1101-1117.

[36] ZHU Q N,ZHANG K Y,CHEN W X,LI X P,ZHU X Y. Transcriptomic and metabolomic analyses reveal key factors regulating chilling stress-induced softening disorder in papaya fruit[J]. Postharvest Biology and Technology,2023,205:112534.

[37] AGHDAM M S,HASSANPOURAGHDAM M B,PALIYATH G,FARMANI B. The language of calcium in postharvest life of fruits,vegetables and flowers[J]. Scientia Horticulturae,2012,144:102-115.

[38] LU K S,YAN L,RIAZ M,BABAR S,HOU J Y,ZHANG Y L,JIANG C C. Exogenous boron alleviates salt stress in cotton by maintaining cell wall structure and ion homeostasis[J]. Plant Physiology and Biochemistry,2023,201:107858.

[39] HUANG W N,SHI Y N,YAN H,WANG H,WU D,GRIERSON D,CHEN K S. The calcium-mediated homogalacturonan pectin complexation in cell walls contributes the firmness increase in loquat fruit during postharvest storage[J]. Journal of Advanced Research,2023,49:47-62.

[40] LIU J,JIANG Z T,QI Y W,LIU Y F,DING Y D,TIAN X N,REN X L. MdCAX affects the development of the ‘Honeycrisp bitter pit by influencing abnormal Ca distribution[J]. Postharvest Biology and Technology,2021,171:111341.

[41] DE FREITAS S T,MCELRONE A J,SHACKEL K A,MITCHAM E J. Calcium partitioning and allocation and blossom-end rot development in tomato plants in response to whole-plant and fruit-specific abscisic acid treatments[J]. Journal of Experimental Botany,2014,65(1):235-247.

[42] TIAN W,WANG C,GAO Q F,LI L G,LUAN S. Calcium spikes,waves and oscillations in plant development and biotic interactions[J]. Nature Plants,2020,6(7):750-759.

[43] SEIFIKALHOR M,ALINIAEIFARD S,SHOMALI A,AZAD N,HASSANI B,LASTOCHKINA O,LI T. Calcium signaling and salt tolerance are diversely entwined in plants[J]. Plant Signaling & Behavior,2019,14(11):1665455.

[44] CHEN H,YANG Q,FU H W,CHEN K,ZHAO S S,ZHANG C,CAI T C,WANG L H,LU W Z,DANG H,GAO M J,LI H Q,YUAN X Y,VARSHNEY R K,ZHUANG W J. Identification of key gene networks and deciphering transcriptional regulators associated with peanut embryo abortion mediated by calcium deficiency[J]. Frontiers in Plant Science,2022,13:814015.

[45] KLEIST T J,SPENCLEY A L,LUAN S. Comparative phylogenomics of the CBL-CIPK calcium-decoding network in the moss Physcomitrella,Arabidopsis,and other green lineages[J]. Frontiers in Plant Science,2014,5:187.

[46] ZHU X Y,DUNAND C,SNEDDEN W,GALAUD J P. CaM and CML emergence in the green lineage[J]. Trends in Plant Science,2015,20(8):483-489.

[47] TANG M F,XU C,CAO H H,SHI Y,CHEN J,CHAI Y,LI Z G. Tomato calmodulin-like protein SlCML37 is a calcium (Ca2+) sensor that interacts with proteasome maturation factor SlUMP1 and plays a role in tomato fruit chilling stress tolerance[J]. Journal of Plant Physiology,2021,258/259:153373.

主站蜘蛛池模板: 午夜欧美在线| 国产乱子伦视频三区| 欧美三级不卡在线观看视频| 极品尤物av美乳在线观看| 日韩国产黄色网站| 婷婷在线网站| 久草中文网| 欧美日韩国产综合视频在线观看| 第一页亚洲| 无码高潮喷水在线观看| 大香网伊人久久综合网2020| 色亚洲激情综合精品无码视频| 免费久久一级欧美特大黄| 三级视频中文字幕| 精品久久久久久成人AV| 国产产在线精品亚洲aavv| 午夜性爽视频男人的天堂| 亚洲最大看欧美片网站地址| 在线观看精品国产入口| 婷婷色中文| 免费大黄网站在线观看| 欧美激情二区三区| 久久成人18免费| 精品人妻一区无码视频| 精品国产免费观看| 久久精品人人做人人综合试看| 伊人久久大香线蕉aⅴ色| 激情爆乳一区二区| 新SSS无码手机在线观看| 五月激情综合网| 人妻无码中文字幕第一区| 久久伊伊香蕉综合精品| 国产二级毛片| 亚洲人成电影在线播放| 日韩天堂视频| 中文国产成人久久精品小说| 午夜毛片免费观看视频 | 中文字幕欧美日韩高清| 2021精品国产自在现线看| 亚洲码一区二区三区| 欧美国产在线看| 亚洲va视频| 中文字幕亚洲专区第19页| 国产免费怡红院视频| 日韩福利在线视频| 她的性爱视频| 欧美a在线视频| 狠狠色成人综合首页| 精品国产香蕉伊思人在线| 亚洲开心婷婷中文字幕| 国产剧情一区二区| 无遮挡国产高潮视频免费观看| 福利一区在线| 国产特级毛片| 国产午夜在线观看视频| 国产主播喷水| 国产午夜精品一区二区三| 亚洲综合久久一本伊一区| 国产黑丝一区| 色婷婷电影网| 九九视频免费在线观看| 亚洲国产在一区二区三区| www.91在线播放| 一本大道香蕉久中文在线播放 | 国产视频你懂得| 国产 日韩 欧美 第二页| 久久国产精品夜色| 久久天天躁夜夜躁狠狠| 精品国产www| 国产91av在线| 久久亚洲中文字幕精品一区| 久久中文字幕2021精品| 香蕉在线视频网站| 国产网站黄| 亚洲国产天堂久久九九九| 中文字幕亚洲无线码一区女同| 国产精品香蕉| 青青极品在线| 久久人人97超碰人人澡爱香蕉| 亚洲成年网站在线观看| 精品人妻无码中字系列| 国产av剧情无码精品色午夜|