曠雨陽 王太榮 李興華



摘 ?要 ?通過尋求積分因子求解常微分方程解題過程中滲透的課程思政教學,說明事物的發展不見得都是那么完美,要經過一番努力使之變得完美,正如幸福是奮斗出來的。在尋求積分因子求解常微分方程過程貫穿思政思想,說明科研道路是艱難的,要學會迎難而上,刻苦鉆研,鍥而不舍,努力奮斗。
關鍵詞 ?積分因子;常微分方程;思政教學
中圖分類號:G641 ? ?文獻標識碼:B
文章編號:1671-489X(2023)04-0108-04
Research on Ideological and Political Tea-
ching in Process of Seeking Integral Factors
to Solve Differential Equations//KUANG Yuyang,
Wang Tairong, LI Xinghua
Abstract ?The process of solving ordinary differential
equations by seeking integral factors permeates the ideological and political teaching of the course, it
shows that the development of things is not necessa-rily so perfect. We should make some efforts to make
them perfect, just as happiness is fought out. In this
paper, the ideological and political thought runs through the process of seeking integral factors to solve ordinary differential equations, which shows
that the road to scientific research is difficult, and we should learn to face difficulties, study hard,
persevere and strive hard.
Key words integral factor; ordinary differential equation; ideological and political teaching
Authors address ?College of Mathematical and Physi-
cal Sciences, Anshun University, Anshun, Guizhou, China, 561000
0 ?引言
思政教學對未來卓越工程師的價值引領、能力培養和知識傳授具有重要作用,而教師教學評價是理工科課程思政教學體系中構成閉環的關鍵環節,也是當前理工科課程思政理論研究和實踐探索的薄弱環節[1]。常微分方程中融入課程思政是提高文化自信、強化德育目標、育人發展的根本要求,是全程育人、全方位育人的需要。常微分方程教學中要結合學科特點,巧妙融入思政元素,在知識傳授的同時完成價值引領,真正做到立德樹人,達到“潤物無聲”的育人效果[2]。
恰當微分方程可以通過積分求出它的通解。因此能否將一個非恰當微分方程化為恰當微分方程具有重要意義。積分因子就是為了解決這個問題而引進的概念。運用積分因子解題需要一定的技巧,尋求積分因子無一般方法[3-4],并常遇到很大的困難,但積分因子求解常微分方程在實際問題中應用很廣,人們對其進行過激烈的研究和討論[5-11]。
在講解尋求積分因子求解微分方程中滲透思政教學內容,說明事物發展并不是一帆風順的,需要多次嘗試失敗后,方可找出正確的解決方法。正所謂“山重水復疑無路,柳暗花明又一村”的情景,在解題中體現得淋漓盡致。
3 ?結論
綜合以上思政教學過程,可得出以下結論:
1)一個難題的解決常常需要創造新的方法,這會推動數學的發展,甚至方法的創新比解決難題本身更重要;
2)數學具有統一性,表面上看來不同的對象,有時蘊含著深刻的聯系,因此,學科之間的交叉是重要且值得重視的;
3)在獨立深入鉆研基礎上進行學術交流是至關重要的,這往往是創新思想的產生或解決難點的催產素,為此,創造良好的交流環境同樣十分重要。
4 ?參考文獻
[1] 孫躍東,曹海艷,袁馨怡.理工科課程思政教學評價指
標體系構建研究[J].江蘇大學學報(社會科學版),
2021,23(6):77-88,112.
[2] 湯宇.高等數學課程思政教學的思考[J].吉林工商學院
學報,2021,37(5):119-120.
[3] 曠雨陽.常微分方程:教程與解題策略[M].北京:經濟
管理出版社,2017.
[4] 王高雄,周之銘,等.常微分方程[M].3版.北京:高
等教育出版社,2006.
[5] 楊麗霞,張毅.時間尺度上Birkhoff系統的積分因子和
守恒量[J].云南大學學報(自然科學版),2020,42(2):
273-280.
[6] 楊麗霞,張毅.分數階Birkhoff系統的積分因子與守恒
量[J].華中師范大學學報(自然科學版),2020,54(1):
30-35.
[7] Hu Yanxia. On the first integrals of n-th order
autonomous systems[J].Journal of Mathematical
Analysis and Applications,2017,11(16).
[8] Asgari Z, Hosseini S M. Convergence of a method
based on the exponential integrator and Fourier
spectral discretization for stiff stochastic PDEs
[J].Mathematical Methods in the Applied Sciences,
2018,41(17):8294-8314.
[9] Tisdell C C. Alternate solution to generalized
Bernoulli equations via an integrating factor: an
exact differential equation approach[J].International
Journal of Mathematical Education in Science and
Technology,2016,48(6):913-918.
[10] Penenko V V, Tsvetova E A, Penenko A V. Variational
approach and Eulers integrating factors for
environmental studies[J].Computers and Mathematics
with Applications,2014,67(12):2240-2256.
[11] Mark McCartney. Extending the rubber rope: con-
vergent series, divergent series and the inte-
grating factor[J].International Journal of Mathe-
matical Education in Science and Technology,2013,
44(4):554-559.