999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

抗紫外與遠紅外石墨烯機織物的性能研究

2023-08-31 11:47:46史洋濤呂思晨張金珍范碩祝成炎張紅霞
絲綢 2023年8期
關鍵詞:模糊綜合評判

史洋濤 呂思晨 張金珍 范碩 祝成炎 張紅霞

摘要: 為了探討緯紗中石墨烯功能性紗線種類、含量及不同織物組織對石墨烯機織物的抗紫外線性能和遠紅外性能的影響,文章分別以石墨烯滌綸長絲、石墨烯腈綸短纖紗、普通滌綸長絲和黏膠短纖紗為原料,設計織造了4個系列具有不同織物規格的28種織物試樣。對所得28種織物試樣分別進行抗紫外線性能和遠紅外性能測試,并通過模糊綜合評判方法對試樣相關指標進行評判。結果表明:隨著緯紗中石墨烯功能性紗線含量的增加,織物的抗紫外線性能和遠紅外性能逐漸增強;織物組織越緊密,平均浮長越長,表面越光滑,織物的抗紫外線性能越強;織物表面越粗糙,厚度越厚,織物的遠紅外性能越好;當緯紗中石墨烯功能性紗線含量達到100%時,組織采用8枚緯緞或5枚緯緞的試樣抗紫外線和遠紅外綜合性能達到最優。

關鍵詞: 石墨烯機織物;抗紫外線;遠紅外;功能性紗線;織物組織;模糊綜合評判

中圖分類號: TS101.923 文獻標志碼: ?A

文章編號: 10017003(2023)080054-09

引用頁碼: 081107 DOI: 10.3969/j.issn.1001-7003.2023.08.007

隨著人們生活水平的日漸提高,對紡織品的需求不再局限于保暖,而是轉向具有生態環保、時尚美觀、舒適智能的抗紫外和遠紅外功能性高附加值紡織產品[1-2]。對于長期在戶外工作的人們,紫外線的輻射會對人體健康產生不可小覷的影響。紫外線會影響真皮組織中的膠原纖維和彈力纖維,極易造成皮膚損傷、老化,產生黑色素和色斑,甚至還會引發癌癥。對于遠紅外功能性紡織品而言,當戶外氣溫降低時,它能夠在遠紅外線的輻射下,促進人體血液循環、改善循環系統、增強新陳代謝、提高免疫功能。因此,研究和開發抗紫外線和遠紅外復合功能織物具有重要意義。

為了實現紡織品功能的多樣化,功能性整理技術成為開發功能性紡織品的有效方法之一[3]。近年來,石墨烯作為一種新型功能性材料,在保暖、抗菌、抗靜電、抗紫外線、遠紅外輻射溫升等方面具有優異的性能,不僅廣泛用于電池、傳感器、半導體材料、儲能和新型顯示等領域,而且在紡織產業中也擁有良好的發展前景[4]。研究表明:石墨烯有著較強的抗紫外線性能,可以吸收低于281 nm波長的紫外線,也能反射高于281 nm波長的紫外線[5-6],且石墨烯具有良好的遠紅外性能,在低溫情況下,石墨烯織物可通過吸收外界或人體輻射的遠紅外線,使自身溫度升高,解決局部皮膚冰涼的問題。其還能夠發射與人體相匹配的遠紅外線,滲入體內細胞,加快人體的新陳代謝,達到保暖和保健的目的[7]。

因此,本文選用石墨烯功能性紗線和普通滌綸長絲、黏膠短纖紗進行交織,試織了18種石墨烯功能性紗線含量不同的試樣和10種織物組織不同的試樣。通過改變織物中石墨烯功能性紗線含量、織物組織和原料,來研究其對石墨烯機織物的抗紫外線性能和遠紅外性能的影響。最后,通過模糊綜合評判的方法,開發出綜合性能最優的抗紫外線和遠紅外線復合功能石墨烯機織物。

1 實 驗

1.1 原 料

所使用的經紗為5.56 tex/24 f的滌綸長絲(中紡面料科技有限公司)。緯紗為16.67 tex/144 f的石墨烯滌綸長絲,石墨烯含量為1%的000000630000005360型紗線(濟南圣泉集團股份有限公司);20 tex的石墨烯腈綸短纖紗,石墨烯含量為1%的000000630000003721型紗線(濟南圣泉集團股份有限公司);20 tex的黏膠短纖紗(中紡面料科技有限公司)。

1.2 功能織物制備方法

所有試樣采用相同工藝進行織造,通過調整經緯紗種類、經緯密度、投緯比例及組織,最終織造得到28種試樣。其中9種是在組織均為5枚緯緞的情況下按照石墨烯滌綸長絲在緯紗中的含量從0~100%進行試織的,5種是在石墨烯滌綸長絲與普通滌綸長絲的投緯比例為1︰1時采用5種不同組織進行織造,9種是在組織均為5枚緯緞的情況下按照石墨烯腈綸短纖紗在緯紗中的含量從0~100%進行試織的,5種是在石墨烯腈綸短纖紗與黏膠短纖紗的投緯比例為1︰1時采用5種不同組織進行織造。具體規格參數如表1、表2所示,各織物的組織圖如圖1所示。

1.3 測 試

1.3.1 織物的抗紫外線性能測試

原理:用UV射線輻射試樣,收集總的光譜透射射線,測定出總的光譜透射比,并計算試樣的紫外線防護系數UPF值和紫外線輻射平均值T(UVA)AV。

儀器:UV-2000S紫外線透過率分析儀(Labsphere公司)。

步驟:1) 根據GB/T 18830—2009《紡織品防紫外線性能的測定》,將每種試樣放置在溫度為(20±2) ℃、相對濕度為(65±4)%的標準大氣環境下調濕平衡24 h。2) 開啟分析儀,進行預熱30 min,預熱完畢后將試樣平整地鋪在測試點處,點擊測試按鈕進行測試。在每種試樣的5個不同位置測試,記錄UPF值和T(UVA)AV的平均值。計算如下式所示:

2 結果與分析

本文主要研究石墨烯滌綸試樣和石墨烯腈綸試樣的抗紫外線性能和遠紅外性能,所以分別對滌綸試樣和腈綸試樣進行測試分析。

2.1 抗紫外線性能研究

通常紫外線照射在織物上時,會被織物表面反射一部分、吸收一部分,其余的紫外線從織物的縫隙中透過,照射到人體表面,對皮膚造成傷害??偠灾?,織物表面吸收和反射的紫外線越多,透過織物的紫外線越少,織物的抗紫外線性能越強。因此,抗紫外線織物要增強織物對紫外線的吸收和反射能力,就需要減少紫外線的透過率[8]。石墨烯滌綸試樣的抗紫外線性能如圖2、圖3所示。石墨烯腈綸試樣的抗紫外線性能如圖4、圖5所示。

由圖2可知,A系列試樣的抗紫外線性能隨著緯紗中石墨烯滌綸長絲含量的增加而增強。根據GB/T 18830—2009規定,防紫外線產品需要滿足UPF值大于40,且T(UVA)AV小于5%。當緯紗中石墨烯滌綸長絲含量不低于66.67%時,試樣達到“防紫外線產品”標準,即A6、A7、A8、A9試樣可稱之為“防紫外線產品”。當緯紗中石墨烯滌綸長絲含量達到100%時,試樣的抗紫外線性能最好,UPF值達到了1 433.56,T(UVA)AV為0.32%,這是因為石墨烯滌綸長絲有著優異的抗紫外線功能,增強了試樣的抗紫外線性能。此外,纖維的微觀結構對試樣的抗紫外線性能也有較大影響,石墨烯滌綸纖維為1.16 dtex,比普通滌綸纖維2.32 dtex更細,比表面積更大,試樣的抗紫外線性能越好[9]。

由圖3可知,B系列試樣的抗紫外線性能與織物組織有關。除B5試樣是“防紫外線產品”,其余試樣均不滿足國家標準。根據國標要求,試樣的UPF值越大,T(UVA)AV越小,試樣抗紫外線性能越好,抗紫外線性能最好的是8枚緯緞,其次是5枚緯緞,最差的是蜂巢組織。這是由于織物組織不同,織物的緊度、厚度、平方米質量和平均浮長不同,8枚緯緞試樣的浮長最長,緊度也最大,厚度較大,平方米質量也較大,故試樣的抗紫外線能力最強。蜂巢組織試樣的緊度、厚度和平方米質量也較強,但蜂巢組織試樣抗紫外線能力最弱的原因是織物組織不同,經緯紗交織狀況不同,其空間幾何形態也不同,蜂巢組織試樣經緯紗交織次數較多,其經緯紗屈曲相對較多,試樣表面光滑度最低,為80.90,對紫外線的反射能力最差,因此蜂巢組織試樣的抗紫外線性能最差[10]。

由圖4可知,C系列試樣的抗紫外線性能隨著緯紗中石墨烯腈綸短纖紗含量的增大而緩慢增強。但9塊試樣UPF值均未大于40,且只有C9試樣長波紫外線T(UVA)AV小于5%,故C系列均不屬于“防紫外線產品”。這是因為織物的經緯密度也是影響織物抗紫外線能力的重要因素[11]。C系列試樣的緯密比較小,覆蓋度較小,紫外線透過率較高,試樣的抗紫外線性能較差[12]。

由圖5可知,D系列試樣均不屬于“防紫外線產品”。隨著織物組織的變化,不同組織試樣的抗紫外線性能差異不大。8枚緯緞試樣的抗紫外線性能最好,UPF值為19.40,T(UVA)AV為7.73%。蜂巢組織試樣的抗紫外線性能最差,UPF值為17.02,T(UVA)AV為9.53%。這是因為織物的抗紫外線性能受織物組織的變化影響較小,受織物密度的影響更大[13],D系列試樣緯密較小,紫外線透過率較高,試樣的抗紫外線性能都較差。

綜上所述,隨著緯紗中石墨烯功能性紗線含量的增大,試樣的抗紫外性能也逐漸增強,織物組織對織物的抗紫外線性能有較大影響,采用浮長線較長且浮長線排列規律不明顯的組織,可以獲得良好的抗紫外線效果。同時,隨著組織結構改變引起的織物厚度、平方米質量和緊度變化也是影響織物抗紫外線性能的重要因素??椢锏暮穸仍酱?,透過織物的紫外線越少,平方米質量越大,緊度越緊,從空隙中透過的紫外線越少,織物表面越光滑,對紫外線的反射越多,織物的抗紫外線性能越好。當織物的緯密增大時,覆蓋度增大,織物抗紫外線性能增強,故石墨烯滌綸試樣的抗紫外線性能相比石墨烯腈綸試樣較好。這是由于織物原料對織物抗紫外線性能有重要影響,滌綸分子結構中的苯環對紫外線具有很強的吸收能力,致使其具有較好的抗紫外線能力[14]。此外,與石墨烯腈綸試樣相比,石墨烯滌綸試樣的緯密較大,緯紗所用的纖維較細,表面積較大,紫外線透射率較低,使得石墨烯滌綸試樣的抗紫外線性能更好。

2.2 織物遠紅外線性能研究

遠紅外線是指波長在2.5~1 000.0 μm的電磁波,它可以為人體細胞的運作提供微弱能量,促進人體微循環[15]。遠紅外紡織品不僅能夠吸收物質輻射的能量,而且能夠以紅外輻射的形式作用于人體,當人體吸收大量相匹配的遠紅外線時,細胞和血液中的C—C、C—O、C—H和C—N等化學鍵會產生共振效應,導致皮膚溫度升高,通過人體反射弧產生擴張毛細血管的物質,增強人體血液循環;同時共振效應使得機體分子處于高振動水平,核酸蛋白質等的活性會被激發,可以調節人體代謝和增強免疫等功能,起到防治疾病的輔助作用[16-18]。石墨烯滌綸試樣的遠紅外性能如圖6、圖7所示。石墨烯腈綸試樣的遠紅外性能如圖8、圖9所示。

由圖6可知,隨著緯紗中石墨烯滌綸長絲含量的增加,A系列試樣的遠紅外線性能逐漸增強。這是因為石墨烯纖維具有較強的遠紅外輻射能力,可以在常溫下吸收物質輻射的能量,以遠紅外的形式作用于人體[19]。當緯紗中石墨烯滌綸長絲含量增加時,吸收周圍物質的能量增多,發射出的遠紅外線增多,試樣的遠紅外性能也增強。根據GB/T 30127—2013標準規定,具有遠紅外性能試樣的遠紅外發射率應不低于0.88%,遠紅外輻射溫升不低于1.40 ℃。當試樣緯紗中石墨烯滌綸長絲含量不低于25.00%時,試樣遠紅外發射率大于0.88%,遠紅外輻射溫升大于1.40 ℃,試樣達到遠紅外織物的標準。當試樣緯紗中石墨烯滌綸長絲含量為50%時,試樣的遠紅外發射率和遠紅外輻射溫升增長速度逐漸變緩。當緯紗中石墨烯滌綸長絲含量達到100%時,試樣遠紅外性能最好,遠紅外發射率達到了0.932%,遠紅外輻照溫升為1.97 ℃,這是因為溫度高于絕對零度的物體會輻射紅外線。紅外線是一種電磁波,織物中的電子吸收外界能量激發,外層的電子會脫離原來的軌道,進入到更高的能位上。然而,電子在更高的能位上不夠穩定,會通過釋放能量回到原來的能位。隨著試樣中石墨烯滌綸長絲含量的增加,試樣中石墨烯也在增加,人體和外界輻射的能量吸收得越多,作用于人體的遠紅外線也越多,故試樣的遠紅外性能越好。

由圖7、圖9可知,B、D系列試樣均符合遠紅外織物的標準,但織物組織對遠紅外性能有一定影響。蜂巢組織試樣的遠紅外性能最好,8枚緯緞試樣的遠紅外性能最差。織物的遠紅外發射率與織物表面的形態有關,織物表面越粗糙,遠紅外發射率也就越大。在B、D系列試樣中,蜂巢組織試樣的表面最粗糙,厚度也最厚的,故其遠紅外性能最好[20]。8枚緯緞試樣的遠紅外性能相比平紋斜紋的差,這是因為隨著織物枚數的增加,織物表面會更光滑,當遠紅外線輻射到物體表面時,對遠紅外光線的反射能力也越強,織物的遠紅外性能越差。此外,8枚緯緞織物相比其他組織織物,其反射紅外線更多,吸收更少[21]。

由圖8可知,C系列試樣的遠紅外性能隨著緯紗中石墨烯腈綸短纖紗含量的增大而增強。當緯紗中石墨烯腈綸短纖紗含量不低于20%時,C2~C9系列試樣均符合遠紅外織物的標準,且織物的遠紅外發射率與遠紅外輻射溫升的變化規律與石墨烯滌綸織物性能基本一致。

結合上述分析得出,增加緯紗中石墨烯滌綸長絲或石墨烯腈綸短纖紗含量可以增強織物遠紅外性能。此外,織物組織對織物遠紅外性能也有一定的影響,織物組織影響了織物表面形態,織物越粗糙,厚度越厚,遠紅外性能越好。

3 模糊綜合分析

結合上述結果分析可得出,在A、C系列試樣中,緯紗中石墨烯滌綸長絲或石墨烯腈綸短纖紗含量為100%時,試樣的抗紫外和遠紅外綜合性能為最好,即A9、C9綜合性能最好。而對于B、D系列試樣而言,不能直接通過數據得出不同織物組織的綜合性能優劣。為了能定量且系統性地分析出具有最佳抗紫外線和遠紅外復合功能的試樣,本文進一步采用模糊數學綜合評判的方法對B、D系列試樣的抗紫外線、遠紅外性能分別進行綜合評判,從中選擇出綜合性能最佳的試樣。

3.3 確定權重集A

權重集反映評價因素的重要性,權重系數越大,表明該因素在綜合評判中越重要。本文根據對織物性能模糊綜合評判的相關參考文獻[10,23],以及通過問卷調查的方式,讓20位紡織、服裝相關專業的學生和老師根據戶外工作者對服裝的抗紫外線和遠紅外功能需求,為這四個指標進行百分制打分,然后根據結果計算出各項指標的平均分,得出權重系數,如表3所示。最終得到的權重集為A={0.42,0.18,0.24,0.16},即UPF值的權重系數為0.42,T(UVA)AV的權重系數為0.18,遠紅外發射率的權重系數為0.24,遠紅外輻射溫升的權重系數為0.16。

3.4 計算綜合評判矩陣B

已知權重集A和單因素矩陣R,計算綜合評判矩陣如下式所示:

B=A·R(6)

評判值越大,綜合性能越優。經計算得到:

B系列綜合評判矩陣

B=(0.376,0.528,0.400,0.416,0.600,0.531)

D系列綜合評判矩陣

B=(0.453,0.516,0.400,0.339,0.600,0.698)

由模糊綜合評價結果可知,B系列試樣綜合性能排序為B5>B6>B2>B4>B3>B1。即B系列試樣中8枚緯緞織物綜合性能最好,5枚緯緞織物次之,平紋織物最差。D系列試樣綜合性能排序為D6>D5>D2>D1>D3>D4。即D系列試樣中5枚緯緞織物綜合性能最好,8枚緯緞織物次之,2/1斜紋織物最差。

4 結 論

本文以普通滌綸長絲、石墨烯滌綸長絲、石墨烯腈綸短纖紗和黏膠短纖紗為原料,試織了多種比例和組織結構的試樣,并測試了試樣的抗紫外線性能和遠紅外性能。通過模糊綜合評判分析出試樣最佳方案,得出如下結論:

1) 織物的抗紫外線性能隨著緯紗中石墨烯滌綸長絲或石墨烯腈綸短纖紗含量的增加而增強,當緯紗中石墨烯滌綸長絲含量為100%時,石墨烯滌綸試樣的抗紫外性能最好,UPF值達到了1 433.56,T(UVA)AV為0.32%;織物組織和緯密對織物的抗紫外線性能有較大影響,8枚緯緞石墨烯滌綸試樣的抗紫外線性能最好,UPF值為136.84,T(UVA)AV為4.95%,是由于緯密較大,平均浮長最長,經緯紗交織點較少,透射過試樣的紫外線較少,故試樣的抗紫外線性能最好;石墨烯腈綸蜂巢組織試樣的抗紫外線性能最差,UPF值為17.02,T(UVA)AV為9.53%,是由于其緯密較小,覆蓋度較小,表面光滑度最低,對紫外線的反射能力最差,故試樣的抗紫外線性能最差。

2) 織物的遠紅外性能也隨著緯紗中石墨烯滌綸長絲或石墨烯腈綸短纖紗含量的增大而增強,當緯紗中石墨烯腈綸短纖紗含量為100%時,石墨烯腈綸試樣的遠紅外性能最好,遠紅外發射率為0.949%,遠紅外溫升為2.13 ℃;織物的遠紅外性能還與織物表面形態有關,石墨烯腈綸試樣的遠紅外性能最好,遠紅外發射率為0.954%,遠紅外溫升為2.03 ℃,是由于試樣的厚度較厚,表面最粗糙,對紅外光線的反射能力較弱,故試樣的遠紅外性能越好。

3) 通過模糊綜合評判的方法得出,在B系列中,8枚緯緞試樣是抗紫外線和遠紅外綜合性能最優的試樣;在D系列中,5枚緯緞織物是綜合性能最優的試樣。本文研究的試樣通過調節不同投緯比和組織,挑選出具有抗紫外線和遠紅外線復合功能最佳的試樣,可為后續開發石墨烯功能化紡織品提供參考。

參考文獻:

[1]徐建云, 黃啟英, 婁億, 等. 淺談國內紡織品檢驗檢測行業發展的機遇與挑戰[J]. 中國纖檢, 2022(8): 96-101.

XU Jianyun, HUANG Qiying, LOU Yi, et al. Brief discussion on the opportunities and challenges of the development of domestic textile inspection and testing industry[J]. China Fiber Inspection, 2022(8): 96-101.

[2]高小紅, 臧子雪, 周允涵. 功能性紡織產品的創新開發與趨勢[J]. 紡織導報, 2021(1): 85-89.

GAO Xiaohong, ZANG Zixue, ZHOU Yunhan. Innovative development and trend of functional textiles[J]. China Textile Leader, 2021(1): 85-89.

[3]崔書健. 功能性紡織品趨向多元化[J]. 紡織科學研究, 2019(5): 63.

CUI Shujian. Functional textiles tend to diversify[J]. Textile Science Research, 2019(5): 63.

[4]孫楠. 石墨烯及其功能紡織品的研究進展[J]. 天津紡織科技, 2019(3): 60-64.

SUN Nan. Research progress of graphene and its functional textiles[J]. Tianjin Textile Science & Technology, 2019(3): 60-64.

[5]苗廣遠, 張占柱. 純棉織物的氧化石墨烯防紫外線整理[J]. 印染, 2017, 43(2): 35-37.

MIAO Guangyuan, ZHANG Zhanzhu. Anti-UV finish of cotton fabrics with graphene oxide[J]. China Dyeing & Finishing, 2017, 43(2): 35-37.

[6]QU L, TIAN M, HU X, et al. Functionalization of cotton fabric at low grapheme nanoplate content for ultrastrong ultraviolet blocking[J]. Carbon, 2014, 80: 565-574.

[7]葉鑫, 王敏, 李俊. 石墨烯功能紡織品的制備與性能研究進展[J]. 產業用紡織品, 2021, 39(10): 1-7.

YE Xin, WANG Min, LI Jun. Research progress in preparation and properties of graphene functional textiles[J]. Technical Textiles, 2021, 39(10): 1-7.

[8]曹桂紅, 彭新元. 織物防紫外線性能研究[J]. 湖南工程學院學報(自然科學版), 2018, 28(1): 80-84.

CAO Guihong, PENG Xinyuan. Compared with anti ultraviolet fabric performance test[J]. Journal of Hunan Institute of Engineering (Natural Science Edition), 2018, 28(1): 80-84.

[9]劉杰, 周蓉, 盧士艷. 影響抗紫外線紡織品防護性能因素的研究[J]. 中原工學院學報, 2004(3): 32-34.

LIU Jie, ZHOU Rong, LU Shiyan. Study on factors influencing ultraviolet protective properties of fabrics[J]. Journal of Zhongyuan University of Technology, 2004(3): 32-34.

[10]周驚鴻, 張紅霞, 祝成炎, 等. 大豆蛋白纖維交織物的保健性能研究[J]. 絲綢, 2022, 59(3): 33-39.

ZHOU Jinghong, ZHANG Hongxia, ZHU Chengyan, et al. Research on the health care property of soybean fiber intertexture[J]. Journal of Silk, 2022, 59(3): 33-39.

[11]潘薇, 王韻杰, 祝成炎, 等. 抗紫外吸濕排汗復合功能織物的性能研究[J]. 絲綢, 2021, 58(3): 30-35.

PAN Wei, WANG Yunjie, ZHU Chengyan, et al. Study on the properties of fabric with UV-resistant, moisture absorbance and wicking functions[J]. Journal of Silk, 2021, 58(3): 30-35.

[12]吳國風. 紡織品的抗紫外線整理方法及評價[J]. 紡織科技進展, 2010(5): 20-23.

WU Guofeng. The method and evaluation of UV finishing on textiles[J]. Progress in Textile Science & Technology, 2010(5): 20-23.

[13]楊璧玲, 羅旭平. 紡織品抗紫外線性能影響因素及其測試[J]. 紡織導報, 2014(4): 88-90.

YANG Biling, LUO Xuping. Factors affecting anti-ultraviolet performance of textiles and related tests[J]. China Textile Leader, 2014(4): 88-90.

[14]屠慕欣, 馬越, 孫悅, 等. 漫談防紫外線紡織品[J]. 遼寧絲綢, 2020(2): 58-59.

TU Muxin, MA Yue, SUN Yue, et al. Talk about UV protection textiles[J]. Liaoning Tussah Silk, 2020(2): 58-59.

[15]杜敏芝, 田明偉, 曲麗君. 遠紅外紡織品及新型石墨烯遠紅外功能紡織品的研究進展[J]. 成都紡織高等??茖W校學報, 2016, 33(4): 132-137.

DU Minzhi, TIAN Mingwei, QU Lijun. Research progress of far-infrared textiles and new graphene far-infrared functional textiles[J]. Journal of Chengdu Textile College, 2016, 33(4): 132-137.

[16]高冰, 許亞娟, 管新海, 等. 遠紅外保暖滌綸織物性能研究[J]. 上海紡織科技, 2016, 44(2): 24-28.

GAO Bing, XU Yajuan, GUAN Xinhai, et al. Research on the performance of far-infrared thermal fabric[J]. Shanghai Textile Science & Technology, 2016, 44(2): 24-28.

[17]鹿娜, 李俊偉, 呂麗華, 等. 納米石墨烯/PLA遠紅外纖維制備及性能研究[J]. 印染助劑, 2018, 35(11): 33-36.

LU Na, LI Junwei, L Lihua, et al. Preparation and properties of nano-graphene/PLA far infrared fibers[J]. Textile Auxiliaries, 2018, 35(11): 33-36.

[18]沈國先, 趙連英. 遠紅外材料及紡織品保健功能的試驗研究[J]. 現代紡織技術, 2012, 20(6): 53-57.

SHEN Guoxian, ZHAO Lianying. Experimental study on far infrared material and textiles health function[J]. Advanced Textile Technology, 2012, 20(6): 53-57.

[19]霍子龍, 許多, 吳圓鳳, 等. 遠紅外功能纖維的研究現狀及展望[J]. 染整技術, 2021, 43(7): 15-18.

HUO Zilong, XU Duo, WU Yuanfeng, et al. Research status and prospect of far-infrared functional fiber[J]. Textile Dyeing and Finishing Journal, 2021, 43(7): 15-18.

[20]左芳芳, 楊瑞斌, 張鵬. 紡織品遠紅外發射率測試條件研究[J]. 中國纖檢, 2013(10): 83-85.

ZUO Fangfang, YANG Ruibin, ZHANG Peng. Study on the testing conditions of the emitting rate of far-infrared textiles[J]. China Fiber Inspection, 2013(10): 83-85.

[21]王青, 張紅霞, 吳麗麗. 陶瓷纖維含量和組織對織物遠紅外性能的影響研究[J]. 現代紡織技術, 2019, 27(3): 33-37.

WANG Qing, ZHANG Hongxia, WU Lili. Research on effects of ceramic fiber content and fabric weaves on far infrared property of fabrics[J]. Advanced Textile Technology, 2019, 27(3): 33-37.

[22]陳平磊, 田偉, 時培培, 等. 功能性棉型織物服用性能的模糊綜合評判[J]. 棉紡織技術, 2012, 40(3): 22-25.

CHEN Pinglei, TIAN Wei, SHI Peipei, et al. Fuzzy comprehensive evaluation on wearability of multi-functional cotton fabric[J]. Cotton Textile Technology, 2012, 40(3): 22-25.

[23]赫淑彩. 竹炭改性滌綸纖維性能研究及針織物開發[D]. 上海: 東華大學, 2008.

HE Shucai. Study on Properties of Bamboo-Charcoal Modified Polyester Fibers and Development of Their Knitted Fabrics[D]. Shanghai: Donghua University, 2008.

Research on properties of ultraviolet-resistant and far-infrared graphene woven fabrics

ZHANG Chi, WANG Xiangrong

SHI Yangtao1, L Sichen2, ZHANG Jinzhen3, FAN Shuo1, ZHU Chengyan1, ZHANG Hongxia1

(1a.Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education; 1b.National Engineering Lab for TextileFiber Materials and Processing Technology; 1c.Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology,Zhejiang Sci-Tech University, Hangzhou 310018; 2.China Filament Weaving Association, Beijing 100020, China;3.High Fashion Silk (Zhejiang) Co., Ltd., Hangzhou 310006, China)

Abstract: In recent years, with the continuous improvement of living standards and the gradual enhancement of people’s health awareness, the demand for health care functional textiles has been increasing gradually, and the development of health care functional textiles has become a hot spot in the development of new textile products. Health care functional textiles can protect people who work outdoors for a long time, reduce the impact of ultraviolet radiation on human health, and promote human blood circulation, improve the circulatory system, enhance metabolism and improve immune functions under the radiation of far infrared. Therefore, the research and development of anti-ultraviolet and far-infrared health care functional fabric is of great significance. As an excellent textile material, graphene functional yarn has not only excellent physical properties, but also ultraviolet-resistant and far-infrared properties, with a good prospect in the development of health care functional textiles.

Cellulose from biomass straw was used as raw material for the graphene functional yarn selected in this study, and the method of “group coordination assembly carbon analysis” was adopted to obtain the biomass graphene fiber, which was then combined with polyester and acrylic fibers to produce the graphene functional yarn. In this study, four series of fabric samples from A to D were designed, and all fabric samples were warp spun with polyester. The weft yarns for series A fabric samples were graphene polyester filaments and ordinary polyester filaments. Nine types of fabric samples with a content of graphene polyester filaments ranging from 0 to 100% were designed. The weft yarns of the B series fabric samples were graphene polyester filaments and ordinary polyester filaments, and the content of graphene polyester filaments in the weft yarns was 50%. Six fabric samples with different organizational weaves were designed. The weft yarns of the C series fabric samples were graphene acrylic staple fibers and ordinary viscose staple fibers. Nine fabric samples with a content of graphene acrylic staple fibers in the weft yarns from 0 to 100% were designed. The weft yarns for the D series fabric samples were graphene acrylic staple yarn and ordinary viscose staple yarn. The content of graphene acrylic staple yarn in the weft yarn was 50%. Six fabric samples with different organizational weaves were designed. The article explored the ultraviolet and far-infrared properties of four series of fabric samples. The results showed that with the increase of the content of graphene polyester filament or graphene acrylic staple yarn in the weft yarn, the ultraviolet resistance of the fabric sample gradually increases. When the content of graphene polyester filament in the weft yarn reaches 100%, the ultraviolet resistance of the graphene polyester sample is the best, with UPF value of 1 433.56 and T(UVA)AV of 0.32%. The fabric weave and weft density have a significant impact on the ultraviolet resistance of fabric samples. Different fabric weaves lead to the difference in tightness, thickness, gram weight and average float length of fabrics. The ultraviolet resistance of 8-weft satin graphene polyester sample is the best, with UPF value of 136.84 and T(UVA)AV of 4.95%. This is due to the larger weft density and tightness of the sample, the longest average float length, fewer warp and weft yarn interlacing points, and less ultraviolet light transmitted through the sample. Therefore, the sample has the best ultraviolet resistance. The ultraviolet resistance of the graphene acrylic honeycomb weave sample is the worst, with UPF value of 17.02 and T(UVA)AV of 9.53%. Because its weft density is smaller, the coverage is smaller, the surface smoothness is the lowest, the ultraviolet reflection ability is the worst, the ultraviolet resistance of the sample is the worst. With the increase of the content of graphene polyester filament or graphene acrylic staple yarn in the weft yarn, the far-infrared performance of fabric samples gradually increases. When the content of graphene acrylic staple yarn reaches 100%, the far-infrared performance of fabric sample is the best, the far-infrared emissivity reaches 0.949%, and the far-infrared irradiation temperature rises to 2.13 ℃. The far-infrared performance of the fabrics is also related to the surface morphology of the fabric. The far-infrared performance of the graphene acrylic fiber sample is the best, the far-infrared emissivity is 0.954%, and the far-infrared temperature raises by 2.03 ℃, because the thickness of the sample is thicker, the surface is the coarsest, and the reflection ability of the infrared light is weak, leading to the the better far infrared performance of the sample.

Through the mathematical method of fuzzy comprehensive evaluation, it is concluded that among the B series fabric samples, 8-weft satin graphene polyester sample has the best comprehensive ultraviolet and far-infrared resistance. Among the D series fabric samples, 5-weft satin graphene acrylic fiber sample has the best comprehensive ultraviolet and far-infrared resistance. The samples studied in this article are samples with the best comprehensive performance of ultraviolet and far-infrared resistance by adjusting the type and content of graphene functional yarn in the weft yarn and different fabric weaves, providing reference for the subsequent development of graphene health functional textiles.

Key words: graphene woven fabric; ultraviolet-resistant; far infrared; functional yarn; fabric weave; fuzzy comprehensive judgement

收稿日期: 20221111;

修回日期: 20230621

基金項目: 作者簡介: 史洋濤(1998),男,碩士研究生,研究方向為功能性紡織品、紡織產品設計。通信作者:張紅霞,教授級高工,hongxiazhang8@126.com。

猜你喜歡
模糊綜合評判
模糊綜合評判大豆異黃酮酸奶工藝研究
基于群組AHP—FCE法綠色住宅建筑后評價研究
綠色科技(2016年22期)2017-03-15 19:33:09
鐵路戰略裝車點的選址評價
物流科技(2017年1期)2017-03-13 17:44:47
模糊綜合評判在學生成績評價中的應用
模糊綜合評判在優化電機冷卻系統中的應用
模糊綜合評判在優化電機冷卻系統中的應用
公路橋梁臺背回填質量評價方法研究
四維主體視閾下地方應用型本科院校學生綜合素質的模糊評價與應用
基于模糊層次分析法的公路橋梁施工安全風險評價研究
中國市場(2016年41期)2016-11-28 05:25:17
校企合作模式下的卓越軟件工程師培養質量的研究
主站蜘蛛池模板: 日韩精品成人在线| 精品黑人一区二区三区| 久久综合一个色综合网| 1024国产在线| 日韩高清无码免费| 一边摸一边做爽的视频17国产| 欧美激情视频二区| 99999久久久久久亚洲| AV在线天堂进入| 第一区免费在线观看| 久草视频一区| 欧美在线精品怡红院| 精品视频一区二区观看| 四虎亚洲精品| 超级碰免费视频91| 丝袜无码一区二区三区| 亚洲精品不卡午夜精品| 成人福利在线视频| 天堂亚洲网| 國產尤物AV尤物在線觀看| 免费激情网址| 四虎精品免费久久| 夜夜操狠狠操| 亚洲色成人www在线观看| 国产福利微拍精品一区二区| 四虎综合网| 幺女国产一级毛片| 亚洲九九视频| 91精品国产自产在线老师啪l| 97国产在线播放| 亚洲Av综合日韩精品久久久| 日日拍夜夜操| 欧美日韩中文国产| 熟女日韩精品2区| 在线免费a视频| 亚洲综合精品香蕉久久网| 免费在线看黄网址| 乱色熟女综合一区二区| 久久夜色撩人精品国产| 国产精品漂亮美女在线观看| a免费毛片在线播放| 久久精品亚洲专区| 丁香五月婷婷激情基地| 91精品在线视频观看| 丁香婷婷综合激情| 在线观看免费国产| 尤物亚洲最大AV无码网站| 亚洲日韩精品欧美中文字幕 | 午夜欧美理论2019理论| 日韩av高清无码一区二区三区| 亚洲无码37.| 国产在线自乱拍播放| 国产成人综合在线观看| 色九九视频| 精品91自产拍在线| 综合色88| 91青青在线视频| 永久毛片在线播| 91亚洲精品国产自在现线| 啪啪国产视频| 免费日韩在线视频| 噜噜噜久久| 亚洲精品无码AⅤ片青青在线观看| 乱人伦中文视频在线观看免费| 亚洲综合婷婷激情| 国产在线日本| 久久综合色88| 欧美啪啪网| 国产www网站| 一级毛片高清| 无码'专区第一页| 欧美人在线一区二区三区| 欧美 亚洲 日韩 国产| a亚洲视频| 亚洲aaa视频| 成人免费网站在线观看| 久久精品国产在热久久2019| 国产理论最新国产精品视频| 亚洲性色永久网址| 天天摸天天操免费播放小视频| 亚洲天堂精品在线观看| 就去吻亚洲精品国产欧美|