付曉航 張順亮 臧明伍 王守偉 劉夢 李素 趙燕 趙建生 趙冰 潘曉倩 吳倩蓉 劉博文



摘 要:隨著國內外消費者對健康飲食關注度的不斷提高,食品工業中人工合成類抗氧化劑和抑菌劑的健康屬性受到越來越多的質疑,而天然活性成分由于符合“清潔標簽”消費需求,日益受到生產者和消費者的青睞。本文綜述肉制品加工過程中常用的植物抗氧化成分和抑菌成分的種類和來源,闡述其在肉制品加工和貯藏過程中的抗氧化與抑菌作用機理,總結在常見肉制品中的應用形式及使用量,以期為植物活性成分在肉制品防腐保鮮中的應用提供理論參考。
關鍵詞:肉制品;加工;植物活性成分;抗氧化;抑菌
Advances in Application of Natural Active Ingredients from Plants in Preservation of Meat Products
FU Xiaohang1, ZHANG Shunliang1, ZANG Mingwu1,*, WANG Shouwei1,*, LIU Meng1, LI Su1, ZHAO Yan1,
ZHAO Jiansheng2, ZHAO Bing1, PAN Xiaoqian1, WU Qianrong1, LIU Bowen1
(1.Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing 100068, China;
2.Henan Meat Technology Innovation Center Co. Ltd., Luohe 462000, China)
Abstract: As consumers become increasingly concerned about dietary health, the health attributes of synthetic antioxidants and antibacterial agents used in the food industry are increasingly questioned, but natural active ingredients are increasingly preferred by producers and consumers due to their compliance with “clean labelling” requirements. The types and sources of natural antioxidant and antibacterial ingredients from plants commonly used in meat processing are reviewed in this paper. The mechanisms of their antioxidant and antibacterial effects in the processing and storage of meat products are also described. Furthermore, their forms and optimal concentrations for application in meat products are summarized. We expect that this review will provide a theoretical reference for the application of natural active ingredients from plants in the preservation of meat products.
Keywords: meat products; processing; natural active ingredients from plants; antioxidant; antibacterial
DOI:10.7506/rlyj1001-8123-20230423-033
中圖分類號:TS251.1? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼:A 文章編號:1001-8123(2023)06-0041-10
引文格式:
付曉航, 張順亮, 臧明伍, 等. 植物活性成分在肉制品防腐保鮮中的應用研究進展[J]. 肉類研究, 2023, 37(6): 41-50. DOI:10.7506/rlyj1001-8123-20230423-033.? ? http://www.rlyj.net.cn
FU Xiaohang, ZHANG Shunliang, ZANG Mingwu, et al. Advances in application of natural active ingredients from plants in preservation of meat products[J]. Meat Research, 2023, 37(6): 41-50. (in Chinese with English abstract) DOI:10.7506/rlyj1001-8123-20230423-033.? ? http://www.rlyj.net.cn
肉類食品是人類飲食的基本組成部分,也是人類蛋白質、維生素和礦物質的優質來源[1]。肉制品營養豐富,故在加工和貯藏過程中易發生由氧化和微生物引起的品質劣變,表現出異味、營養價值下降甚至腐敗等現象[2]。尤其是當肉中富含不飽和脂肪酸與膽固醇時,切碎、熱加工等處理使游離脂肪酸和氧氣充分接觸,從而加速肉制品氧化[3-4]。加工、運輸過程中由微生物污染導致的肉類腐敗,極易引起肉的色澤、風味、質地等變化,甚至會產生有毒代謝物質,威脅人體健康。為延緩肉制品中的脂質和蛋白質氧化,防止微生物污染與增殖,肉制品加工中通常會使用合成抗氧化劑及抑菌劑,以達到防腐保鮮的目的,如抗氧化劑丁基羥基茴香醚(butylhydroxyanisole,BHA)和二丁基羥基甲苯(butylatedhydroxytoluene,BHT)或抑菌劑(如硝酸鹽和亞硝酸鹽),大量研究表明,這些化合物的食用與人類一些慢性疾病的發展存在一定的相關性[5]。
食品“清潔標簽”起源于歐盟,主要為滿足消費者對天然或綠色食品的需求,在產品中盡量去除或替換人造或化學添加劑,使產品成分天然、有機、不含復雜的化學成分且制成過程越簡單越好。已有多項研究將水果、草藥和蔬菜等提取物作為合成添加劑的替代品應用于肉制品加工中[5-8]。植物活性成分不僅能夠延緩肉制品在貯藏期間的蛋白和脂質氧化,還能起到抑菌作用,以延長肉制品貨架期[9]。這些植物活性成分在增強食品成分穩定性的同時,還可以維持其初始的感官特性[10]。
本文通過總結近幾年肉制品中植物抗氧化和抑菌成分的應用研究進展,對植物活性成分種類和來源、防腐保鮮作用機理及在肉制品中的應用效果進行綜述,并對植物活性成分在肉制品保鮮防腐中的應用提出展望,以期為植物活性成分在肉制品中的應用提供理論參考。
1 天然活性成分種類與來源
天然活性成分在自然界中分布廣泛,其中植物是天然活性成分的良好來源。植物活性成分是植物的次生代謝產物,主要來源于蔬菜、水果、油料作物種子、樹木、精油及中草藥的莖、果實、葉、花等部位,具有分布范圍廣、含量高、效果好等特點[11]。可將提取出的植物活性成分分為酚類、萜烯類、黃酮類化合物等[12],這些天然活性成分不屬于植物的營養部分,但可以在食品中起到抗氧化、抑菌的功能。表1總結了植物活性成分的分類及其主要代表性化合物。
2 植物活性成分抗氧化與抑菌作用機理
2.1 植物活性成分的抗氧化作用機理
在肉制品加工和貯藏過程中,蛋白質和脂質會持續地進行氧化降解反應[13],其過程如圖1所示。蛋白質氧化機制主要通過活性自由基和由脂質氧化產生的中間產物間接引發蛋白質的共價修飾變化,從而引發蛋白質氧化,而脂質氧化機制主要包括鏈引發、鏈傳遞和鏈終止。蛋白質和脂質氧化二者相互促進,導致肉制品品質下降[14]。
植物抗氧化成分大部分是通過破壞氧化鏈反應、螯合過渡金屬離子、清除自由基和反應物質來達到抗氧化的作用,如圖1所示。抗氧化成分的有效性取決于其分子結構和極性,根據其作用機制可以分為Ⅰ類和Ⅱ類抗氧化成分[15]。Ⅰ類抗氧化成分根據分子的化學性質,可以作為自由基受體清除、延遲或抑制自氧化的起始步驟或中斷傳播步驟(主要發生在鏈引發、鏈傳遞和鏈終止階段),其機理包括與不飽和脂肪酸緩慢反應或與過氧自由基快速反應生成穩定自由基,而穩定的自由基可能會與過氧自由基再次反應生成穩定的過氧化物,或與抗氧化成分再聚合。Ⅱ類抗氧化成分可以通過螯合具有催化作用的金屬離子,為初始抗氧化成分提供氫離子,將過氧化氫分解為非自由基物質,使單線態氧失活,吸收紫外線輻射,清除活性氧(reactive oxygen species,ROS),對初級抗氧化劑的抗氧化活性起到增強作用[15]。
2.2 植物活性成分的抑菌作用機理
大多數植物活性成分具有抑菌特性是由于它們與微生物的部分細胞位點相互作用,從而導致細胞膜破裂、細胞質壁分離、細胞死亡[16]。這種作用機理主要分為3 類:1)對于菌體細胞壁和細胞膜的破壞。細胞壁和細胞膜通透性、完整性的破壞導致營養物質及代謝產物無法正常傳遞,微生物因營養缺失而無法正常生長、屏障功能受損,細胞內容物如細胞器滲出,最終致使細胞失活死亡[17];2)對蛋白質和遺傳物質結構的破壞。植物活性成分進入細胞內與極性物質結合,導致DNA無法正常進行復制或通過影響功能性蛋白和酶的活性抑制細胞
生長[18];3)對菌體內能量代謝過程的干擾。植物活性成分通過破壞細胞供氧功能抑制微生物呼吸,使合成代謝通路受阻,最終導致細胞自溶[19]。植物活性成分主要抑菌作用模式如圖2所示。
3 植物活性成分在肉制品中的應用效果
3.1 植物活性成分抗氧化應用效果
3.1.1 果蔬來源的植物活性成分抗氧化應用效果
果蔬中不僅有對人體有益的維生素、膳食纖維及礦物質等,而且具有的高含量酚類物質可以作為天然抗氧化劑應用于肉制品加工中,水果的果皮、果肉和種子等副產物均表現出一定的抗氧化活性,它們的抗氧化能力與酚類物質的含量有關。
漿果是生物活性化合物的重要來源,是多酚類物質(酚酸、黃酮醇、花青素和單寧等)最豐富的來源之一,因此從漿果中獲得的提取物會顯示出很強的抗氧化活性[20]。Martín-Mateos等[21]將不同比例的櫻桃提取物添加于牛肉餅中發現,當櫻桃提取物的含量增加到6%以上時,作為α-生育酚異構體的VE含量及苯酚含量增加,且總抗氧化活性增強;與未添加提取物相比,櫻桃提取物可以顯著改善漢堡中牛肉餅的脂質和蛋白氧化程度。此外,添加0.2%黑桑葚水提取物和7.5%黑莓果渣提取物均可以顯著抑制牛肉餅的脂質氧化程度[22]。其他漿果提取物,如野櫻莓、藍莓、紅醋栗果渣提取物對肉餅的總羰基含量有顯著影響[23],改善了牛肉餅的蛋白質氧化程度,但抑制蛋白質氧化效果不如脂質氧化明顯,其原因可能與酚類物質和蛋白質之間的共價和非共價相互作用相關[24],在豬肉餅中添加的巴西莓果肉提取物(250 mg/kg)可以作為異抗壞血酸鈉(500 mg/kg)的天然抗氧化劑替代品[25]。而與BHT相比,葡萄籽提取物對于干發酵豬肉香腸的抗氧化效果更佳[26]。
葉子中酚類化合物含量通常高于果實,因此有研究將黑櫻桃葉提取物作為天然抗氧化劑應用于肉制品中,在冷藏期間提取物可以維持α-生育酚含量穩定,并在其添加量為0.05%、0.10%時有效抑制牛肉漢堡的脂質氧化程度,且在0.10%的添加量下延長了其保質期、增強了風味、提高了嫩度及整體質量[27]。番石榴葉提取物同樣可以有效減緩新鮮豬肉腸的脂質氧化過程,添加量為5 000 mg/kg的番石榴葉提取物與200 mg/kg的BHT對豬肉腸具有相同的抑制脂肪氧化能力。水果不同部位的提取物在肉制品加工過程中均表現出一定的抗氧化活性,如香蕉花、芒果皮、荔枝籽等[28-30]。香蕉的雄花作為香蕉作物的主要殘留物之一,具有高含量的抗氧化化合物。Rodrigues等[28]測定香蕉的各部分提取物發現,雄花提取物的抗氧化活性最強,其對貯藏期間豬肉腸的脂質氧化具有顯著的抑制作用;而在雞肉腸中添加4%的芒果皮提取物不僅可以抑制蛋白質氧化和脂質氧化,還可以明顯改善雞肉腸的質量[29]。在生肉醬中添加荔枝籽提取物可以顯著抑制脂質氧化,并且不會對肉醬的感官特性產生不良影響[30]。
將富含硝酸鹽的蔬菜應用于肉制品中可以有效替代亞硝酸鈉,如將菠菜[31]、生菜和芹菜應用于腌制肉制品中[32],將蘿卜和甜菜根應用于發酵肉制品中不僅可以起到抗氧化作用,還能維持肉制品的色澤[33]。其中,蘿卜粉對發酵香腸的脂質氧化具有顯著抑制作用[34]。
3.1.2 草藥和香料類來源植物活性成分抗氧化應用效果
草藥和香辛料含有的黃酮類化合物、苯酚、皂苷等均具有較強的抗氧化性。有研究[35]將栓皮櫟葉作為天然抗氧化劑應用于食品中,發現各濃度的栓皮櫟葉提取物均可抑制雞胸肉的脂質氧化,2%栓皮爍葉提取物(水、乙醇體積比1∶1或3∶7)抑制雞胸肉氧化能力與BHT(溶于0.1%乙醇)相當。Boeira等[36]將檸檬草提取物作為天然抗氧化劑加入到雞肉腸中,與0.1%的異抗壞血酸鈉相比,0.5%、1.0%的檸檬草提取物均可有效抑制脂質氧化,并有效保持雞肉香腸冷藏時間到42 d;在豬肉餅中添加0.075、0.150 μL/g的百里香提取物,不僅可以改善色澤、延長貨架期,還可以顯著降低蛋白質和脂質氧化程度(P<0.05),且添加提取物組的硫代巴比妥酸反應物(thiobarbituric acid reactive substances,TBARs)值始終保持在0.5 mg MDA/kg以下[37]。
有研究對比了不同草藥或香辛料的抗氧化能力。Martinez等[38]在牛肉餅或新鮮豬肉腸中添加琉璃苣籽粕、綠茶提取物可以顯著抑制脂質氧化[39],為進一步確定每種提取物的最適濃度,通過向羊排噴灑不同濃度提取物發現,0.5%綠茶提取物和10%琉璃苣提取物可以有效抑制羊排的脂質氧化并保持產品色澤穩定,在降低高鐵肌紅蛋白形成、延長保質期的同時,不改變羊肉的特有風味[40]。與添加異抗壞血酸鈉組相比,0.05%的針葉櫻桃果粉、甘草提取物和迷迭香提取物均降低了鱷肉的TBARs值,且甘草提取物(500 mg/kg)在鱷肉塊中發揮的氧化抑制作用最強[41]。在其他研究中,甘草提取物可有效抑制豬肉漢堡的脂質氧化,生姜提取物能夠顯著抑制羊肉中蛋白質和脂質氧化(P<0.05)[42]。
3.1.3 其他來源植物活性成分抗氧化應用效果
農業食品加工廢物再利用在近年來逐漸受到重視,許多研究通過對加工廢物的提取,發現其作為天然抗氧化劑的潛力并應用于肉制品中。釀造葡萄酒所需的木桶在制造過程中會產生大量的廢棄物,而優質橡木中含有大量酚類物質,Soriano等[43]將橡木提取物與合成添加劑抗壞血酸鈉相比,橡木提取物(0.5%、0.1%)具有更高的抗氧化能力,顯著抑制了豬肉的脂質氧化和大腸桿菌的生長。橄欖油廢料提取物也可以延緩羊肉餅變色,極顯著抑制羊肉餅脂質氧化(P<0.01),并使羊肉餅可以在4 ℃高氧氣調包裝條件下貯藏長達9 d[44]。
植物活性成分在肉制品中的抗氧化應用部分研究如表2所示。
3.2? ?植物活性成分抑菌應用效果
3.2.1 果蔬來源的植物活性成分抑菌應用效果
果蔬中富含β-胡蘿卜素、抗壞血酸、核黃素和葉酸等功能活性成分,具備一定的抑菌活性。甜菜根富含多酚化合物、甜菜堿和抗壞血酸,研究證實甜菜根提取物對大腸桿菌、銅綠假單胞菌、金黃色葡萄球菌和蠟樣芽孢桿菌具有抑制作用,其對單核細胞增生李斯特菌最小抑菌質量濃度(minimal inhibitory concentration,MIC)為20 mg/mL[46-47]。Gong Shaoying等[48]將甜菜根提取物應用于熟豬肉中發現,提取物可以抑制單核細胞增生李斯特菌的生長,并且降低其在細胞內ATP水平,甜菜根通過降低ROS水平來誘導單核細胞增生李斯特菌凋亡樣死亡,但具體機制還需進一步研究。
添加1.0%或1.5%石榴皮提取物的水牛肉與添加0.01%的BHT相比,顯示出更強的抑菌活性,可將貨架期延長7 d[49]。用450 μg/g的葡萄籽、葡萄渣提取物和柑橘提取物處理牛肉餅后發現,添加柑橘提取物的牛肉餅具有更低的菌落總數、大腸菌群數和乳酸菌數,通過破壞細胞膜降低細胞活力,從而對細菌起到抑制作用[50]。
3.2.2 草藥和香料植物精油抑菌應用效果
草藥和香辛料植物精油是由植物活性成分混合而成的疏水性液體,其抑菌活性和植物活性成分對細菌細胞結構的作用有關,精油可以直接靶向作用于細菌細胞,其中含有的抑菌成分可以顯著降低食品中微生物及酶的活性,并被食品和藥物管理局評定為公認安全的食品添加劑。
一項研究將丁香精油應用于豬肉后發現,丁香精油通過抑制金黃色葡萄球菌基因表達從而抑制了金黃色葡萄球菌的生長,貯藏7 d內在抑菌的同時保持了豬肉品質[51]。
而各添加量的百里香精油均可抑制肉腸中凝固酶陽性葡萄球菌的生長、減少微生物數量,百里香精油對金黃色葡萄球菌和大腸桿菌的MIC均為9.17 mg/mL,對其最小殺菌質量濃度(minimum bactericidal concentration,MBC)分別為9.17、36.68 mg/mL,其在最高添加量下(0.95%)會抑制需氧嗜溫細菌,可以作為肉腸中硝酸鹽和亞硝酸鹽的替代物[52]。Karam等[53]向腌制牛肉中直接添加百里香和牛至精油,混合精油對熒光假單胞菌、大腸桿菌和金黃色葡萄球菌的MIC分別為2.250 0、1.125 5、0.560 0 g/L,MBC分別為2.250 0、2.250 0、1.125 0 g/L,在0.8%添加量下對腌制牛肉中的酵母菌、霉菌及大腸菌群表現出很強的抗菌活性。而在羊肉中添加肉桂精油可以顯著降低菌落總數、乳酸菌和腸桿菌科的數量[54]。
肉制品中的蛋白質、脂質等與抑菌成分的相互作用會影響抑菌劑的效果和穩定性[55],植物精油由于其揮發性的特點易被迅速消耗[56];一些親脂性食物成分(蛋白質和脂肪)會與精油相互作用,使其有效濃度降低;天然活性成分在水相中的溶解度有限,所以當天然活性物質應用于食品體系中,生物活性的顯著下降會導致抑菌活性降低[57]。已有文獻[58]表明,百里香精油可以降低肉中單核細胞增生李斯特菌數量,但由于蛋白質和脂質的存在,其抑菌能力下降;Cava等[59]研究發現,肉桂精油和丁香精油在脂肪存在的條件下對單核細胞增生李斯特菌的抑菌活性降低,可能是由于蛋白質或脂肪通過吸收精油而屏蔽了抑菌作用[60]。一項研究在牛肉餅貯藏期間添加了黃芩葉片提取的精油發現,黃芩葉片精油對單核細胞增生李斯特菌的MIC和MBC均為2 mg/mL,對大腸桿菌的MIC和MBC分別為4、2 mg/mL,精油可以抑制大腸桿菌和單核細胞增生李斯特菌的生長,但到15 d后又重新生長,分析原因可能是精油與肉類成分的相互作用降低了其抑菌能力[61]。
一部分植物精油難溶于水、易揮發的特性會限制其應用于肉制品加工過程中,所以一般采用水包油乳液作為載體來保護精油活性[62],如改善疏水性化合物在整個食品基質中的溶解度和均勻分布性,即使在濃度較低的情況下也可以具備更高的穩定性及抑菌活性[63]。將含有生姜精油的納米乳液(6%)應用于雞胸肉,在貯藏期12 d內總需氧嗜冷菌顯著減少,抗菌活性顯著提高(P<0.05)[63]。而含有肉桂精油和迷迭香提取物的納米乳液對大腸桿菌、枯草芽孢桿菌和金黃色葡萄球菌有顯著的抑菌活性,與其他處理相比,納米乳液可以使雞肉餅的貨架期延長4 d[64]。
此外,與散裝肉桂精油相比,肉桂精油納米乳液不僅可以顯著維持魚肉顏色和質地,還可以延長冷藏魚肉的保質期[65]。當肉桂精油納米乳液添加量11 429 mg/L時,可以顯著減少鱸魚片中0.5~1.5(lg(CFU/g))的初始細菌數量,可有效延緩冷藏過程中細菌的生長,可以將肉桂精油納米乳液用于抑制污染大腸桿菌和其他食源性病原體的魚片[66]。
植物活性成分在肉制品中抑菌應用部分研究如表3所示。
3.3 植物活性成分協同應用效果
許多研究表明,當植物提取物中含有2 種及以上活性成分聯合使用時,其產生的效果大于同一劑量單一物質的效果[69]。為使肉制品加工過程中的抗氧化及抑菌效果更佳,有研究將天然活性成分復配添加至肉制品中。表4總結了目前天然活性成分以復配形式添加在肉制品中以起到更強抗氧化及抑菌作用的研究與應用。
Basanta等[70]將李子的果皮及果肉的纖維顆粒進行混合,將混合提取物以1.6%的添加量加入雞肉餅中。與對照組相比,纖維顆粒的添加減少了肉餅中50% TBARs的生成、肉餅的2 價鐵離子還原能力高出77%~157%。而在火腿的制備過程中添加2%蔓越莓和黑櫻桃提取物顯著提高了其在體外模擬消化過程中口腔和胃消化階段的抗氧化能力[71]。
酚酸和類黃酮是草藥和香料中最常見的生物活性化合物,草藥還含有酚類二萜(迷迭香醇)、揮發物(蒎烯和1,8-桉葉醇)和苯丙烷類化合物(百里酚、丁香酚和香芹酚)。將迷迭香提取物、甜橙提取物分別與蔬菜提取物(生菜、芝麻菜和豆瓣菜、菠菜和芹菜、甜菜)混合添加至香腸中發現,迷迭香提取物的添加不僅對肉制品起到延緩氧化作用,還可以達到良好的抑菌效果。天然活性物質與富含脯氨酸的蛋白質不可逆地形成復合物,通過抑制細胞蛋白質的合成達到抑菌作用。并且,添加500 mg/kg甜橙提取物與250 mg/kg針葉櫻桃提取物和3 000 mg/kg蔬菜提取物(生菜、芝麻菜、豆瓣菜)于香腸中對其抗氧化作用最強[72]。Dang Yali等[73]將山楂葉、銀杏葉、竹葉與紅皮花生按照2∶2∶5∶9比例混合后添加6%的混合提取物于發酵豬肉香腸中,混合提取物對大腸桿菌的MIC為1.3 mg/mL,提取物可以通過去除大腸桿菌細胞壁和細胞膜結構顯著抑制大腸桿菌的生長。將茴香精油、肉桂醛含量分別為1%的納米乳液涂抹于豬肉肉餅中,可以顯著抑制大腸桿菌和金黃色葡萄球菌的生長,將貨架期從6 d延長至10 d[74]。Syed等[75]發現,基于不同比例的香葉醇和香芹酚的水包油乳液對于羊肉具有同樣顯著的抑菌活性,香芹酚通過釋放脂多糖分解了革蘭氏陰性細菌的細胞膜,導致細胞內容物外漏,引起細菌活力喪失。與使用純油、非乳液制劑相比,乳液包埋制劑對細菌病原體、蠟樣芽孢桿菌MTCC 430和大腸桿菌MYCC 443具有抑制作用,可將香葉醇和香芹酚的抑菌功效延長至9 d。將百里香、肉桂、丁香精油兩兩組合或三重組合(4∶1∶2)應用于雞胸肉中發現,不同精油的雙重組合對熒光假單胞菌表現出協同(分級抑菌濃度指數(fractional inhibitory concentration index,FICI)≤0.5)或疊加效應
(0.5<FICI≤1.0),且三重組合混合物精油可將MIC減少6~8 倍,在12 d冷藏期間,可顯著抑制雞胸肉中熒光假單胞菌生長[76],分析原因是精油中酚類和醛類可以通過連續抑制氧化鏈反應、抑制酶的活性以及抑菌劑與菌體細胞壁和細胞膜相互作用,使混合精油具有高抑菌性。
4 結 語
植物活性成分在抑制肉制品脂質與蛋白質氧化、抑制腐敗菌和致病菌增殖方面表現出良好性能。與此同時,還可以保持肉制品色澤、質構和風味等品質。在增強肉制品安全性的基礎上,對于生產高品質肉制品具有良好的推動作用。但目前的研究仍存在一些局限性,在今后的研究中,可以在以下幾方面加以深入:1)闡明植物活性成分的抗氧化及抑菌機理。在肉制品加工中,多數植物活性成分的活性位點及其抗氧化作用機理仍有待進一步闡明,而抑菌機理的研究大部分是通過分析細胞形態、膜電位等指標變化來驗證細胞膜的變化,對于抑菌基因表達的影響因素尚未明確;2)加強植物活性成分復配協同功效的研究。基于協同作用和量效關系開發肉制品用高效植物活性成分配料,保證復配物在具備抑制脂質、蛋白質氧化能力的同時實現靶向抑菌、延長肉制品貨架期;3)研究植物活性成分與肉制品風味的協同作用。天然活性成分中含有大量低閾值、易揮發的成分,對肉制品自身風味造成干擾。如何在保證其抗氧化性及抑菌作用的前提下,兼顧最終產品的感官特性及可接受度,實現肉制品加工配料與功能成分的“料劑同源”,需要進一步深入研究。我國具有豐富的植物資源,未來可以加大植物活性成分基礎理論研究與產品開發,使植物活性成分逐步成熟應用于肉制品加工中,形成基于“清潔標簽”的肉制品系列植物活性成分配料,服務于肉制品健康消費的發展趨勢。
參考文獻:
[1] LORENZO J M, PATEIRO M. Influence of fat content on physico-chemical and oxidative stability of foal liver pate[J]. Meat Science, 2013, 95(2): 330-335. DOI:10.1016/j.meatsci.2013.04.045.
[2] LORENZO J M, PATEIRO M, FONT?N M C G, et al. Effect of fat content on physical, microbial, lipid and protein changes during chill storage of foal liver pate[J]. Food Chemistry, 2014, 155: 57-63. DOI:10.1016/j.foodchem.2014.01.038.
[3] DOMINGUEZ R, AGREGAN R, GONCALVES A, et al. Effect of fat replacement by olive oil on the physico-chemical properties, fatty acids, cholesterol and tocopherol content of pate[J]. Grasas y Aceites: International Journal of Fats and Oils, 2016, 67(2): 0629152. DOI:10.3989/gya.0629152.
[4] KINGSTON E R, MONAHAN F J, BUCKLEY D J, et al. Lipid oxidation in cooked pork as affected by vitamin E, cooking and storage conditions[J]. Journal of Food Science, 1998, 63(3): 386-389. DOI:10.1111/j.1365-2621.1998.tb15748.x.
[5] CUNHA L C M, MONTEIRO M L G, LORENZO J M, et al. Natural antioxidants in processing and storage stability of sheep and goat meat products[J]. Food Research International, 2018, 111: 379-390. DOI:10.1016/j.foodres.2018.05.041.
[6] DOMINGUEZ R, GULLON P, PATEIRO M, et al. Tomato as potential source of natural additives for meat industry: a review[J]. Antioxidants, 2020, 9(1): 9010073. DOI:10.3390/antiox9010073.
[7] MANESSIS G, KALOGIANNI A I, LAZOU T, et al. Plant-derived natural antioxidants in meat and meat products[J]. Antioxidants, 2020, 9(12): 9121215. DOI:10.3390/antiox9121215.
[8] ESTEVEZ M. Critical overview of the use of plant antioxidants in the meat industry: opportunities, innovative applications and future perspectives[J]. Meat Science, 2021, 181: 108610. DOI:10.1016/j.meatsci.2021.108610.
[9] MANZOOR A, YOUSUF B, PANDITH J A, et al. Plant-derived active substances incorporated as antioxidant, antibacterial or antifungal components in coatings/films for food packaging applications[J]. Food Bioscience, 2023, 53: 102717. DOI:10.1016/j.fbio.2023.102717.
[10] AMOLI P I, HADIDI M, HASIRI Z, et al. Incorporation of low molecular weight chitosan in a low-fat beef burger: assessment of technological quality and oxidative stability[J]. Foods, 2021, 10(8): 10081959. DOI:10.3390/foods10081959.
[11] EFENBERGER-SZMECHTYK M, NOWAK A, CZYZOWSKA A. Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products[J]. Critical Reviews in Food Science and Nutrition, 2021, 61(1): 149-178. DOI:10.1080/10408398.2020.1722060.
[12] POKORNY J. Are natural antioxidants better and safer than synthetic antioxidants?[J]. European Journal of Lipid Science and Technology, 2007, 109(6): 629-642. DOI:10.1002/ejlt.200700064.
[13] HADIDI M, ORELLANA-PALACIOS J C, AGHABABAEI F, et al. Plant by-product antioxidants: control of protein-lipid oxidation in meat and meat products[J]. LWT-Food Science and Technology, 2022, 169: 114003. DOI:10.1016/j.lwt.2022.114003.
[14] 劉英麗, 于青林, 萬真, 等. 發酵劑抗氧化活性對發酵肉制品品質的影響研究進展[J]. 食品科學, 2021, 42(1): 302-312. DOI:10.7506/spkx1002-6630-20200704-052.
[15] LOBO V, PATIL A, PHATAK A, et al. Free radicals, antioxidants and functional foods: impact on human health[J]. Pharmacognosy Reviews, 2010, 4(8): 118-126. DOI:10.4103/0973-7847.70902.
[16] ZAMUZ S, MUNEKATA P E S, DZUVOR C K O, et al. The role of phenolic compounds against Listeria monocytogenes in food:
a review[J]. Trends in Food Science and Technology, 2021, 110: 385-392. DOI:10.1016/j.tifs.2021.01.068.
[17] 張慶霞. 植物源防腐劑的抑菌機理及其在生鮮濕面保鮮中的應用[J]. 食品與發酵工業, 2020, 46(21): 310-316. DOI:10.13995/j.cnki.11-1802/ts.025028.
[18] 王夢如, 喬海顏, 柯夢雨, 等. 植物源精油的抑菌機制及其在食品保鮮包裝中的應用進展[J]. 食品工業科技, 2021, 43(7): 439-444. DOI:10.13386/j.issn1002-0306.2021040037.
[19] 張媛媛, 李艷利, 李書國. 植物源食品防腐劑抑菌機理和效果及在食品保鮮中的應用[J]. 糧油食品科技, 2014, 22(4): 48-53. DOI:10.16210/j.cnki.1007-7561.2014.04.014.
[20] SKROVANKOVA S, SUMCZYNSKI D, MLCEK J, et al. Bioactive compounds and antioxidant activity in different types of berries[J]. International Journal of Molecular Sciences, 2015, 16(10): 24673-24706. DOI:10.3390/ijms161024673.
[21] MART?N-MATEOS M J, ORTIZ A, CURBELO P, et al. New beef burger formulation with added cherry (pico negro variety) as a potential functional ingredient[J]. Applied Food Research, 2022, 2(2): 100132. DOI:10.1016/j.afres.2022.100132.
[22] TURAN E, SIMSEK A. Effects of lyophilized black mulberry water extract on lipid oxidation, metmyoglobin formation, color stability, microbial quality and sensory properties of beef patties stored under aerobic and vacuum packaging conditions[J]. Meat Science, 2021, 178: 108522. DOI:10.1016/j.meatsci.2021.108522.
[23] BABAOGLU A S, UNAL K, DILEK N M, et al. Antioxidant and antimicrobial effects of blackberry, black chokeberry, blueberry, and red currant pomace extracts on beef patties subject to refrigerated storage[J]. Meat Science, 2022, 187: 108765. DOI:10.1016/j.meatsci.2022.108765.
[24] VILJANEN K, KIVIKARI R, HEINONEN M. Protein-lipid interactions during liposome oxidation with added anthocyanin and other phenolic compounds[J]. Journal of Agricultural and Food Chemistry, 2004, 52(5): 1104-1111. DOI:10.1021/jf034785e.
[25] BELLUCCI E R B, DOS SANTOS J M, CARVALHO L T, et al. Acai extract powder as natural antioxidant on pork patties during the refrigerated storage[J]. Meat Science, 2022, 184: 108667. DOI:10.1016/j.meatsci.2021.108667.
[26] LORENZO J M, GONZ?LEZ-RODR?GUEZ R M, S?NCHEZ M, et al.
Effects of natural (grape seed and chestnut extract) and synthetic antioxidants (buthylatedhydroxytoluene, BHT) on the physical, chemical, microbiological and sensory characteristics of dry cured sausage “chorizo”[J]. Food Research International, 2013, 54(1): 611-620. DOI:10.1016/j.foodres.2013.07.064.
[27] KOWALCZYK M, DOMARADZKI P, MATERSKA M, et al. Effect of the addition of chokeberry leaf extract on the physicochemical and sensory properties of burgers from dark cutting veal[J]. Food Chemistry, 2023, 399: 133978. DOI:10.1016/j.foodchem.2022.133978.
[28] RODRIGUES A S, KUBOTA E H, DA SILVA C G, et al. Banana inflorescences: a cheap raw material with great potential to be used as a natural antioxidant in meat products[J]. Meat Science, 2020, 161: 107991. DOI:10.1016/j.meatsci.2019.107991.
[29] MANZOOR A, AHMAD S, YOUSUF B. Effect of bioactive-rich mango peel extract on physicochemical, antioxidant and functional characteristics of chicken sausage[J]. Applied Food Research, 2022, 2(2): 100183. DOI:10.1016/j.afres.2022.100183.
[30] QI Suijian, HUANG Hua, HUANG Jiayi, et al. Lychee (Litchi chinensis Sonn.) seed water extract as potential antioxidant and anti-obese natural additive in meat products[J]. Food Control, 2015, 50: 195-201. DOI:10.1016/j.foodcont.2014.08.047.
[31] FAKHREDDIN S. Textural properties and quality of meat products containing fruit or vegetable products: a review[J]. Journal of Food and Nutrition Research, 2021, 60(3): 187-202. DOI:10.1016/j.fufo.2022.100181.
[32] JIN S K, CHOI J S, YANG H S, et al. Natural curing agents as nitrite alternatives and their effects on the physicochemical, microbiological properties and sensory evaluation of sausages during storage[J]. Meat Science, 2018, 146: 34-40. DOI:10.1016/j.meatsci.2018.07.032.
[33] AHN S J, KIM H J, LEE N, et al. Characterization of pork patties containing dry radish (Raphanus sativus) leaf and roots[J]. Asian-Australasian Journal of Animal Sciences, 2019, 32(3): 413-420. DOI:10.5713/ajas.18.0384.
[34] OZAKI M M, MUNEKATA P E S, JACINTO-VALDERRAMA R A,
et al. Beetroot and radish powders as natural nitrite source for fermented dry sausages[J]. Meat Science, 2021, 171: 108275. DOI:10.1016/j.meatsci.2020.108275.
[35] LAVADO G, LADERO L, CAVA R. Cork oak (Quercus suber L.) leaf extracts potential use as natural antioxidants in cooked meat[J]. Industrial Crops and Products, 2021, 160: 113086. DOI:10.1016/j.indcrop.2020.113086.
[36] BOEIRA C P, PIOVESAN N, FLORES D C B, et al. Phytochemical characterization and antimicrobial activity of Cymbopogon citratus extract for application as natural antioxidant in fresh sausage[J]. Food Chemistry, 2020, 319: 126553. DOI:10.1016/j.foodchem.2020.126553.
[37] ?OJI? B, TOMOVI? V, KOCI?-TANACKOV S, et al. Supercritical extracts of wild thyme (Thymus serpyllum L.) by-product as natural antioxidants in ground pork patties[J]. LWT-Food Science and Technology, 2020, 130: 109661. DOI:10.1016/j.lwt.2020.109661.
[38] MARTINEZ L, CILLA I, BELTRAN J A, et al. Antioxidant effect of rosemary, borage, green tea, pu-erh tea and ascorbic acid on fresh pork sausages packaged in a modified atmosphere: influence of the presence of sodium chloride[J]. Journal of the Science of Food and Agriculture, 2006, 86(9): 1298-1307. DOI:10.1002/jsfa.2492.
[39] LORENZO J M, SINEIRO J, AMADO I R, et al. Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties[J]. Meat Science, 2014, 96(1): 526-534. DOI:10.1016/j.meatsci.2013.08.007.
[40] BELLES M, ALONSO V, RONCALES P, et al. Effect of borage and green tea aqueous extracts on the quality of lamb leg chops displayed under retail conditions[J]. Meat Science, 2017, 129: 153-160. DOI:10.1016/j.meatsci.2017.03.003.
[41] DE PAIVA G B, TRINDADE M A, ROMERO J T, et al. Antioxidant effect of acerola fruit powder, rosemary and licorice extract in caiman meat nuggets containing mechanically separated caiman meat[J]. Meat Science, 2021, 173: 108406. DOI:10.1016/j.meatsci.2020.108406.
[42] IVANE N M A, ELYSE F K R, HARUNA S A, et al. The anti-oxidative potential of ginger extract and its constituent on meat protein isolate under induced Fenton oxidation[J]. Journal of Proteomics, 2022, 269: 104723. DOI:10.1016/j.jprot.2022.104723.
[43] SORIANO A, ALANON M E, ALARCON M, et al. Oak wood extracts as natural antioxidants to increase shelf life of raw pork patties in modified atmosphere packaging[J]. Food Research International, 2018, 111: 524-533. DOI:10.1016/j.foodres.2018.05.055.
[44] MU??O I, D?AZ M T, APELEO E, et al. Valorisation of an extract from olive oil waste as a natural antioxidant for reducing meat waste resulting from oxidative processes[J]. Journal of Cleaner Production, 2017, 140: 924-932. DOI:10.1016/j.jclepro.2016.06.175.
[45] THI T T T, NU M N T, THANH T N, et al. Application of natural antioxidant extract from guava leaves (Psidium guajava L.) in fresh pork sausage[J]. Meat Science, 2020, 165: 108106. DOI:10.1016/j.meatsci.2020.108106.
[46] CANADANOVIC-BRUNET J M, SAVATOVIC S S, CETKOVIC G S,
et al. Antioxidant and antimicrobial activities of beet root pomace extracts[J]. Czech Journal of Food Sciences, 2011, 29(6): 575-585. DOI:10.17221/210/2010-cjfs.
[47] KUMAR S, BROOKS M S L. Use of red beet (Beta vulgaris L.) for antimicrobial applications: a critical review[J]. Food and Bioprocess Technology, 2018, 11(1): 17-42. DOI:10.1007/s11947-017-1942-z.
[48] GONG Shaoying, JIAO Chaoqin, GUO Ling. Antibacterial mechanism of beetroot (Beta vulgaris) extract against Listeria monocytogenes through apoptosis-like death and its application in cooked pork[J]. LWT-Food Science and Technology, 2022, 165: 113711. DOI:10.1016/j.lwt.2022.113711.
[49] GHIMIRE A, PAUDEL N, POUDEL R. Effect of pomegranate peel extract on the storage stability of ground buffalo (Bubalus bubalis) meat[J]. LWT-Food Science and Technology, 2022, 154: 112690. DOI:10.1016/j.lwt.2021.112690.
[50] BAMBENI T, TAYENGWA T, CHIKWANHA O C, et al. Biopreservative efficacy of grape (Vitis vinifera) and clementine mandarin orange (Citrus reticulata) by-product extracts in raw ground beef patties[J]. Meat Science, 2021, 181: 108609. DOI:10.1016/j.meatsci.2021.108609.
[51] LI Jun, LI Changzhu, SHI Ce, et al. Antibacterial mechanisms of clove essential oil against Staphylococcus aureus and its application in pork[J]. International Journal of Food Microbiology, 2022, 380: 109864. DOI:10.1016/j.ijfoodmicro.2022.109864.
[52] LAGES L Z, RADUNZ M, GONCALVES B T, et al. Microbiological and sensory evaluation of meat sausage using thyme (Thymus vulgaris L.)
essential oil and powdered beet juice (Beta vulgaris L., Early Wonder cultivar)[J]. LWT-Food Science and Technology, 2021, 148: 111794. DOI:10.1016/j.lwt.2021.111794.
[53] KARAM L, CHEHAB R, OSAILI T M, et al. Antimicrobial effect of thymol and carvacrol added to a vinegar-based marinade for controlling spoilage of marinated beef (Shawarma) stored in air or vacuum packaging[J]. International Journal of Food Microbiol, 2020, 332: 108769. DOI:10.1016/j.ijfoodmicro.2020.108769.
[54] HUSSAIN Z, LI X, ZHANG D, et al. Influence of adding cinnamon bark oil on meat quality of ground lamb during storage at 4 ℃[J]. Meat Science, 2021, 171: 108269. DOI:10.1016/j.meatsci.2020.108269.
[55] ZHANG Lianhua, PIAO Xiangshu. Use of aromatic plant-derived essential oils in meat and derived products: phytochemical compositions, functional properties, and encapsulation[J]. Food Bioscience, 2023, 53: 102520. DOI:10.1016/j.fbio.2023.102520.
[56] SYED I, SARKAR P. Ultrasonication-assisted formation and characterization of geraniol and carvacrol-loaded emulsions for enhanced antimicrobial activity against food-borne pathogens[J]. Chemical Papers, 2018, 72(10): 2659-2672. DOI:10.1007/s11696-018-0501-z.
[57] SARKAR P, BHUNIA A K, YAO Y. Impact of starch-based emulsions on the antibacterial efficacies of nisin and thymol in cantaloupe juice[J]. Food Chemistry, 2017, 217: 155-162. DOI:10.1016/j.foodchem.2016.08.071.
[58] AURELI P, COSTANTINI A, ZOLEA S. Antimicrobial activity of some plant essential oils against Listeria monocytogenes[J]. Journal of Food Protection, 1992, 55(5): 344-348. DOI:10.4315/0362-028x-55.5.344.
[59] CAVA R, NOWAK E, TABOADA A, et al. Antimicrobial activity of clove and cinnamon essential oils against Listeria monocytogenes in pasteurized milk[J]. Journal of Food Protection, 2007, 70(12): 2757-2763. DOI:10.4315/0362-028x-70.12.2757.
[60] PERRICONE M, ARACE E, CORBO M R, et al. Bioactivity of essential oils: a review on their interaction with food components[J]. Frontiers in Microbiology, 2015, 139(6): 00076. DOI:10.3389/fmicb.2015.00076.
[61] DA SILVA B D, BERNARDES P C, PINHEIRO P F, et al. Plectranthus amboinicus (Lour.) Spreng. essential oil as a natural alternative for the conservation of beef patties stored under refrigeration[J]. Food Bioscience, 2022, 49: 101896. DOI:10.1016/j.fbio.2022.101896.
[62] MCCLEMENTS D J, DECKER E A, WEISS J. Emulsion-based delivery systems for lipophilioc bioactive components[J]. Journal of Food Science, 2007, 72(8): R109-R124. DOI:10.1111/j.1750-3841.2007.00507.x.
[63] NOORI S, ZEYNALI F, ALMASI H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets[J]. Food Control, 2018, 84: 312-320. DOI:10.1016/j.foodcont.2017.08.015.
[64] QIU Liqing, ZHANG Min, CHITRAKAR B, et al. Effects of nanoemulsion-based chicken bone gelatin-chitosan coatings with cinnamon essential oil and rosemary extract on the storage quality of ready-to-eat chicken patties[J]. Food Packaging and Shelf Life, 2022, 34: 100933. DOI:10.1016/j.fpsl.2022.100933.
[65] CHUESIANG P, SANGUANDEEKUL R, SIRIPATRAWAN U. Phase inversion temperature-fabricated cinnamon oil nanoemulsion as a natural preservative for prolonging shelf-life of chilled Asian seabass (Lates calcarifer) fillets[J]. LWT-Food Science and Technology, 2020, 125: 109122. DOI:10.1016/j.lwt.2020.109122.
[66] CHUESIANG P, SANGUANDEEKUL R, SIRIPATRAWAN U. Enhancing effect of nanoemulsion on antimicrobial activity of cinnamon essential oil against foodborne pathogens in refrigerated Asian seabass (Lutes calcarifer) fillets[J]. Food Control, 2021, 122: 107782. DOI:10.1016/j.foodcont.2020.107782.
[67] BALDIN J C, MICHELIN E C, POLIZER Y J, et al. Microencapsulated jabuticaba (Myrciaria cauliflora) extract added to fresh sausage as natural dye with antioxidant and antimicrobial activity[J]. Meat Science, 2016, 118: 15-21. DOI:10.1016/j.meatsci.2016.03.016.
[68] TANG Renyong, PENG Jiaxuan, CHEN Lin, et al. Combination of flos sophorae and chili pepper as a nitrite alternative improves the antioxidant, microbial communities and quality traits in Chinese sausages[J]. Food Research International, 2021, 141: 110131. DOI:10.1016/j.foodres.2021.110131.
[69] LIU Ruihai. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals[J]. The American Journal of Clinical Nutrition, 2003, 78(3): 517S-520S. DOI:10.1093/ajcn/78.3.517S.
[70] BASANTA M F, RIZZO S A, SZERMAN N, et al. Plum (Prunus salicina) peel and pulp microparticles as natural antioxidant additives in breast chicken patties[J]. Food Research International, 2018, 106: 1086-1094. DOI:10.1016/j.foodres.2017.12.011.
[71] TAMKUTE L, JANCIUKE G, PUKALSKIENE M, et al. Cranberry and black chokeberry extracts isolated with pressurized ethanol from defatted by supercritical CO2 pomace inhibit colorectal carcinoma cells and increase global antioxidant response of meat products during in vitro digestion[J]. Food Research International, 2022, 161: 111803. DOI:10.1016/j.foodres.2022.111803.
[72] MART?NEZ-ZAMORA L, PE?ALVER R, ROS G, et al. Substitution of synthetic nitrates and antioxidants by spices, fruits and vegetables in clean label Spanish chorizo[J]. Food Research International, 2021, 139: 109835. DOI:10.1016/j.foodres.2020.109835.
[73] DANG Yali, HAO Li, LI Xiao, et al. Inhibitory mechanism of Chinese herbal medicine extracts on Escherichia coli and its application to fermented-bag sausage[J]. LWT-Food Science and Technology, 2021, 140(1): 110825. DOI:10.1016/j.lwt.2020.110825.
[74] SUN Y N, ZHANG M, BHESH B, et al. Nanoemulsion-based edible coatings loaded with fennel essential oil/cinnamaldehyde: characterization, antimicrobial property and advantages in pork meat patties application[J]. Food Control, 2021, 127: 108151. DOI:10.1016/j.foodcont.2021.108151.
[75] SYED I, BANERJEE P, SARKAR P. Oil-in-water emulsions of geraniol and carvacrol improve the antibacterial activity of these compounds on raw goat meat surface during extended storage at 4 ℃[J]. Food Control, 2020, 107: 106757. DOI:10.1016/j.foodcont.2019.106757.
[76] CHAICHI M, MOHAMMADI A, BADII F, et al. Triple synergistic essential oils prevent pathogenic and spoilage bacteria growth in the refrigerated chicken breast meat[J]. Biocatalysis and Agricultural Biotechnology, 2021, 32: 101926. DOI:10.1016/j.bcab.2021.101926.
收稿日期:2023-04-23
基金項目:“十四五”國家重點研發計劃重點專項(2021YFD2100503)
第一作者簡介:付曉航(1997—)(ORCID: 0009-0002-6939-4506),女,工程師,碩士,研究方向為肉品科學與加工技術。
E-mail: fxhcmrcld@126.com
*通信作者簡介:臧明伍(1981—)(ORCID: 0000-0002-1302-316X),男,教授級高級工程師,博士,研究方向為肉品科學與食品安全。E-mail: zangmw@126.com
王守偉(1961—)(ORCID: 0000-0002-6390-4803),男,教授級高級工程師,碩士,研究方向為肉品科學與食品安全。E-mail: cmrcwsw@126.com