999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一般隨機變量的完全收斂及大數定律

2023-06-29 13:36:54苗雨常萌萌

苗雨 常萌萌

摘 要:通過包含并完善一些已有結論,建立了一般隨機變量的完全收斂和大數定律.特別對于兩兩負象限相關的隨機變量,得到了其完全收斂和Marcinkiewicz-Zygmund型強大數定律之間的等價結論.

關鍵詞:完全收斂;強大數定律;隨機變量

中圖分類號:O175.2文獻標志碼:A

參 考 文 獻

[1] ?HSU P L,ROBBINS H.Complete convergence and the law of large numbers[J].Proc Nat Acad Sci,1947,33:25-31.

[2]ERDS P.On a theorem of Hsu and Robbins[J].Ann Math Statist,1949,20:286-291.

[3]KATZ M.The probability in the tail of a distribution[J].Ann Math Statist,1963,34:312-318.

[4]BAUM L E,KATZ M.Convergence rates in the law of large numbers[J].Trans Amer Math Soc,1965,120:108-123.

[5]LEHMANN E L.Some concepts of dependence[J].Ann Math Statist,1966,37:1137-1153.

[6]EBRAHIMI N,GHOSH M.Multivariate negative dependence[J].Comm Statist A-Theory Methods.1981,10(4):307-337.

[7]LIU L.Precise large deviations for dependent random variables with heavy tails[J].Statist Probab Lett,2009,79(9):1290-1298.

[8]NEWMAN C M.Asymptotic independence and limit theorems for positively and negatively dependent random variables[J].Inequalities in statistics and probability,1984(2):127-140.

[9]THNH L V.On the Baum-Katz theorem for sequences of pairwise independent random variables with regularly varying normalizing constants[J].C R Math Acad Sci Paris,2020,358(11/12):1231-1238.

[10]RIO E.Vitesses de convergence dans la loi forte pour des suites dépendantes[J].C R Acad Sci Paris Sér I Math,1995,320(4):469-474.

[11]SENETA E. Regularly varying functions.Lecture Notes in Mathematics[M].New York:Springer-Verlag,1976.

[12]BINGHAM N H,GOLDIE C M,TEUGELS J L.Regular variation[M].Cambridge:Cambridge University Press,1989.

[13]SENETA E.An interpretation of some aspects of Karamata's theory of regular variation[J].Publ Inst Math,1973,15(29):111-119.

[14]GALAMBOS J,SENETA E.Regularly varying sequences[J].Proc Amer Math Soc,1973,41:110-116.

[15]ANH V T N,HIEN N T T,THNH L V,et al.The Marcinkiewicz-Zygmund-type strong law of large numbers with general normalizing sequences[J].J Theoret Probab,2021,34(1):331-348.

[16]BOJANIC R,SENETA E.Slowly varying functions and asymptotic relations[J].J Math Anal Appl,1971,34(2):302-315.

[17]DZUNG N C,THNH L V.On the complete convergence for sequences of dependent random variables via stochastic domination conditions and regularly varying functions theory:10.48550/arXiv:2107.12690[P].2021-07-27.

[18]ROSALSKY A,THNH L V,A note on the stochastic domination condition and uniform integrability with applications to the strong law of large numbers[J].Statist Probab Lett,2021,178:109181.

[19]GUT A.Complete convergence for arrays[J].Period Math Hungar,1992,25(1):51-75.

[20]THNH L V.On a new concept of stochastic domination and the laws of large numbers[J/OL].[2022-09-16].https://doi.org/10.1007/s11749-022-00827-w.

[21]WU Q Y.Convergence properties of pairwise NQD random sequences[J].Acta Math Sinica(Chin Ser),2002,45(3):617-624.

[22]SHAO Q M.A comparison theorem on moment inequalities between negatively associated and independent random variables[J].J Theoret Probab,2000,13(2):343-356.

[23]UTEV S,PELIGRAD M.Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J].J Theoret Probab,2003,16(1):101-115.

[24]ASADIAN N,FAKOOR V,BOZORGNIA A.Rosenthal's type inequalities for negatively orthant dependent random variables[J].J Iran Stat Soc,2006,5(1/2):66-75.

[25]SHEN A T.Probability inequalities for END sequence and their applications[J].J Inequal Appl,2011,2011:12.

[26]MIAO Y,YANG G Y,STOICA G.On the rate of convergence in the strong law of large numbers for martingales[J].Stochastics,2015,87(2):185-198.

[27]MATULA P.A note on the almost sure convergence of sums of negatively dependent random variables[J].Statist Probab Lett,1992,15(3):209-213.

On the complete convergence and the strong law of large numbers for general random variables

Miao Yu1, Chang Mengmeng1,2

(1. College of Mathematics and Information Science; Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control,

Henan Normal University, Xinxiang 453007, China; 2. College of Mathematics and Information Science, Anyang Institute of Technology, Anyang 455000, China)

Abstract: In the paper, the complete convergence and the strong law of large numbers for general dependent random sequence are established, which include and improve some known results. In particular, the equivalence between complete convergence and Marcinkiewicz-Zygmund strong law of large numbers for the pairwise negatively quadrant dependent random variables is obtained.

Keywords: complete convergence; strong law of large numbers; random variables

[責任編校 陳留院 趙曉華]

主站蜘蛛池模板: www中文字幕在线观看| 在线a网站| 成人福利在线观看| 99中文字幕亚洲一区二区| 国产成人a毛片在线| а∨天堂一区中文字幕| 国产激情在线视频| 久久青草免费91线频观看不卡| 亚洲视频a| 亚洲人成网站18禁动漫无码| 中文字幕天无码久久精品视频免费 | 老司国产精品视频91| 特级毛片8级毛片免费观看| 日本福利视频网站| 色婷婷狠狠干| 日本福利视频网站| 91高清在线视频| 狠狠亚洲婷婷综合色香| 国产91丝袜在线播放动漫| 自偷自拍三级全三级视频| 日韩专区欧美| 2020亚洲精品无码| 精品色综合| 91在线播放免费不卡无毒| 一级毛片无毒不卡直接观看| 国产精品va免费视频| 成人亚洲国产| 噜噜噜久久| 波多野结衣一区二区三区四区| 日本爱爱精品一区二区| 麻豆国产精品视频| 99久久精品免费观看国产| 欧美色视频网站| 中文字幕在线一区二区在线| 91亚洲视频下载| 99久久国产综合精品女同| 国产亚洲精品97在线观看| 五月天久久综合| 国产在线一区二区视频| 日韩美女福利视频| 国产美女免费| 日韩视频免费| 国产素人在线| 久久国产拍爱| 国产精品无码AV片在线观看播放| 亚洲AV无码精品无码久久蜜桃| 亚洲swag精品自拍一区| 99爱视频精品免视看| 人妻精品全国免费视频| 国产精品吹潮在线观看中文| 午夜无码一区二区三区| 综合天天色| 天堂av综合网| 久久国产V一级毛多内射| 国产主播喷水| 国产欧美日韩在线一区| 中文字幕乱码二三区免费| 456亚洲人成高清在线| 日本不卡视频在线| 亚洲成在人线av品善网好看| 97人人模人人爽人人喊小说| 婷婷伊人久久| 狠狠色丁香婷婷综合| 欧美yw精品日本国产精品| 成人年鲁鲁在线观看视频| 人人艹人人爽| 国产精品污视频| 欧美国产日本高清不卡| 国产极品嫩模在线观看91| 欧美性猛交一区二区三区 | 午夜精品区| 99精品国产高清一区二区| 91免费在线看| 久久综合九色综合97网| 免费在线一区| 中文字幕乱码中文乱码51精品| 国产精品区网红主播在线观看| 精品国产香蕉伊思人在线| 99久久无色码中文字幕| 欧美性久久久久| 综合天天色| 91精品综合|