999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Crystal structure and terahertz spectrum studies of complex [Cu2(dmp)2(bdppmapy)I2]

2023-06-26 08:54:10LIYingyuGAOChengjieHUFuzhenLIZixiZHOUQingliJINQionghua
黑龍江大學自然科學學報 2023年2期

LI Yingyu,GAO Chengjie,HU Fuzhen,LI Zixi,ZHOU Qingli,JIN Qionghua

(1.Department of Chemistry,Capital Normal University,Beijing 100048,China;2.Key Laboratory of Terahertz Optoelectronics,Ministry of Education,Beijing Advanced Innovation Center for Imaging Technology,Department of Physics,Capital Normal University,Beijing 100048,China )

Abstract:Terahertz time-domain spectroscopy (THz-TDS) based on femtosecond laser is a novel technique for coherent far-infrared spectroscopy.The weak interactions between molecules have corresponding absorption peaks in the terahertz band,so the terahertz spectrum can reflect abundant and complicated structural information.In this paper,the intermolecular forces of the copper(I) complex [Cu2(dmp)2(bdppmapy)I2] have been explored using the terahertz technique,and the effect of temperature on the π…π effect and other weak forces has been further characterized by using temperature-dependent terahertz.Temperature-dependent terahertz time-domain spectroscopy can accurately identify the π-stacking of copper complexes,a feature that thermogravimetric analysis and powder X-ray diffraction can not reveal.Given the high sensitivity of terahertz technology,the variations of the THz absorption peaks at different temperatures are used to qualitatively reflect the photoluminescence quantum yields of the cuprous complexes.These results open up a new direction for scientific research through terahertz spectroscopy in highly luminescent materials.

Keywords:terahertz spectrum;weak force;π-stacking;Cu(I) complex

0 Introduction

Intermolecular weak forces are present in practically all chemical reactions,and π-stacking has received a lot of attention[1-4].As a metal with low price and sufficient resource reserve,copper has been used in luminescent metal complex for optical devices and is widely considered as a reasonable substitute for precious metals due to its good efficiency[4].Cu(I) complex is widely used in preparing organic light-emitting devices (OLED)[6-7],memory devices[8],organic photocatalysis[9],and other material fields[10-12].With the development of luminescent copper complexes,Cu(I) complexes such as [Cu(N^N)(P^P)]+/0 (where N^N represents a chelated diamine ligand and P^P is either a chelated diphosphine ligand or two monophosphate ligands) have been extensively studied[13-15].Such weak forces are frequently appraised and defined by X-ray single crystal diffraction.However,the definition of the weak force is difficult for many materials for whose single-crystal diffraction is not possible.In addition,low-energy weak-forces are also difficult to analyze and characterize by other spectroscopic methods.

It was not until 1985 that modern terahertz science and technology began to develop with the rapid development of ultrafast laser,photonics and materials science technology[16].The frequency of the terahertz spectrum is significantly lower than those of infrared light,and the absorption features in the terahertz region can be attributed to weak intermolecular interaction.It has become a powerful tool to detect non-covalent interaction forces and has important strategic value and broad application prospects in medical imaging,safety detection,material detection and other fields[17-19].In fact,identifying all absorption peaks is difficult and unnecessary for substances with complex structures,and only the main peaks need to be identified.This designation relies on repeated comparisons of structures of the starting materials and terminal products.The purpose of delving into terahertz spectra,is to understand the relationship among absorption peaks,structures and properties,which can be used to explain the existing experimental results and guide synthesis.

We previously reported the Cu(I) complex (Fig.1),1,10-phen derivatives were selected as N-ligands.Pyridylphosphine ligands can form stable coordination compounds with transition metals.The formed complex has excellent photophysical properties,and the conjugated planar structure is easy to form π-stacking.In this paper,the reported complex was characterized by terahertz spectroscopy.The purpose is to detect and expose the relationship between weak π-stacking of the complex and the luminescence using terahertz time-domain spectroscopy,these results have been further confirmed by temperature-dependent terahertz spectroscopy.In our previous work,terahertz time-domain spectra were successfully linked to photoluminescence quantum yields via weak forces[20].At the same time,this is the first application of temperature-dependence terahertz technology in complex.

Fig.1 Chemical structure of Cu2(dmp)2(bdppmapy)I2

1 Experimental

1.1 Materials

All commercially available starting materials were used as received,and solvents were used without any purification.The syntheses of the ligand bdppmapy and metal complexes were described in our previous paper[21].

1.2 Measurements

CCDC No.2075018 contained the supplementary crystallographic data for complex.The crystal data were collected by Bruker SMART CCD X-ray single crystal diffractometer and analyzed by SHELEXL program;thermal stability analysis (TGA) was performed on a Labsys NETZSCH TG 209 Setaram;powder X-ray diffraction (PXRD) was performed on a Bruker-D8 ADVANCE diffractometer;terahertz absorption spectra were recorded on a terahertz time-domain device of Capital Normal University of China,effective frequency in the range of 0.2 to 3.0 THz.Terahertz spectra of the complex were measured at 298,313,328,343,358 and 373 K,the sample was recorded with two spectra and repeated determination to confirm the reproducibility of the spectra.Experimental devices for terahertz transmission measurements have been discussed in detail elsewhere[22].

2 Results and discussion

The relationship between the terahertz absorption spectrum and the intermolecular weak force was obtained by observing the terahertz absorption spectrum of the sample.The terahertz time-domain spectrum of the complex was measured at room temperature.The complex contains the diamine ligand,2,9-dimethyl-1,10-phenanthroline (dmp);Cu(I)-based complexes with functionalized dmp have a wide range of applications in luminescence[23].The introduction of methyl groups will hinder the flattening distortion of cuprous coordination center,thereby increasing the photoluminescence quantum yield of the complex.

Complex 1 has the π-stacking effect of the N heterocycle of the dmp ligand to the N heterocycle of the adjacent asymmetric unit dmp ligand.By repeatedly comparing the spatial forces and the terahertz absorption peaks,it can be found that there is only a pair of π…π stacking interaction in the space of complex 1,and the terahertz time-domain spectrum only has a very distinct absorption peak around 1.70 THz (Fig.2),which can be attributed to the N-heterocyclic stacking of the complex.The absorption peaks due to superposition forces are shifted by about 0.4 THz in the high terahertz direction for complex 1,which is because the asymmetric unit of complex 1 is a binuclear neutral molecule.The results show that the absorption peak of the binuclear neutral molecule complex near 1.70 THz belongs to π-stacking between heterocycles,and more similar experiments have been done in our previous study to prove this point[21].

Fig.2 Terahertz absorption spectrum of complex 1 at ambient temperature

When the complex is converted to the excited state by the excitation of light energy,the change of lattice framework,especially the metal coordination center,is an important factor that affecting photophysical properties of the complex[24].This leads us to ponder whether it is possible to offer complex energies similar to that of light-energy,and then terahertz technology was used to detect the transformation of weak force into the lattice in order to create the relationship with complicated photophysical features,particularly the quantum yield.To further investigate the effect of temperature variations on the interlattice stacking of the complexes and on the π-stacking effect and other weak forces,the temperature-dependent terahertz time-domain spectrum of complex 1 for simple stacking structures was investigated in the temperature range of 298 to 373 K (Fig.3(a)).Note that the absorption peak at cal.1.70 THz,is significantly cut with increasing temperature and splits into two peaks at 328 K and higher temperatures,indicating some changes in π…π stacking during the warming process.The above-mentioned reasons have been confirmed by in situ varied temperature single-crystal analysis (Fig.3(b)).Table 1 lists the crystallographic data and other experimental details of complex 1 at 328 K.Table 2 summarizes the bond lengths and bond angles associated with the central Cu(I) coordination of complex 1 at 328 K.The cell volumes increases by 0.67% from ambient temperature to 328 K,with simultaneous increase of the unit cell parametera,b,candβ.The variation of atomic displacement parameters with temperature is universal[25-27].As mentioned earlier,the absorption peak of complex 1 at 1.70 THz is attributed to π-stacking.Single-crystal diffraction data measured at 328 K show an increase in the length of the π-stacking from 0.383 9 to 0.385 0 nm compared to the ambient environment temperature.In addition,the torsion angle between heterocycles increases simultaneously from 1.951° to 2.405° due to enhanced atomic thermal vibration at high temperatures.Both results lead to a weakening of π-stacking,which may be an important reason for splitting the absorption peak.The increase in the intensity of absorption peaks at low terahertz direction may be attributed to the increase in the intensity of lattice vibration,which needs to be proved at a deeper level.At temperatures above 328 K,the crystal decomposition to the point of irretrievable loss of crystallinity is unavoidable and single crystal data cannot be used for illustration and discussion due to the inability to refine.Further developments in spectral simulation techniques such as molecular dynamics simulation are expected to reveal the origin of temperature dependence of terahertz vibrational bands.

Fig.3 (a) Temperature-dependence of the terahertz absorption spectra of complex 1 between 298 and 373 K in the range of 0.2~3.0 THz;(b) crystal structure view of complex 1 at 298 and 328 K

Table 1 Crystallographic data of complex 1 measured at 328 K

Table 2 Selected bond lengths,bond angles and their standard deviations of complex 1 at 328 K

Complex 1 was selected for the study of thermal and chemical stability by TGA and PXRD in the same temperature range.TGA reveals that the quality of complex 1 is almost unchanged in the above temperature range,and is thermally stable up to 537 K under a nitrogen atmosphere (Fig.4(a)).Similarly,its PXRD pattern was measured at 298,313,328,343,358 and 373 K (Fig.4(b)).It can be observed that the patterns of complex 1 at 298 K and higher temperatures can match the simulated patterns.Therefore,conventional methods such as thermogravimetric analysis and powder diffraction cannot be used to study the weak interaction between the lattices within a given temperature range.In other words,the temperature-dependence terahertz spectroscopy technique is a powerful tool for analyzing the variation of weak interactions with temperature.

Fig.4 TGA curve (a) and temperature changing PXRD patterns (b) of complex 1

3 Conclusions

In summary,the terahertz time-domain spectrum at room temperature indicates that the absorption peaks at 1.70 THz are associated with π-stacking effects.The π-stacking length and the dihedral angle between the atomic rings creating the stacking force both increase with increasing temperature,according to in situ variable temperature single crystal analysis.In addition,the overall vibration of the lattice skeleton is increased.These conditions both cause a significant change in terahertz absorption peaks.The deformation of compound lattices after energy stimulation can be reflected in the peak shape of heated terahertz time-domain spectra at different temperatures,thereby combining photophysical features with terahertz technology.These findings pave the way for future research into the relationship between weak forces and crystal dynamics.

主站蜘蛛池模板: 国产成人精品一区二区秒拍1o | 国产精品手机视频| 国产va在线观看免费| 国产99久久亚洲综合精品西瓜tv| 玖玖精品在线| 亚洲欧美成人影院| 九九热精品视频在线| 亚洲成a人在线观看| 日韩欧美国产中文| 精品在线免费播放| 久久精品欧美一区二区| 亚洲AV永久无码精品古装片| 国产黄色爱视频| 色一情一乱一伦一区二区三区小说| 美女视频黄又黄又免费高清| 亚洲欧美一区二区三区图片| 在线观看免费人成视频色快速| 99久久性生片| 女人天堂av免费| 国产91视频观看| 日本手机在线视频| 在线免费无码视频| 欧美成人看片一区二区三区| 国产91av在线| 麻豆精品国产自产在线| 国产无人区一区二区三区| 视频一区视频二区中文精品| 国产亚洲欧美在线中文bt天堂| 亚洲不卡影院| 99视频在线观看免费| 中国丰满人妻无码束缚啪啪| 日韩无码视频网站| 日本精品中文字幕在线不卡| 午夜国产大片免费观看| 天天色天天综合| 91成人在线观看视频| 亚洲综合经典在线一区二区| 久久无码av一区二区三区| 亚洲一区无码在线| 国产精品偷伦视频免费观看国产| 亚洲码一区二区三区| 色婷婷综合在线| 国产福利不卡视频| 色噜噜久久| 久久精品国产999大香线焦| 亚洲αv毛片| 五月天福利视频| 91无码人妻精品一区二区蜜桃| 夜夜高潮夜夜爽国产伦精品| 亚洲一区二区三区国产精品| 日本免费新一区视频| 国产一区自拍视频| 国产区福利小视频在线观看尤物| 一级高清毛片免费a级高清毛片| 一级毛片基地| 国产精品林美惠子在线播放| 色综合天天综合中文网| 最新午夜男女福利片视频| 99热这里只有精品国产99| 欧美综合激情| 国产成+人+综合+亚洲欧美| 中文字幕丝袜一区二区| 亚洲第一国产综合| 亚洲日韩图片专区第1页| 色综合久久久久8天国| 欧美性猛交一区二区三区| 日本国产在线| 精品视频在线观看你懂的一区| 在线va视频| 波多野结衣一区二区三区AV| 国产一级无码不卡视频| 欧美日韩理论| 国产噜噜噜视频在线观看| 在线网站18禁| 色偷偷一区| 在线观看无码a∨| AV无码一区二区三区四区| 成人福利在线看| 欧美日韩亚洲综合在线观看| 无码 在线 在线| 国产精品hd在线播放| 欧美日韩亚洲综合在线观看 |