鄧改革,何建國,李建設,康寧波
?農業生物環境與能源工程?
重力熱管供熱對葡萄越冬根區的增溫效應
鄧改革,何建國,李建設※,康寧波
(寧夏大學土木與水利工程學院,銀川 750021)
葡萄是寧夏特色優勢產業,越冬凍害是制約賀蘭山東麓葡萄產業可持續發展的關鍵問題之一。為解決葡萄越冬根部凍害問題,該研究設計了利用淺層地下水地熱能進行葡萄根區土壤增溫的重力熱管系統;通過數值模擬解析不同間距條件下重力熱管溫度場影響范圍及分布規律,通過現場試驗研究重力熱管的工作特性及對土壤的增溫特性。結果表明:土壤溫度場以重力熱管為中心向四周擴散,熱管中溫影響區水平方向直徑為30.8 cm,豎直方向直徑為32.8 cm;在埋深10 cm,相鄰熱管間距15 cm條件下熱管周圍溫度場部分區域重合,溫度場分布均勻;試驗期間試驗組土壤溫度較對照組平均升高7.0 ℃,增溫效果明顯;重力熱管正常運行期間蒸發段凝結段之間最大溫差為3.7 ℃,蒸發段內最大溫差為1.0 ℃,絕熱段內最大溫差為0.2 ℃,表現出了良好的等溫性;熱管平均啟動溫差為5.4 ℃,平均運行溫差為2.9 ℃;研究結果將為解決葡萄根區凍害問題以及探索淺層地熱能利用新途徑提供理論依據和技術支撐。
溫度;土壤;傳熱;重力熱管;土壤增溫;數值模擬
葡萄是寧夏特色優勢產業,截至2022年底,寧夏釀酒葡萄種植面積達到388.7 km2。賀蘭山東麓是中國新興的優質釀酒葡萄種植區,被稱為中國的“波爾多”,具有日照充足、熱量豐富、降水量少、晝夜溫差大等優勢,被認為是世界上最適合葡萄種植釀造葡萄酒、生產高端葡萄酒黃金地帶之一[1-2]。
在中國北方,極端最低氣溫低于?15 ℃的地區種植的葡萄需要埋土越冬,否則就會發生越冬凍害或抽干。賀蘭山東麓地區是典型的大陸性氣候,冬季寒冷干燥,極端氣溫可低至?30 ℃,對葡萄的安全越冬造成極大威脅[3]。在葡萄越冬凍害防御方面,科研人員開展了大量的研究工作[4-5],例如提出應用抗寒嫁接苗[6]、“溝栽法”建園、按規程埋土[7-8]、材料隔離覆蓋[9-10]等防凍措施,其中埋土覆蓋措施是最常見、應用最普遍的防寒措施[8]。傳統的埋土方式,由于土取自行間,在葡萄密植情況下,取土后根系土壤覆蓋層變薄,葡萄在越冬過程中盡管枝蔓不受凍害,但根系難抵低溫,根系凍害仍普遍發生[11],因此解決葡萄越冬凍害問題亟需創新的技術和方法。
熱管是一種高效的能量轉換裝置[12-13],它利用流體的潛熱[14-15],通過在密封容器中蒸發和冷凝的方式將熱量從一個地方轉移到另一個地方[16-17]。熱管能夠以較小的溫降實現大熱流的遠距離傳輸[18-19],因此在熱能存儲系統[20-22]、熱管理[23-24]、道路融雪[25-26]等許多領域都有廣泛的應用[27]。
本文以賀蘭山東麓越冬葡萄為研究對象,采用主動增溫技術,借助重力熱管將地下水熱量轉移至葡萄根區土壤,解析熱管周圍溫度場變化規律,評價熱管工作性能及根區增溫效果,進而為葡萄安全越冬提供理論依據和科學決策支持。
熱管從地下水中吸收熱量并轉移至葡萄根區土壤,使土壤不凍結。文中土壤重力熱管加熱系統采用“T型”結構,蒸發段位于豎井的地下水中,保溫段位于淺層土壤中,水平凝結段埋在葡萄根區土壤中。“T型”熱管的水平部分被設計成中間低、兩側高,以保證凝結液可以順利地流回蒸發段,結構原理如圖1所示。冬季地下水溫度高于根部土壤,熱管蒸發段工質沸騰吸熱,工質蒸汽沿管道傳至凝結段,隨后氣態工質在凝結段凝結為液態工質并釋放出汽化潛熱。凝結液在重力作用下回流至蒸發段,通過上述循環熱管不斷將熱量從地下水轉移至根部土壤,進而實現葡萄根系土壤增溫,制作完成的重力熱管如圖2所示。
試驗區域土壤白天接收太陽輻射溫度升高,土壤儲蓄熱量;夜晚氣溫降低土壤溫度高于氣溫開始向外釋放熱量,根部土壤與外界大氣之間屬于對流換熱,重力熱管凝結段管壁與周圍土壤之間換熱方式為熱傳導,二維模型見圖3所示。

圖1 重力熱管的構成及工作原理示意圖

圖2 重力熱管外觀圖

注:H為重力熱管埋深,L為重力熱管間距。
地表與外界空氣以對流換熱方式進行熱交換,屬于帶內熱源的對流換熱第三類邊界條件,在土壤表面處,地表與外界環境間換熱方式為熱對流,換熱量大小計算式如下:

式中為地表空氣間對流換熱系數,W/(m2·K)。
凝結段重力熱管單元均勻布置,溫度場對稱軸線處無熱流傳遞可將其視為絕熱邊界,同時由于溫度場對稱性及兩側均無熱量通過,屬于絕熱邊界,則有:

在初始時刻,假設土壤的初始溫度為0,即:
(,,0)=0(3)
土壤夜間無法接收太陽輻射,本研究主要為了獲取夜間條件下重力熱管在葡萄根區土壤增溫特性,地表土壤與外界空氣選取對流換熱邊界條件,換熱系數根據對流換熱公式計算,取值為4 W/(m2·K),經測定土壤的物性參數為:密度=1 900 kg/m3,導熱系數=1.10 W/(m·K),比熱容=1 500 J/(kg·K)。當地每年1月份平均氣溫最低,以1月份現場參數作為數值模擬的初始條件:其中距地表0~600 mm范圍土壤平均溫度為?2.57 ℃,根據現場實測數據,重力熱管管壁平均溫度為8.5 ℃,平均氣溫為?2.7 ℃。
試驗組為直徑50 mm銅管加工成的重力熱管增溫系統,對照組為普通地表土壤,不做任何處理;重力熱管凝結段埋深要綜合考慮多方面的影響:埋深過小,熱管釋放熱量容易通過地表散失到空氣中進而造成能量浪費,埋深過大則容易導致葡萄淺層根系受凍,前期預試驗結果顯示熱管單元傳熱影響半徑為15 cm左右,為了保證極端低溫天氣條件下地表附近葡萄根系不受凍害,保留一定安全余量,將熱管凝結段埋深設定為10 cm;為了了解重力熱管工作特性及土壤增溫特性,分別在試驗組重力熱管蒸發段、絕熱段、凝結段、凝結段相鄰管中間土壤中以及對照組地表土壤中布置傳感器來監測溫度變化,具體傳感器測溫點布置如圖4:重力熱管蒸發段布置3個測溫點(溫度值分別為:1、2和3),傳感器和熱管蒸發段均布置在地下水位以下的含水層中,且間隔均勻布置;重力熱管絕熱段布置2個測溫點(溫度值分別為:4和5),位于地下水位以上的非含水層中;凝結段布置2個測溫點(溫度值分別為:E6和E7),在凝結段相鄰管中間土壤中布置1個測溫點(溫度值為:8),在對照組土壤相同深度位置處布置1個測溫點s,另外布置一個空氣溫度傳感器測溫點a用于監測氣溫變化。
試驗中需要測定的項目包括重力熱管蒸發段平均溫度evp-E,℃;絕熱段平均溫度insu-E和凝結段平均溫度con-E,℃。
evp-E可以通過式(4)計算。

insu-E可以通過式(5)計算。

con-E是凝結段平均溫度,計算式如下:

注:文中數據單位為mm。6和7為凝結段測溫點;8為蒸發段土壤測溫點。
Note: The data unit in the text is mm. 6 and 7 are temperature measuring points of condensation section; 8 is soil temperature measurement point of evaporation section.
圖4 熱管測溫點分布示意圖
Fig.4 Schematic diagram of heat pipe temperature measurement point distribution
為了解單個重力熱管單元在土壤中的傳熱特性,建立單重力熱管單元傳熱模型,所選取模型寬高均為60 cm,重力熱管單元距地表10 cm。
溫度場模擬結果見圖5所示,土壤溫度場以熱管為中心向四周擴散,根據溫度高低可將溫度場劃分為4個區域:溫度范圍為5.0~8.50 ℃高溫影響區Ⅰ,溫度范圍為0~5.0 ℃中溫影響區Ⅱ,溫度范圍為?2.57~0 ℃低溫影響區Ⅲ,溫度場未受影響區域Ⅳ;最高溫度出現在溫度場區域Ⅰ凝結段管壁,溫度為8.50 ℃;從管壁四周向外溫度逐漸降低,在溫度場區域Ⅳ溫度降至最低為?2.57 ℃,該溫度也是在一月份氣象參數且無熱管存在條件下土壤溫度場的初始值;土壤中葡萄根系不受凍害的中溫溫度場Ⅱ影響范圍在豎直方向直徑為32.8 cm,水平方向直徑為30.8 cm。
為了解相鄰重力熱管溫度場的相互影響,建立3個重力熱管單元模型,由前面分析可知熱管單元在水平方向影響半徑為15 cm,現將熱管單元間距設定為15 cm,其溫度場模擬結果見圖6a所示。由圖6a可知,3重力熱管溫度場穩定后,相鄰熱管單元溫度場相互影響,高溫影響區Ⅰ部分區域重疊,區域Ⅱ相互連通形成一更大范圍中溫影響區,熱管上方距離地表4 cm平面區域溫度場均勻,維持在4.10 ℃左右。

注:Ⅰ、Ⅱ、Ⅲ、Ⅳ分別表示熱管的高溫影響區,中溫影響區,低溫影響區及溫度場未受影響區。
由此可知,熱管單元間距為15 cm時,相鄰熱管間傳熱影響范圍稍有重合,為節約成本,嘗試將熱管單元間距增大至20 cm,研究該熱管間距下,熱管單元間距對土壤溫度場均勻性的影響,進而分析其溫度場分布規律,結果見圖6b。由圖6b可知,當重力熱管單元間距增大至20 cm后,高溫影響區域Ⅰ重合部分較15 cm間距情況下明顯減少,中溫影響區Ⅱ相互連通形成一更大范圍中溫影響區,但熱管上方4 cm區域溫度場均勻性較15 cm間距情況變差。由此可知,增加熱管單元間距雖然可以降低材料及加工成本,但是土壤溫度場均勻性也相應變差;減小熱管單元間距可以增加土壤溫度場均勻性,但是增加了材料及加工成本。因此,熱管單元間距的選取應該在保證土壤溫度場均勻性的前提下適當增加其間距,綜合分析本文中單元熱管間距確定為15 cm。

圖6 不同熱管間距溫度場模擬
2.2.1 觀測期內重力熱管傳熱特性分析
為了了解重力熱管對葡萄根區的增溫效應,在寧夏大學農科實訓中心布置重力熱管試驗系統,現場試驗從2020年11月16日開始到2021年3月16日結束,共持續120 d。
試驗期間試驗組和對照組溫度場變化規律如圖7所示。由圖7可知,試驗期間氣溫以天為周期波動,前50 d整體呈下降趨勢,后期氣溫波動上升;對照組土壤溫度變化趨勢與氣溫變化趨勢類似,但是土壤溫度變化滯后于氣溫變化,該結論與前人的研究結果類似[28];試驗組土壤溫度8測點位于凝結段相鄰熱管中間土壤中,其溫度主要由凝結段平均溫度con-E決定,從圖7可以看出兩者溫度變化趨勢幾乎同步,由于熱量是由熱管向土壤傳遞,因此凝結段熱管溫度高于相鄰熱管間土壤溫度;熱管持續將地下水中熱量轉移至葡萄根系土壤,試驗組土壤溫度明顯高于對照組,試驗期間試驗組土壤溫度8較對照組土壤溫度s平均提升7.0 ℃,增溫效果明顯;試驗期內重力熱管蒸發段溫度高于凝結段,平均溫差為2.1 ℃,說明熱管有良好的傳熱特性。基于此特性,熱管蒸發段與凝結段具有類似的溫度場變化規律:當外界氣溫降低時,葡萄根部土壤溫度隨之降低,熱管凝結段向土壤釋放熱量增加而導致其溫度下降,此時蒸發段向凝結段傳遞熱量也增加,蒸發段溫度隨之下降;反之,當外界氣溫升高時,葡萄根部土壤溫度隨之升高,熱管凝結段向土壤釋放熱量減少而導致其溫度升高,此時蒸發段向凝結段傳遞熱量也減少,蒸發段溫度隨之上升。

注:Tevp-E和Tcon-E分別為熱管蒸發段和凝結段平均溫度,℃。
2.2.2 重力熱管軸向溫度分布及啟動特性分析
為研究重力熱管軸向溫度分布特征,現選取觀測期內5個典型天氣進行分析,分別是2020年11月21日下雪天,2020年12月2日陰天,2021年1月6日極寒天氣,2021年1月12日晴天,2021年2月20日白天溫度極高。軸向溫度分布見表1所示。
重力熱管正常運行期間蒸發段溫度高于絕熱段,絕熱段溫度高于凝結段,由表1分析可知,選取的5個典型天氣除2021年2月20日外,重力熱管均處于正常運行狀態;重力熱管正常運行期間蒸發段與凝結段最大溫差為3.5 ℃,蒸發段內最大溫差為1.0 ℃,絕熱段內最大溫差為0.20 ℃,熱管表現出了良好的等溫性。在試驗觀測后期的2021年2月20日白天溫度達到了觀測期內的最高值21.0 ℃,同時熱管凝結段溫度達到了12.2 ℃,該溫度超過了蒸發段的溫度,熱管停止工作。

表1 重力熱管軸向溫度分布
注:Δmax為蒸發段與凝結段最大溫差,℃。
Note:Δmaxis the maximum temperature difference between the evaporation and condensation section, ℃.
為進一步研究該重力熱管的啟動特性,對2021年2月9日至2月16日共計8 d的觀測數據進行分析。由圖8可知,隨著試驗后期氣溫回升,一天中有部分時間凝結段溫度超過蒸發段,熱管停止工作,其余時間隨著氣溫降低凝結段溫度也隨之降低,當蒸發段凝結段溫差達到一定數值后,熱管又重新運行。熱管蒸發段與凝結段溫差Δ可作為判斷熱管是否處于工作狀態的關鍵指標,根據傳熱學原理,當Δ降為0 ℃時,熱管停止工作,當Δ增加到一定數值時,熱管重新啟動,該溫差稱為熱管的啟動溫差,熱管正常運行期間溫差稱為運行溫差。由圖8可知上述觀測期內熱管均處于間歇運行狀態。對上述觀測期內熱管運行相關參數進行統計,見表2。通過表2可知,熱管平均啟動溫差為5.4 ℃,平均運行溫差為2.9 ℃。

注:ΔT為蒸發段與凝結段溫差,℃。

表2 重力熱管啟動溫差及運行溫差統計
1)重力熱管凝結段不同間距會影響其土壤中溫度場分布規律,土壤中葡萄根系不受凍害的中溫溫度場影響范圍在豎直方向直徑為32.8 cm,水平方向直徑為30.8 cm。
2)重力熱管正常運行期間蒸發段和凝結段之間最大溫差為3.5 ℃,等溫性良好;試驗組土壤溫度較對照組平均提高7.0 ℃,增溫效果明顯,通過重力熱管開發淺層地熱能實現葡萄根區增溫防凍的方法是可行的。
本研究旨在探索一種利用清潔可再生的淺層地熱能來實現葡萄根區增溫的方法,為解決葡萄根區凍害問題提供理論依據和技術支撐。然而影響熱管傳熱特性及土壤增溫特性的因素較多,如熱管材質、管徑、土壤導熱系數以及不同蒸發段凝結段長度等,這些內容將在今后的研究中進一步豐富和深入。
[1] 丁琦. 寧夏典型釀酒葡萄抗寒機理研究[D]. 南京:南京信息工程大學,2020.
DING Qi. The Mechanism of Cold Resistant of Typical Wine Grape in Ningxia Province[D]. Nanjing: Nanjing University of Information Science &technology, 2020. (in Chinese with English abstract)
[2] 李欣,張光弟,李玉鼎. 簡易埋土法在賀蘭山東麓釀酒葡萄越冬防寒中的應用研究[J]. 北方園藝,2013,36(3):34-36.
LI Xin, ZHANG Guangdi, LI Yuding. Application study on the way of easy soil-burying for grapewine cold resistant at eastern foot of Helan Mountain in winter[J]. Northern Horticulture, 2013,36(3): 34-36. (in Chinese with English abstract)
[3] 李玉鼎,宋文章,宋長冰,等. 2009年黃羊灘、紅寺堡等釀酒葡萄基地葡萄凍害調查報告[J]. 中外葡萄與葡萄酒,2010,34(11):35-37.
LI Yuding, SONG Wenzhang, SONG Changbing, et al. Investigative report on grape frost damage in huangyangtan, Hongsibao and other wine grape bases in 2009[J]. Sino-Overseas Grapevine & Wine, 2010, 34(11): 35-37. (in Chinese with English abstract)
[4] 胡悅,劉玉蘭,郭曉雷,等. 保溫棚對葡萄免埋土越冬防寒的作用[J]. 北方園藝,2020,43(19):52-56.
HU Yue, LIU Yulan, GUO Xiaolei, et al. Effects of heat preservation shed on cold protection of grape without burying soil[J]. Northern Horticulture, 2020,43(19): 52-56. (in Chinese with English abstract)
[5] 李樹德,李兆寰. 不同防寒措施對葡萄樹體生長與結果特性的影響[J]. 新疆農墾科技,2021,44(1):10-12.
[6] 李玉鼎,馬成斌,李欣,等. 寧夏釀酒葡萄種植業可持續發展思考[J]. 中外葡萄與葡萄酒,2019,43(2):99-102.
LI Yuding, MA Chengbin, LI Xin, et al. Thoughts on sustainable development of wine grape planting industry in Ningxia[J]. Sino-Overseas Grapevine & Wine, 2019,43(2): 99-102. (in Chinese with English abstract)
[7] 劉素芹,宋云云,呂鴻松. 葡萄免埋土防寒越冬栽培技術[J]. 落葉果樹,2021,53(2):60-61.
[8] 李從娟,王世杰,孫永強,等. 葡萄越冬防寒技術研究綜述[J]. 沙漠與綠洲氣象,2021,15(2):138-143.
LI Congjuan, WANG Shijie, SUN Yongqiang, et al. Overview of the grape protection techniques against the cold in winter[J]. Desert and Oasis Meteorology, 2021, 15(2): 138-143. (in Chinese with English abstract)
[9] 徐紅雁. 雙膜覆蓋對葡萄安全越冬的影響分析[J]. 農業與技術,2021,41(6):145-148.
[10] 李鵬程,李銘,郭紹杰,等. 無膠棉覆蓋葡萄越冬對根區土壤溫度的影響[J]. 黑龍江農業科學,2012,34(12):39-41.
LI Pengcheng, LI Ming, GUO Shaojie, et al. Effect of glueless cotton covering on root region soil temperature in grapes[J]. Heilongjiang Agricultural Sciences, 2012,34(12): 39-41. (in Chinese with English abstract)
[11] 張亞紅,平吉成,王文舉,等. 寧夏釀酒葡萄不同埋土方式越冬效果的比較[J]. 果樹學報,2007,23(4):449-454.
ZHANG Yahong, PING Jicheng, WANG Wenju, et al. Comparison of different soil - burry methods on the over - wintering of wine gr ape cultivars in Ningxia Autonomous Region[J]. Journal of Fruit Science, 2007,23(4): 449-454. (in Chinese with English abstract)
[12] YU F, QI J L, ZHANG M Y, et al. Cooling performance of two-phase closed thermosyphons installed at a highway embankment in permafrost regions[J]. Applied Thermal Engineering, 2016, 98: 220-227.
[13] HAN F L, CHEN L, YU W B, et al. Experimental study on heat transfer of upright pipes in cold regions[J]. Applied Thermal Engineering, 2017, 117: 17-23.
[14] Kim Y A, Kim J S A, Shin D H Aet al. Effects of hydrophobic and superhydrophobic coatings of a condenser on the thermal performance of a two-phase closed thermosyphon[J]. International Journal of Heat & Mass Transfer, 2019, 144:118706.
[15] ZHANG Y P, QU F F, CHEN Y, et al. Simulation optimization research of anti-freezing heat pipe for preheating fresh air in wellbore[J]. Earth and Environmental Science, 2021, 647(1): 12093.
[16] CEN J W, LI F, LI T L, et al. Experimental study of the heat-transfer performance of an extra-long gravity-assisted heat pipe aiming at geothermal heat exploitation[J]. Sustainability, 2021, 13(22): 12481.
[17] NIKOLAENKO Y, PEKUR D, SOROKIN M, et al. Experimental study on characteristics of gravity heat pipe with threaded evaporator[J]. Thermal Science and Engineering Progress, 2021, 26: 101107.
[18] DENG G G, KANG N B, HE J G, et al. An investigation of the performance of groundwater-based heat pipes in heating lawn systems[J]. Energy Conversion and Management, 2021, 244: 114492.
[19] SUN F R, YAO Y D, LI G Z, et al. Performance of geothermal energy extraction in a horizontal well by using CO2as the working fluid[J]. Energy Conversion and Management, 2018, 171: 1529-1539.
[20] 李洪,張曼. 被動調節模式環路熱管型光伏光熱系統性能分析[J]. 農業工程學報,2021,37(16):205-211.
LI Hong, ZHANG Man. Performance analysis of loop-heat-pipe type solar photovoltaic/thermal system under passive regulation operating mode[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(16): 205-211. (in Chinese with English abstract)
[21] 吳薇,夏曼,尹正宇,等. 蓄能材料對內插熱管式太陽能熱泵系統冬季性能的影響[J]. 農業工程學報,2020,36(5):226-232.
WU Wei, XIA Man,YIN Zhengyu, et al. Effect of energy storage materials on performance of solar heat pump system with inserted heat pipe in winter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 226-232. (in Chinese with English abstract)
[22] MAALEJ S, ZAYOUD A, ABDELAZIZ I, et al. Thermal performance of finned heat pipe system for Central Processing Unit cooling[J]. Energy Conversion and Management, 2020, 218: 112977.
[23] 張維蔚,王甲斌,田瑞,等. 熱管式真空管太陽能聚光集熱系統傳熱特性分析[J]. 農業工程學報,2018,34(3):202-209.
ZHANG Weiwei, WANG Jiabin, TIAN Rui, et al. Analysis of heat transfer characteristics for parabolic trough solar collector system with heat-pipe evacuated tube[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 202-209. (in Chinese with English abstract)
[24] 王騰月,刁彥華,趙耀華,等. 微熱管陣列式太陽能空氣集熱-蓄熱系統性能試驗[J]. 農業工程學報,2017,33(18):148-156.
WANG Tengyue, DIAO Yanhua, ZHAO Yaohua, et al. Performance experiment on solar air collection-storage system with phase change material based on micro heat pipe arrays[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(18): 148-156. (in Chinese with English abstract)
[25] WANG X Y, FAN H T, ZHU Y Z, et al. Heat transfer simulation and analysis of ice and snow melting system using geothermy by super-long flexible heat pipes[J]. Energy Procedia, 2017, 105: 4724-4730.
[26] ZHANG M Y, LAI Y M, DONG Y H, et al. Laboratory investigation of the heat transfer characteristics of a two-phase closed thermosyphon[J]. Cold Regions Science and Technology, 2013, 95: 67-73.
[27] ZHANG C, Tan Y Q, Chen F C, et al. Long-term thermal analysis of an airfield-runway snow-melting system utilizing heat-pipe technology[J]. Energy Conversion and Management, 2019, 186: 473-486.
[28] 楊洪波,于曉丹,付海美,等. 西藏那曲地區土壤溫度變化特征及其與環境關系研究[J]. 全球變化數據學報(中英文),2020,4(2):144-154.
YANG Hongbo, YU Xiaodan, FU Haimei, et al. Variation of soil temperature and its relationship with the environment in nagqu, tibet[J]. Journal of Global Change Data & Discovery, 2020, 4(2): 144-154. (in Chinese with English abstract)
Warming effect of grape overwintering root zone using gravity heat pipe heating
DENG Gaige, HE Jianguo, LI Jianshe※, KANG Ningbo
(,,750021,)
The Eastern Helan Mountain can be the largest concentrated and contiguous producing areas for the wine grape in China. Specifically, the wine grape planting area reached 388.7 square kilometers in Ningxia by the end of 2022, accounting for nearly 1/3 of the nation, and the comprehensive output value exceeded 30 billion Yuan. However, the extremely low temperatures (down to -30.0℃) in winter in the eastern part of the Helan Mountains can lead to the occurrence of overwintering frost damage, which greatly limits the sustainable development of Ningxia's grape industry. In this study, a gravity heat pipe system was designed using shallow groundwater geothermal energy for the soil warming in the root zone of grapes. Numerical simulation was also carried out to analyze the influence range and distribution of the gravity heat pipe temperature field under different spacing. A series of field experiments were used to verify the working performance of the gravity heat pipe and the warming characteristics of the soil. The results show that the soil temperature field was evenly spread around the gravity heat pipe. The temperature field around the heat pipe was divided into four regions, according to the temperature level: the temperature range was 5.0-8.50℃ high-temperature affected region Ⅰ, the temperature range was 0-5.0℃ medium-temperature affected region Ⅱ, the temperature range was -2.57-0 ℃ low-temperature affected region Ⅲ, and the temperature field was not affected region Ⅳ. The highest temperature (8.50 ℃) appeared in the temperature field area Ⅰ condensation section pipe wall, whereas, the lowest temperature (-2.57 ℃) was in the temperature field unaffected area Ⅳ. In addition, the diameter of the medium temperature affected area of the heat pipe in the soil was 30.8 cm horizontally and 32.8 cm vertically, where the grape roots were not affected by frost. There were evenly distributed temperature fields around the heat pipes partially overlapped and the temperature fields under the conditions of 10 cm burial depth and 15 cm spacing between adjacent heat pipes. The soil temperature increased by 7.0 ℃ on average in the experimental group during the test period, compared with the control group, indicating the outstanding increase in temperature. The maximum temperature difference was 3.5 ℃ between the evaporation and condensation sections during the normal operation of the gravity heat pipe. The maximum temperature differences were 1.0 and 0.2 ℃ within the evaporation section, and within the adiabatic section, respectively, indicating the excellent isothermal distribution. The average start-up and operating temperature difference of the heat pipe were 5.4 and 2.9 ℃, respectively. The clean and renewable shallow geothermal energy was taken as a source of heating energy in the root zone of grapes, which was in line with the current green development concept. The finding can provide the theoretical basis and technical support to treat the frost damage in the root zone of grapes. In addition, a way was proposed to realize the development and utilization of shallow geothermal energy using gravity heat pipes.
temperature; soils; heat transfer; gravity heat pipe; soil warming; numerical simulation
2022-07-23
2022-12-15
寧夏自然科學基金項目(2022AAC03644)
鄧改革,博士,研究方向為水熱交換過程數值模擬與控制。Email:976141121@qq.com
李建設,博士,博士生導師,研究方向為設施園藝、生理生態、無土栽培。Email:13709587801@163.com
10.11975/j.issn.1002-6819.202207227
TK11
A
1002-6819(2023)-07-0205-06
鄧改革,何建國,李建設,等. 重力熱管供熱對葡萄越冬根區的增溫效應[J]. 農業工程學報,2023,39(7):205-210. doi:10.11975/j.issn.1002-6819.202207227 http://www.tcsae.org
DENG Gaige, HE Jianguo, LI Jianshe, et al. Warming effect of grape overwintering root zone using gravity heat pipe heating[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(7): 205-210. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202207227 http://www.tcsae.org