999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

多輪次篩選選育高酚酸耐受性丁醇生產菌

2023-06-12 05:25:28經玉潔黃小倩田璐毅丁歡歡施超越李漢廣
農業工程學報 2023年7期
關鍵詞:產量

經玉潔,黃小倩,田璐毅,丁歡歡,卜 京,施超越,李漢廣

多輪次篩選選育高酚酸耐受性丁醇生產菌

經玉潔,黃小倩,田璐毅,丁歡歡,卜 京,施超越,李漢廣※

(江西農業大學生物科學與工程學院/應用微生物研究所,南昌 330045)

纖維原料預處理過程中會產生酚酸等抑制菌株生長的物質,為選育出高丁醇產量及高耐受酚酸脅迫丁醇生產菌株,該研究利用多因子復合篩選策略篩選出一株能夠合成足夠還原力與對丁醇耐受性較好的菌株W6。通過丁醇脅迫適應性進化獲得丁醇耐受菌W6-1,其丁醇和總溶劑產量相較于菌株W6分別提高了14.01%和16.85%。通過紫外誘變處理菌株W6-1并結合理性篩選模型最終獲得丁醇產量較高菌株W6-2,其丁醇及總溶劑產量分別可達到(9.51±0.06)和(15.32±0.11)g/L。最后將菌株W6-2通過酚酸脅迫適應性進化得到突變菌W6-3,其能耐受1.0 g/L酚酸脅迫環境,且丁醇和總溶劑產量相較于菌株W6-2分別提高了18.17%和17.49%。當以葛渣水解液為底物進行丙酮丁醇發酵時,突變菌W6-3的丁醇產量達(8.54±0.31)g/L,相較于菌株W6-2提高了26.71%。經多輪次誘變及適應性進化處理獲得的突變菌的酚酸耐受性及發酵性能均有較大提高,該文所采用的多輪次篩選方法可以為其他快速篩選優良生產菌提供可靠的理論參考。

菌株;發酵;復合篩選;酚酸脅迫;水解液

0 引 言

化石能源作為當今世界的主要能源之一,在給人類經濟發展帶來無限動力的同時,也產生了如大氣污染、溫室效應等諸多環境問題[1]。為克服這一不利局面,人們開始著手開發可持續綠色能源,在諸多綠色能源中,生物丁醇作為一種多功能四碳醇(C4H10O),與其他傳統生物燃料(低級醇)相比具有弱腐蝕性、低揮發性、強混合性及可在現有管道中進行運輸等優點,被認為是最具潛力的第二代新型生物燃料[2-3],因此,加強對丙酮丁醇發酵的研究具有重要的現實意義。

傳統的丙酮丁醇發酵(acetone-butanol-ethanol,ABE)是以淀粉、葡萄糖為底物進行,原料成本往往占生產成本的60%~70%[4],尋找廉價易得可發酵原料逐漸成為ABE發酵研究的熱點[5]。木質纖維素是地球上最豐富的可再生原料,近年以其作為ABE發酵原料成為該領域研究的焦點[6],中國有很多地方種植葛根,年產量在500萬t以上,從葛根中提取葛根異黃酮和葛根粉后,產生的副產物為葛渣[7],成分為75%的纖維素和半纖維素、礦物離子、少量含氮化合物,由于粗纖維含量高,大多數生物難以直接利用,導致其除少數用來造紙或用作飼料外,其余大部分被廢棄[8],這一行為會造成資源的大量浪費,給后續環境處理帶來不少的壓力。因此,將葛渣用作ABE發酵原料,不僅可以解決制藥或食品企業的廢棄物排放問題,還可生產生物燃料。然而現有的常用丁醇生產菌(、等)不能將木質纖維素直接利用,需要一個復雜的預處理過程[9]。盡管在生物質預處理[10]、酶解[11]和抑制物脫毒[12]等方面均進行了較多的工藝改進,但在水解過程中還是會產生大量抑制微生物生長與代謝的物質,如呋喃類(糠醛和5-羥甲基糠醛(5-HMF))、酚類(如丁香酸、4-羥基苯甲酸和對香豆酸)以及弱酸類(如乙酸和甲酸)等[12-13]。其中酚類化合物由于會破壞生物膜,導致細胞膜完整性的喪失,減弱了細胞膜作為選擇性屏障的能力,因此酚類化合物被認為是抑制作用最強的一大類化合物[14-16]。要想高效利用木質纖維水解液作為ABE發酵原料,必須有效消除酚類化合物對細胞生長帶來的不利影響[17]。

在木質纖維水解液的酚類化合物中,酚酸的種類和含量都要比酚醛多,且其化學性質穩定,一般的物理方法和化學方法都難以將其消除[18-20]。而且脫毒過程往往存在可發酵糖的損失以及增加纖維原料的操作成本等問題,若能獲得高酚酸耐受性菌株,有望用未脫毒纖維水解液進行ABE發酵。為選育出高酚酸與高丁醇耐受性丁醇生產菌株,本研究利用丁醇-刃天青-可溶性淀粉多因子復合篩選策略篩選出一株具有較強丁醇合成能力的菌株;利用丁醇脅迫適應性進化及紫外誘變技術復合處理菌株以提高其丁醇產量及丁醇耐受性,然后將菌株進行酚酸脅迫適應性進化,以提高菌株的酚酸耐受性能,并以葛渣水解液為底物評估突變菌株對木質纖維素水解液利用能力的變化。本研究結果可為高效利用木質纖維水解液為碳源的丁醇生產菌株的選育及其發酵提供一定的理論依據和技術支撐。

1 材料與方法

1.1 發酵菌株

本實驗室保藏的菌株W(W),為本實驗室從江西滕王閣藥業有限公司周邊村莊的土壤中篩選所得[21]。

1.2 培養基

1)分離純化培養基:葡萄糖40.0 g/L,可溶性淀粉40.0 g/L,酵母粉2.0 g/L,胰蛋白胨6.0 g/L,乙酸胺3.0 g/L,KH2PO40.5 g/L,K2HPO40.5 g/L,FeSO4·7H2O 0.01 g/L,MgSO4·7H2O 0.2 g/L,瓊脂20.0 g/L,pH值為6.0,121 ℃滅菌20 min。

2)篩選培養基:在分離純化培養基基礎上添加8.0 g/L丁醇及0.02 g/L刃天青。

3)發酵培養基:葡萄糖55.0 g/L,酵母粉3.0 g/L,KH2PO40.5 g/L,K2HPO40.5 g/L,CaCO34.0 g/L,pH值為6.0,121 ℃滅菌20 min。無機鹽溶液(MgSO4·7H2O 0.02 g/L、FeSO4·7H2O 0.01 g/L,NaCl 0.01 g/L)及維生素(對氨基甲苯酸0.001 g/L、維生素B1 0.001 g/L、生物素0.000 01 g/L)配制成的母液用0.22 μm的微孔濾膜進行過濾除菌后加入。

1.3 多因子復合篩選和脅迫適應性進化

1.3.1 多因子復合篩選

菌株接種至丁醇-刃天青-可溶性淀粉多因子篩選固體平板,通過判斷褪色圈、菌落大小以及ABE發酵后溶劑產量,篩選出一株能夠合成足夠還原力和對丁醇耐受性較好的菌株。

1.3.2 丁醇脅迫適應性進化

丁醇的浸泡濃度預設定為10、15、20和25 g/L,具體步驟如下:取0.1 mL對數生長期的細胞轉接至含10 g/L丁醇的發酵培養基和未加丁醇的發酵培養基中(對照),試驗組出現明顯生長現象后取對數期細胞液涂布至對應丁醇濃度的篩選培養基中,培養并挑取生長健壯、透明圈最大的菌株到含15 g/L丁醇固體平板進行適應性進化。如此逐步提高培養基中的丁醇濃度,最終獲得高丁醇耐受性菌株,本研究所有試驗均進行生物學重復。

1.3.3 酚酸脅迫適應性進化

適應性進化所用的復合酚酸為丁香酸、對羥基苯甲酸和對香豆酸,等比例配成0.5、0.75、1.0、1.1、1.2和1.3 g/L溶液。將活化的菌株按10%的接種量接入含有0.5 g/L混合酚酸的發酵培養基培養7~10 d,然后取菌液涂布到含有0.75 g/L混合酚酸的固體培養基培養,挑選長勢較好的菌株接種到含有0.75 g/L復合酚酸的液體培養基發酵培養,如此逐步提高混合酚酸培養基濃度進行轉接和培養,最終獲得高酚酸耐受性菌株。

1.4 紫外誘變處理

取700 μL培養24 h的發酵液在試管中采用10倍稀釋法進行稀釋,利用無菌生理鹽水將其梯度稀釋至10-4,在紫外燈下分別照射0、0.5、1、1.5、2、3、4、5、6、7、8、9和10 min,每個處理三個平行。誘變完成后在黑暗環境下取100 μL進行涂布,避光放置在37℃培養箱中培養,計算其致死率和正突變率(丁醇產量高于原始菌株5%以上的視為正突變菌株),確定紫外誘變最佳時間。兩者的計算公式如下:

式中F為致死率(fatality rate,FR),%;為正突變率,%;1為誘變前菌落數;2為誘變后菌落數;3為誘變后正突變菌落數。

1.5 葛渣水解液制備

將葛渣和蒸餾水按1∶8(質量體積比)的比例混合,加入適量濃H2SO4使其終濃度為1.0%(體積分數),攪拌混勻后于121 ℃高溫高壓下水解60 min,冷卻后用Ca(OH)2粉末將pH值調整至6.0左右,然后通過離心收集上清從而獲得葛渣水解液。

1.6 水解液丁醇發酵

將活化的菌株按10%的接種量接入水解液培養基(還原糖60.0 g/L,其他成分同發酵培養基)中,37 ℃靜置培養,定期取樣測定溶劑濃度等數據。

1.7 測定方法

1.7.1 還原糖測定

還原糖濃度利用DNS法[22]進行測定,測定波長為560 nm。

1.7.2 溶劑含量測定

通過內標法(內標為異丁醇)測定上清液中的溶劑含量[23],氣相色譜條件如下:氣相色譜儀用的檢測器與色譜柱分別為火焰離子檢測器(FID)和毛細管柱(RB-5,30 mm×0.32 mm×0.25 mm),柱溫、檢測器和進樣器溫度分別為70、210和200 ℃,進樣量1.0 μL。總溶劑為乙醇、丙酮和丁醇產量之和。

式中為產率,%;為得率,%;B為丁醇占比(Butanol ratio,B),%;:溶劑濃度,g/L;為發酵時間,h;C為還原糖消耗量,g/L;C:丁醇濃度,g/L;C:總溶劑濃度,g/L。

2 結果與分析

2.1 多因子復合篩選結果

ABE發酵分為產酸期和產溶劑期2個階段[24],在產酸期向產溶劑期過渡過程中,需要還原力NADH的參與[25]。NADH是碳代謝的重要輔因子,通過激活或抑制代謝途徑中關鍵酶的活性對碳代謝流流向及其通量進行調控,因此高活力丁醇生產菌株往往具有較強的還原力合成能力[26]。刃天青作為常用的氧化還原指示劑,顏色變化靈敏,可鑒別細胞的還原能力,靳孝慶等[27]根據這一特點,設計了刃天青篩選平板,篩選出高還原活性的菌株。

本研究利用多因子篩選方案共分離純化出58個單菌落,其中有6個單菌落顏色為白色至米黃色,呈近似圓形、菌落飽滿、邊緣向外擴散,表面呈不透明但有光澤,而且具有較大的透明圈和褪色圈,表明這6株菌具有較強的還原力,同時具有一定的丁醇耐受性。將此6個突變菌株分別命名為W1、W2、W3、W4、W5、W6,并將其以葡萄糖作為底物進行ABE發酵。

由表1可以看出,6株突變菌的丁醇產量在6.92~7.49 g/L之間,總溶劑產量均超過9.0 g/L,丁醇占總溶劑比例的平均值約為70%。其中菌株W2、W5和W6的丁醇產量為7.49、7.48和7.47 g/L,在此處理中丁醇產量相對較高,但W6丁醇占比高于W2和W5水平,因此采用菌株W6進行下一步的選育。

表1 篩選菌株在以葡萄糖為碳源條件下的溶劑產量

2.2 丁醇脅迫適應性進化

有研究表明提高生產菌的丁醇耐受性可以降低菌株的產芽孢率以保證發酵正常進行[28]。而通過外源添加溶劑(丁醇)的方式來模擬生物進化是提高菌株耐受性的一種操作簡單、定向性強的技術。為進一步提高菌株W6的丁醇耐受性,本試驗對菌株W6進行多輪次丁醇脅迫適應性進化,由表2可知,隨著丁醇濃度的增大,菌株的丁醇和總溶劑產量逐漸提高,當外源添加20.0 g/L丁醇時,此時丁醇和總溶劑產量達到最大值,分別為(8.22±0.21)和(11.72±0.26)g/L,相較于對照組分別提高了14.01%和16.85%。當處理濃度超過20.0 g/L時,菌株溶劑產量反而略有下降,根據這一試驗現象,將適應性進化濃度固定在20.0 g/L,此時獲得的菌株命名為W6-1。

2.3 紫外誘變

紫外誘變作為一種傳統的誘變手段,在提高微生物的生長或發酵方面起到過非常重要的作用[29]。該方法操作簡單、成本低,普通的實驗室均可開展,為了使適應性進化后的菌株W6-1獲得一些新的優良性狀以期進一步提高菌株溶劑產量,本研究將其進行紫外照射處理,結果如圖1所示。

表2 不同濃度丁醇處理后的溶劑產量比較

由圖1可知,菌株的致死率隨著誘變時間的增加而上升,當處理時間為3 min時,菌株致死率達到78.05%;當處理時間為5 min時,菌株致死率為92.68%;處理時間超過7 min后,菌株的致死率可達100%。另一方面,誘變后菌株正突變率隨著誘變時間的延長呈先升高后下降的趨勢,當處理時間為3 min時,獲得了最大正突變率(4.5%)。有研究表明菌體的誘變效果和生存能力在致死率為80%左右時為最佳誘變條件[30],由此本試驗確立最佳紫外誘變時間為3 min。

圖1 不同誘變時間下菌株致死率及正突變率

將紫外誘變處理3 min后的菌懸液涂布于篩選平板,挑取褪色圈較大、健壯單菌落進行發酵試驗。由圖2可知,發酵結束后丁醇濃度在8.0 g/L以上的菌株約占57%,其中溶劑產量在菌株W6-1之上的有10株,占總菌株的38.46%。此外第13株菌的丁醇和總溶劑產量最大,分別為(9.51±0.06)和(15.32±0.11)g/L,相較于菌株W6-1分別提高了15.69%和30.72%(與菌株W6相比分別提高了27.31%和45.90%)。因此選第13株菌作為研究對象(命名為W6-2)。

圖2 紫外誘變高產菌株丁醇和總溶劑產量

2.4 菌株W6-2遺傳穩定性試驗

為驗證菌株W6-2的遺傳穩定性,將菌株進行了10次傳代培養,由表3可知,試驗過程中菌株的丁醇和總溶劑產量穩定維持在8.56~9.12和12.02~13.81 g/L范圍,10代丁醇與總溶劑的平均產量分別為8.75和12.62 g/L,與第1代相比分別僅降低了0.11%和1.94%,雖然10代丁醇及總溶劑產量略有所變化,但總體穩定,說明菌株發酵性能并無明顯變化,由此可看出該誘變后獲得的菌株具有很好的遺傳穩定性。

2.5 酚酸脅迫適應性進化策略對菌株耐受性的影響

木質纖維素水解液中酚酸多以復合酚酸形式存在,為提高菌株W6-2對木質水解液中酚酸的耐受性,本研究選擇了3種典型酚酸:丁香酸、對香豆酸和對羥基苯甲酸作為脅迫抑制劑。在進行酚酸脅迫適應性進化前,為了確定合適的脅迫濃度,研究了3種典型酚酸單一添加(0.25、0.5、0.75和1.0 g/L)對菌株W6-2發酵的影響,其結果如圖3所示。

表3 菌株W6-2遺傳穩定性試驗

注:實線為丁醇產量,虎線為還原糖濃度。

試驗結果表明,當丁香酸和對香豆酸添加量為0.25 g/L時,丁醇產量與對照組相比分別提高了19.77%和26.51%;當二者的添加量為0.5 g/L時,丁醇最終產量與對照組相比基本保持不變,而當二者的添加濃度為0.75 g/L時,菌株合成丁醇的能力開始受到明顯抑制作用。另一方面,當對羥基苯甲酸添加量為0.5 g/L時,溶劑產量就開始受到明顯抑制;當添加濃度為0.75 g/L時,在發酵結束時幾乎無丁醇產生。

在單一添加的基礎上探究了復合添加對菌株W6-2發酵的影響,以總酚酸濃度為0.5 g/L,丁香酸:對羥基苯甲酸、丁香酸:對香豆酸和對香豆酸:對羥基苯甲酸質量比為2:1、1:1與1:2和3種酚酸等比例加入發酵培養基培養,其結果如圖4所示。從圖4可知,3種酚酸等比例復合時抑制效果最強,發酵結束時其丁醇和總溶劑產量分別為(5.83±0.18)和(8.27 ± 0.36)g/L,相比對照組分別降低了32.56%和34.93%。當單一丁香酸和對香豆酸添加量為0.5 g/L時,丁醇產量分別為(8.34±0.69)和(8.53±0.71)g/L,等比例添加3種酚酸相較于單獨添加丁醇產量抑制效果分別增強了43.05%和46.31%。相較于單獨添加對羥基苯甲酸,等比例添加三種酚酸丁醇產量也略微下降。試驗結果表明,單一的抑制物對菌株的生長抑制作用在低濃度時往往低于多種抑制物協同作用的;此外,3種酚酸混合添加比其中任意2種酚酸不同比例混合抑制效果更為明顯。因此為將菌株W6-2在類似環境中進行脅迫馴化,選擇了0.5 g/L的復合酚酸。

為進一步提高菌株W6-2對酚酸的耐受性能,本試驗將其逐級置于不同比例復合酚酸的環境中進行脅迫適應性進化后獲得一株高耐受酚酸脅迫突變菌株W6-3,將其置于0.5 g/L的脅迫環境,通過比較兩者的生長情況來驗證其對酚酸脅迫的適應能力。從圖5可看出,在0~12 h內,兩菌株生物量增長趨勢基本相似,在12~24 h范圍,菌株W6-2增長速率減緩,當培養至72 h,菌株W6-2的OD600為(0.80±0.06)。適應性進化后的菌株W6-3在12~24 h階段處于對數生長期,之后增加速度才開始減緩,到培養結束時其OD600值為(1.21±0.10),相較于菌株W6-2提高了50.00%。

注:SA:丁香酸;PHBA:對羥基苯甲酸;PCA:對香豆酸,數值為其前面兩種酸質量比,1∶1∶1為三種酸質量比。

圖5 酚酸適應性進化前后菌株生物量變化趨勢

為進一步考察突變菌株W6-3的發酵性能,將其與馴化前菌株W6-2分別置于含0、0.25、0.75和1 g/L的等比例復合酚酸的發酵培養基中,其結果如圖6所示。

由圖6可看出,突變菌株W6-3發酵結束后丁醇和總溶劑產量分別為(10.21 ± 0.11)和(14.44 ± 0.21)g/L,相較于菌株W6-2分別提高了18.17%和17.49%。當酚酸脅迫濃度處在較低濃度范圍時(0.25 g/L),能產生低劑量興奮效應[31],此時能大大促進菌株W6-2的溶劑合成,產生這種現象的主要原因可能是低濃度抑制物可以促進NADH的合成,進而為丁醇等溶劑合成提供更多的還原力,而還原力的有效供給是提高丁醇產量的重要保障之一,這一現象與EZEJI[32]的研究結果一致。而高酚酸耐受菌W6-3對此濃度酚酸應激效果不明顯,溶劑產量變化不大。當酚酸脅迫濃度達到0.5 g/L時,突變菌株W6-3丁醇產量相較于菌株W6-2提高了12.11%。當酚酸脅迫濃度達到1.0 g/L時,菌株W6-2基本停止發酵,而突變菌株W6-3總溶劑產量可達(3.42±0.42)g/L。由此可知,經過酚酸脅迫適應性進化后的突變菌株W6-3的酚酸耐受性有較大程度的提升,當其處在高濃度的酚酸脅迫環境中,仍能保持一定的生長及產溶劑能力。

注:不同小寫字母表示處理間差異顯著(P<0.05)。

2.6 葛渣水解液發酵產丁醇

本實驗室前期研究了利用葛渣進行ABE發酵的可能性[21],發現葛渣經過適當預處理可以作為ABE發酵原料,當以葛渣水解液為原料,以ART44為生產菌進行ABE發酵時,丁醇產量和產率分別達到(6.66±0.28)g/L和0.08 g/(L·h),而且在研究葛渣水解液成分時發現總酚含量達到(0.79±0.06)g/L,已達到對菌株產生脅迫的濃度。為了解菌株W6-2和突變菌株W6-3利用木質纖維水解液為底物進行ABE發酵情況,將其置于葛渣水解液發酵培養基進行培養,其結果如圖7所示。從圖7可知,發酵結束后菌株W6-3的丁醇和總溶劑產量為(8.54±0.31)和(10.11±0.65)g/L,相較于W6-2分別提高了26.71%和18.00%;此外,W6-3的丁醇得率達到了0.17 g/g還原糖,與W6-2(0.14 g/g還原糖)相比提高了21.43%。因此,突變菌株增強了其對木質纖維素酸水解液的利用能力。

圖7 菌株W6-2和突變菌株W6-3在以葛渣水解液為底物時的發酵特性比較

3 結 論

為了獲得一株高耐受酚酸抑制物的丁醇生產菌株,本研究利用多因子復合篩選平板、丁醇脅迫適應性進化、紫外誘變處理以及酚酸脅迫適應性進化手段對出發菌株W進行選育,得出以下結論:

1)通過判斷菌株在多因子復合篩選平板中透明圈和褪色圈大小,以及ABE發酵性能,篩選出一株具有較強還原力及丁醇耐受性的菌株W6。為進一步提高菌株W6的丁醇耐受能力,對其進行多輪次丁醇脅迫適應性進化,最終獲得高丁醇耐受菌株W6-1,其丁醇和總溶劑產量分別為(8.22±0.21)和(11.72±0.26)g/L,與對照組相比分別提高了14.01%和16.85%。

2)為提高菌株溶劑產量,本研究對丁醇脅迫適應性進化后的菌株W6-1進行紫外誘變處理,最終獲得突變菌W6-2,經發酵培養后其丁醇及總溶劑產量分別(9.51±0.06)和(15.32±0.11)g/L,相較于菌株W6-1分別提高了15.69%和30.72%;遺傳穩定性試驗結果表明菌株W6-2具有較好的遺傳穩定性。

3)通過0.5 g/L復合酚酸對菌株W6-2進行脅迫適應性進化,得到了高酚酸耐受菌株W6-3,突變菌株W6-3的丁醇產量相較于W6-2提高了12.11%。當以葛渣水解液為底物進行發酵,其丁醇產量相較于W6-2提高了26.71%。

[1] 霍麗麗,趙立欣,姚宗路,等. 農業生物質能溫室氣體減排潛力 [J]. 農業工程學報,2021,37(22):179-187.

HUO Lili, ZHAO Lixin, YAO Zonglu, et al. Potentiality of agricultural biomass energy for greenhouse gas emission reduction[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2021, 37(22): 179-187. (in Chinese with English abstract)

[2] ABEL S, TESFAYE J L, GUDATA L, et al. Biobutanol preparation through sugar-rich biomass byconversion using ZnO nanoparticle catalyst[J]. Biomass Conversion and Biorefinery, 2022: 12, 1-11.

[3] 王芳,劉曉風,陳倫剛,等. 生物質資源能源化與高值利用研究現狀及發展前景[J]. 農業工程學報,2021,37(18): 219-231.

WANG Fang, LIU Xiaofeng, CHEN Lungang, et al. Research status and development prospect of energy and high value utilization of biomass resources[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2021, 37(18): 219-231. (in Chinese with English abstract)

[4] THANAPORNSIN T, SIRISANTIMETHAKOM L, LAOPAIBOON L, et al. Effectiveness of low-cost bioreactors integrated with a gas stripping system for butanol fermentation from sugarcane molasses by[J]. Fermentation, 2022, 8(5): 214.

[5] 趙新河,賀壯壯,趙玉斌,等. 玉米漿發酵產生物丁醇的氨基酸代謝動力學模擬[J]. 農業工程學報,2020,36(18):263-274.

ZHAO Xinhe, HE Zhuangzhuang, ZHAO Yubin, et al. Kinetic simulation of amino acid metabolism of butanol produced from the fermentation of corn steep liquor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(18): 263-274. (in Chinese with English abstract)

[6] 張德俐,王芳,易維明,等. 木質纖維素生物質厭氧發酵沼渣熱化學轉化利用研究進展[J]. 農業工程學報,2021,37(21):225-236.

ZHANG Deli, WANG Fang, YI Weiming, et al. Thermochemical conversion and utilization of digestates from anaerobic digestion of lignocellulosic biomass[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 225-236. (in Chinese with English abstract)

[7] 龍偉. 葛渣膳食纖維的制備及其應用[D]. 南昌:江西中醫藥大學,2020.

LONG Wei. Preparation and Application of Dietary Fiber From Pueraria Residue[D]. Nanchang: Jiangxi University of Traditional Chinese Medicine, 2020. (in Chinese with English abstract)

[8] 彭大釗. 葛渣中纖維素的分離及功能化研究[D]. 吉首:吉首大學,2021.

PENG Dazhao. Study on Separation and Functionalization of Cellulose FromResidue[D]. Jishou: Jishou University, 2021. (in Chinese with English abstract)

[9] VEZA I, SAID M F M, LATIFF Z A. Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation[J]. Biomass and Bioenergy, 2021, 144: 105919.

[10] WANG W, LEE D J. Lignocellulosic biomass pretreatment by deep eutectic solvents on lignin extraction and saccharification enhancement: A review[J]. Bioresource technology, 2021, 339: 125587.

[11] GUO H, HE T, LEE D J. Contemporary proteomic research on lignocellulosic enzymes and enzymolysis: A review[J]. Bioresource Technology, 2022, 344: 126263.

[12] LUO X, ZENG B, ZHONG Y, et al. Production and Detoxification of Inhibitors during the Destruction of Lignocellulose Spatial Structure[J]. BioResources, 2022, 17(1): 1939-1961.

[13] GUO H, ZHAO Y, CHANG J S, et al. Inhibitor formation and detoxification during lignocellulose biorefinery: A review[J]. Bioresource Technology, 2022, 361: 127666.

[14] PANIGRAHY N, PRIYADARSHINI A, SAHOO M M, et al. A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook[J]. Environmental Technology and Innovation, 2022, 27: 102423.

[15] CHEN Y, YIN Y, WANG J. Recent advance in inhibition of dark fermentative hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5053-5073.

[16] 趙萌萌,張文剛,黨斌,等. 超微粉碎對青稞麩皮粉多酚組成及抗氧化活性的影響[J]. 農業工程學報,2020,36(15):291-298.

ZHAO Mengmeng, ZHANG Wengang, DANG Bin, et al. Effects of ultra-micro-crushing on composition of polyphenols and antioxidant activity of barley bran powder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 291-298. (in Chinese with English abstract)

[17] LUO H, LIU Z, XIE F, et al. Lignocellulosic biomass to biobutanol: Toxic effects and response mechanism of the combined stress of lignin-derived phenolic acids and phenolic aldehydes to[J]. Industrial Crops and Products, 2021, 170: 113722.

[18] CASPETA L, CASTILLO T, NIELSEN J J F i B, et al. Modifying yeast tolerance to inhibitory conditions of ethanol production processes[J]. Frontiers in Bioengineering and Biotechnology, 2015, 3: 184-198.

[19] YANG S, FRANDEN M A, YANG Q, et al. Identification of inhibitors in lignocellulosic slurries and determination of their effect on hydrocarbon-producing microorganisms[J]. Frontiers in bioengineering and biotechnology, 2018, 6: 23-36.

[20] ZHANG L, LI X, YONG Q, et al. Impacts of lignocellulose-derived inhibitors on l-lactic acid fermentation by[J]. Bioresource technology, 2016, 203: 173-180.

[21] ZHOU Z, LUO Y, PENG S, et al. Enhancement of butanol production in a newly selected strain through accelerating phase shift by different phases C/N ratio regulation from puerariae slag hydrolysate[J]. Biotechnology and Bioprocess Engineering, 2021, 26(2): 256-264.

[22] 錢倩倩,杜宇明,吳晗,等. 甜菜細胞壁界面特征顯著影響纖維素酶解效率[J]. 農業工程學報,2022,38(12):325-330.

QIAN Qianqian, DU Yuming, WU Han, et al. Physical-chemical features of cell wall interface significantly impacted the enzymatic hydrolysis of sugar beet[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(12): 325-330. (in Chinese with English abstract)

[23] 周燦燦. 丙酮丁醇梭菌的選育及高強度丁醇發酵的研究[D]. 無錫:江南大學,2012.

ZHOU Cancan. Breeding ofand High-productivity Butanol Fermentation[D].Wuxi: Jiangnan University, 2012. (in Chinese with English abstract)

[24] 肖敏. 以玉米秸稈為原料生產丁醇的菌株改造及工藝優化[D]. 大連:大連理工大學,2020.

XIAO Min. Strain Development and Process Optimization for Butanol Production from Corn Stover[D]. Dalian: Dalian University of Technology, 2020. (in Chinese with English abstract)

[25] 張存勝,王文娟,康欣欣. 高產丙酮丁醇梭菌選育研究進展[J]. 現代化工,2018,38(4):37-42.

ZHANG Cunsheng, WANG Wenjuan, KANG Xinxin. Current status and prospects of screening approaches forand strain improvement[J]. Modern Chemical Industry, 2018, 38(4): 37-42. (in Chinese with English abstract)

[26] 宮立鵬,程文君,陳程,等. 利用以廢棄畢赤酵母為氮源的丁酸發酵上清液和葡萄糖高效生產具有高丁醇/丙酮比特征的生物丁醇[J]. 微生物學通報,2021,48(5):1434-1449.

GONG Lipeng, CHENG Wenjun, CHEN Cheng, et al. Efficient bio-butanol production featured with high butanol/acetone ratio using wastebased butyrate fermentation supernatants and glucose as co-substrate[J]. Microbiology China, 2021, 48(5): 1434-1449. (in Chinese with English abstract)

[27] 靳孝慶,周華,吳薛明,等. 丙酮-丁醇發酵生產菌的快速篩選方法[J]. 過程工程學報,2008,8(6):1185-1189.

JIN Xiaoqing, ZHOU Hua, WU Xueming, et al. A rapid screening method of producing strain in acetone-butanol fermentation[J]. The Chinese Journal of Process Engineering, 2008, 8(6): 1185-1189. (in Chinese with English abstract)

[28] KNOSHAUG E P, ZHANG M. Butanol tolerance in a selection of microorganisms[J]. Applied biochemistry and biotechnology, 2009, 153(1): 13-20.

[29] ETHIRAJ S, GOPINATH S, RAVI V, et al. Enhancement of serrapeptase hyper producing mutant by combined chemical and UV mutagenesis and its potential for fibrinolytic activity[J]. Journal of Pure and Applied Microbiology, 2020, 14(2): 1295-1303.

[30] 張麗麗,沈兆兵,史吉平,等. 紫外誘變和丁醇馴化復合選育高產丁醇菌株[J] . 中國釀造,2013,32(5):129-133.

ZHANG Lili, SHEN Zhaobing, SHI Jiping, er al. Screening a butanol-high production strain by UV mutation and butanol domestication[J]. China Brewing, 2013, 32(5): 129-133. (in Chinese with English abstract)

[31] 張連華,王嵐,陳洪章. 木質素中酚酸物質對于丙酮丁醇發酵的影響[J]. 生物質化學工程,2013,47(4):7-11.

ZHANG Lianhua, WANG Lan, CHEN Hongzhang. Promotion and inhibition effects of phenolic acids onfermentation[J]. Biomass Chemical Engineering, 2013, 47(4): 7-11. (in Chinese with English abstract)

[32] EZEJI T, QURESHI N, BLASCHEK H P. Butanol production from agricultural residues: Impact of degradation products ongrowth and butanol fermentation[J]. Biotechnol Bioeng, 2007, 97(6): 1460-1469.

Screening of butanol producing strain with high phenolic acid tolerance by the approach of multi-repeating stress acclimation

JING Yujie, HUANG Xiaoqian, TIAN Luyi, DING Huanhuan, BU Jing, SHI Chaoyue, LI Hanguang※

(,,330045,)

Carbon-neutral fuels (such as ethanol and butanol) have gradually drawn much attention in recent years, due to the ever-increasing perception of global warming and environmental protection. Among them, butanol can be expected to serve as one of the promising candidates for biofuels, such as less corrosive, higher octane number, lower solubility in water, and higher energy content, compared with ethanol. However, the high feedstock cost and low productivity can be still a challenge in the acetone-butanol-ethanol (ABE) fermentation, due to the product's (especially butanol) resistance or toxicity to the current butanol-producing strains. The overall economics of bio-butanol production can be enhanced using the abundant source, and low-price of materials (such as lignocellulose). Nevertheless, it must be appropriately pretreated, when these materials are used as the feedstock for the ABE fermentation. Various compounds can be formed during pretreatment. Moreover, the phenolic acids that are derived from lignin degradation can be the most toxicity inhibitor for the butanol-producing strains. In this study, some excellent strains were screened for the high tolerant phenolic acids stress and high butanol production. A multi-factor screening strategy was carried out to obtain the strain W6, in order to synthesize the sufficient reducing power and high tolerance to butanol. Furthermore, the strain W6 was then domesticated to further enhance the butanol tolerance via the appropriate concentration of butanol stress. As such, strain W6-1 was obtained, where the butanol and total solvent production were (8.22 ± 0.21) and (11.72 ± 0.26) g/L, respectively, which were 14.01% and 16.85% higher than that of strain W6. After that, strain W6-1 was treated to improve the production of butanol using UV mutagenesis combined with the multi-factor screening model. The high butanol production strain W6-2 was then selected after treatment. The butanol and total solvent production reached (9.51 ± 0.06) and (15.32 ± 0.11) g/L, resulting in an increase of 15.69% and 30.72%, respectively, compared with the strain W6-1. Finally, the high phenolic acid-tolerant strain W6-3 was achieved by the adaptive evolution strategy with phenolic acid stress condition. At the end of fermentation, the biomass increased by 50.00%, whereas, the butanol and solvent production of the mutant strain W6-3 increased by 18.17% and 17.49%, respectively, compared with the strain W6-2. When strain W6-3 was in the 0.5 g/L of phenol acid stress environment, the butanol production were 12.11% higher than that of strain W6-2, respectively. Once the phenolic acid stress concentration reached 1.0 g/L, there was no growth in the pre-domestication strain W6-2. However, the total solvent production of (3.42 ± 0.42) g/L was obtained for the mutant strain W6-3, indicating excellent phenol acid tolerance. Taking the puerariae slag hydrolysate as the fermentation feedstock, the production of butanol was (8.54 ± 0.31) g/L in the mutant strains W6-3, which was 26.71% higher than that of the strain W6-2. The phenolic acid tolerance and fermentation performance of the mutant strain were greatly improved after multiple rounds of mutagenesis and adaptive evolution. This finding can provide a reliable theoretical reference to rapidly screen the excellent producing trains, in order to fully meet the requirements of fermentation performance.

strains; fermentation; compound screening; phenolic acid stress; hydrolysate

2022-09-28

2023-03-09

國家自然科學基金項目(21466014);江西省自然科學基金項目(20202BABL203042);江西省研究生創新專項資金項目(YC2021-S350,YC2022-S433)

經玉潔,研究方向為生物質能源。Email:1962699928@qq.com

李漢廣,博士,副教授,研究方向為微生物資源開發利用。Email:hanguangli@jxau.edu.cn

10.11975/j.issn.1002-6819.202209241

S21; TQ923

A

1002-6819(2023)-07-0236-08

經玉潔,黃小倩,田璐毅,等. 多輪次篩選選育高酚酸耐受性丁醇生產菌[J]. 農業工程學報,2023,39(7):236-243. doi:10.11975/j.issn.1002-6819.202209241 http://www.tcsae.org

JING Yujie, HUANG Xiaoqian, TIAN Luyi, et al. Screening of butanol producing strain with high phenolic acid tolerance by the approach of multi-repeating stress acclimation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(7): 236-243. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202209241 http://www.tcsae.org

猜你喜歡
產量
2022年11月份我國鋅產量同比增長2.9% 鉛產量同比增長5.6%
今年前7個月北海道魚糜產量同比減少37%
當代水產(2021年10期)2021-12-05 16:31:48
提高玉米產量 膜下滴灌有效
今日農業(2021年14期)2021-11-25 23:57:29
夏糧再獲豐收 產量再創新高
今日農業(2021年13期)2021-08-14 01:37:56
世界致密油產量發展趨勢
海水稻產量測評平均產量逐年遞增
今日農業(2020年20期)2020-11-26 06:09:10
2018年我國主要水果產量按省(區、市)分布
2018年11月肥料產量統計
2018年10月肥料產量統計
2018年12月肥料產量統計
主站蜘蛛池模板: 97视频免费看| 成人在线观看一区| 国产第三区| 中国黄色一级视频| 色播五月婷婷| 欧美中文字幕在线播放| 久久精品国产91久久综合麻豆自制| 中文字幕欧美日韩高清| 国产成人免费高清AⅤ| 在线观看视频一区二区| 日韩无码视频播放| 老司国产精品视频91| 国产网友愉拍精品| 亚洲va视频| 日韩人妻无码制服丝袜视频| 麻豆精品视频在线原创| 试看120秒男女啪啪免费| 欧美三级不卡在线观看视频| 欧美日韩精品在线播放| 国产亚洲视频播放9000| 日本不卡在线播放| 美女扒开下面流白浆在线试听 | 国产男女免费视频| 一级做a爰片久久毛片毛片| 亚洲欧美成aⅴ人在线观看| 午夜三级在线| 亚洲一区二区三区在线视频| 欧美日韩专区| 在线人成精品免费视频| 国产激爽爽爽大片在线观看| 亚洲中文字幕手机在线第一页| 欧美成人国产| 亚洲天堂免费在线视频| 亚洲国产91人成在线| 国产女同自拍视频| 欧美一级高清视频在线播放| 亚洲精品欧美日本中文字幕| 中字无码av在线电影| 免费看a毛片| 青青草a国产免费观看| 亚洲av日韩av制服丝袜| 国产福利在线免费观看| 在线观看亚洲精品福利片| 高清视频一区| 久久国产精品无码hdav| 亚洲精品国产成人7777| 国产精品成人第一区| 中文字幕无码av专区久久| 国产毛片基地| 国产成人8x视频一区二区| 99热国产这里只有精品无卡顿"| 深夜福利视频一区二区| 成人国产精品视频频| 国产微拍精品| 亚洲人成网18禁| 91久久大香线蕉| 99在线视频网站| 久久中文字幕2021精品| 香蕉久久永久视频| 亚洲伊人久久精品影院| 97国产成人无码精品久久久| 国产一级毛片网站| 国产中文在线亚洲精品官网| 国产亚洲一区二区三区在线| 操国产美女| 亚洲精品高清视频| 亚洲精品色AV无码看| 亚洲男人的天堂久久精品| 亚洲国产综合精品一区| 在线日韩日本国产亚洲| 亚洲系列中文字幕一区二区| 91精品专区| 久久国产V一级毛多内射| 久久人搡人人玩人妻精品一| 91在线视频福利| 亚洲一区二区成人| 中国一级特黄大片在线观看| 久久婷婷国产综合尤物精品| 中国一级特黄大片在线观看| 亚州AV秘 一区二区三区| 国产1区2区在线观看| a色毛片免费视频|