



文章編號:1673-5862(2023)05-0454-05
摘"""要:Banach壓縮映射原理在非線性分析中起著重要作用,它是解決完備度量空間中不動點的存在性和唯一性問題的有效方法,在基礎數學和應用數學中有著廣泛的應用,近年來該定理在多個方面得到了推廣。在b-度量空間的背景下,研究一類新的F-型壓縮映射對的公共不動點定理。首先,在b-度量空間中引入一類新的平方型F-型壓縮條件;其次,利用2個映射的包含關系,構造一個序列,并通過使用F-函數的性質、數學歸納法及壓縮條件證明該序列相鄰項距離的極限為零,進而得到該序列是一個柯西列;最后,結合空間的完備性和壓縮條件,得出2個映射具有重合值,再利用映射的弱相容條件,進一步證明該映射對具有公共不動點,同時給出了一個具體例子來說明結果的有效性。
關"鍵"詞:不動點; F-型壓縮; b-度量空間; 柯西列
中圖分類號:O174.1""""文獻標志碼:A
doi:10.3969/j.issn.1673-5862.2023.05.013
Common fixed point theorems of a new class of F-type contractive mappings
GUAN Hongyan, WANG Qiancheng
(College of Mathematics and Systems Science, Shenyang Normal University, Shenyang 110034, China)
Abstract:The Banach contraction mapping principle plays an important role in nonlinear analysis. It is an effective method to solve the problem of the existence and uniqueness of fixed points in complete metric space. It has a wide range of applications in basic mathematics and applied mathematics, and has been promoted from various angles. In the setting of b-metric spaces, we study a new class of common fixed point theorems for F-type contraction mappings. Firstly, a new class of F-type contractive condition is introduced. After that, a new sequence is constructed by using the inclusion relation of two mappings. Using the properties of type F-functions, mathematical induction and contractive conditions, it is proved that the limit of the distance between adjacent terms is zero, then the sequence is Cauchy sequence. Secondly, combining the completeness of the space and contraction conditions, we prove that the two mappings possess a point of coincidence, and then they have a common fixed point by using of weak compatible conditions. At the same time, an example is provided to demonstrate the effectiveness of the results.
Key words:fixed point; F-type contraction; b-metric spaces; Cauchy sequence
不動點理論是現代分析學中的一個重要的組成部分,特別是Banach壓縮映射原理是解決完備度量空間中不動點的存在性和唯一性問題的有效方法,在非線性分析中起著重要作用。Banach[1]在完備的度量空間中證明了壓縮映射具有唯一的不動點。之后,眾多學者通過改變空間類型或者壓縮條件,給出了該結果的一些重要推廣。1993年,Czerwik[2]通過改變度量空間定義的三角不等式的形式,給出了一種推廣的度量空間的概念,稱為b-度量空間,并在該類空間中證明了一些新的不動點定理。在該類空間中,許多學者展開了研究,得到了大量的優秀成果[3-11]。2012年,Wardowski[12]在完備度量空間中給出了一類新型的壓縮映射,即F-型壓縮,并得到了一些關于該類型映射的不動點存在且唯一的充分條件。
本文受文獻[12]的啟發,在b-度量空間中引入新的平方型F-型壓縮條件,證明映射對具有公共不動點,并給出一個具體例子說明了該結果的有效性。
1"基礎知識
2"主要成果
3"結""語
本文在b-度量空間中引入了一類新的F-型壓縮條件,研究了映射對的公共不動點的存在性條件,并給出了一個例子詳細說明了既得結果的實用性。
參考文獻:
[1]BANACH S. Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales[J]. Fund Math, 1922,3:133-181.
[2]CZERWIK S. Contraction mappings in b-metric spaces[J]. Acta Math Inform Univ Ostrav Lensls, 1993,1(1):5-11.
[3]AGHAJANI A,ABBAS M,ROSHAN J R. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces[J]. Math Slovaca, 2014,64(4):941-960.
[4]ABBAS M,NAZIR T,RADENOVIAC'G S. Common fixed points of four maps in partially ordered metric spaces[J]. Appl Math Lett, 2011,24(9):1520-1526.
[5]AYDI H,BOTA M F,KARAPINAR E,et al. A common fixed point for weak φ-contractions on b-metric spaces[J]. Fixed Point Theory, 2012,13(2):337-346.
[6]ABBAS M,DORIAC'G D. Common fixed point theorem for four mappings satisfying generalized weak contractive condition[J]. Filomat, 2010,24(2):1-10.
[7]BOTA M F,KARAPINAR E. A note on “some results on multi-valued weakly Jungck mappings in b-metric space”[J]. Cent Eur J Math, 2013,11(9):1711-1712.
[8]ZADA M B,SARWAR M,KUMAM P. Fixed point results of rational type contractions in b-metric spaces[J]. Int J Anal Appl, 2018,16(6):904-920.
[9]LUKAA'GCS A,KAJAA'GNT S. Fixed point theorems for various types of F-contractions in complete b-metric spaces[J]. Fixed Point Theory, 2018,19(1):321-334.
[10]IBRAHIM Y. Common fixed point theorems for multivalued generalized F-Suzuki-contraction mappings in complete strong b-metric spaces[J]. J Nig Soc Phys Sci, 2019,1(3):88-94.
[11]KIR M,KIZILTUNC H. On some well known fixed point theorems in b-metric spaces[J]. Turkish J Anal Number Theory, 2013,1(1):13-16.
[12]WARDOWSKI D,van DUNG N. Fixed points of F-weak contractions on complete metric spaces[J]. Demonstr Math, 2014,47(1):146-155.
收稿日期:2023-04-16
基金項目:遼寧省教育廳基本科研項目(JYTMS20231700)。
作者簡介:關洪巖(1980—),男(滿族),遼寧葫蘆島人,沈陽師范大學副教授,博士。