楊天浩 孫偉



摘? 要:針對一維區(qū)域上帶有時間依賴系數(shù)的非齊次熱傳導(dǎo)方程的反初值問題,采用擬邊值方法求解此問題。首先根據(jù)分離變量法得到問題的解,并根據(jù)問題解的表達(dá)式構(gòu)造了正則化解;其次在原問題的解滿足某些先驗(yàn)條件下,給出正則化參數(shù)選取的先驗(yàn)和后驗(yàn)方法,并在理論上嚴(yán)格證明了在此參數(shù)選取準(zhǔn)則下,一維熱傳導(dǎo)方程反初值問題正則化解的收斂性;最后通過數(shù)值模擬表明,擬邊值方法對于求解此反初值問題是有效和穩(wěn)定的。
關(guān)鍵詞:不適定問題;正則化參數(shù);擬邊值方法;熱傳導(dǎo)方程;誤差估計(jì)
DOI:10.15938/j.jhust.2023.05.017
中圖分類號: O241.8
文獻(xiàn)標(biāo)志碼: A
文章編號: 1007-2683(2023)05-0136-07
Quasi-boundary Value Method for Backward Heat
Conduction Equation with Variable Coefficients
YANG Tianhao,? SUN Wei
(School of Science, Harbin University of Science and Technology, Harbin 150080, China)
Abstract:Aiming at the problem of inhomogeneous backward heat conduction equation with time-dependent coefficients in a one-dimensional region, the quasi-boundary value method is used to solve this problem. Firstly, the solution of the problem is obtained by separating variables, and according to the expression of the solution of the problem, the regular solution is constructed; secondly, when the solution of the original problem satisfies some prior conditions, the priori and posteriori methods for the regularization parameter are given respectively, and the convergence of the regularization solution of the problem of one-dimensional backward heat conduction equation under this parameter selection criterion is strictly proved; finally, numerical simulation shows that quasi-boundary value method is effective and stable.
Keywords:ill-posed problem; regularization parameter; quasi-boundary value method; heat conduction equation; error estimation
收稿日期: 2022-05-22
基金項(xiàng)目: 黑龍江省自然科學(xué)基金(LH2020A015).
作者簡介:
楊天浩(1998—),男,碩士研究生.
通信作者:
孫? 偉(1982—),女,博士,副教授,E-mail: mathsunwei@126.com.
0? 引? 言
熱傳導(dǎo)方程的反初值問題也被稱為逆時問題,是熱傳導(dǎo)方程反問題的一種,在很多實(shí)際問題中有著廣泛應(yīng)用,例如熱流、遙感技術(shù)、航天防護(hù)服表面溫度控制等。此類問題是一個不適定問題[1],很難用傳統(tǒng)的方法來解決,為了得到穩(wěn)定的近似解,國內(nèi)外學(xué)者對這類問題進(jìn)行了研究,提出了很多方法,例如Tikhonov正則化方法[2-3]、濾波正則化方法[4]、擬逆方法[5-8]、擬邊值方法[9-18]等。但目前大部分研究還是集中在齊次方程且測量數(shù)據(jù)只有一個,或者常系數(shù)非齊次方程的反初值問題,對變系數(shù)非齊次方程的研究較少,并且大部分研究只給出了正則化參數(shù)的先驗(yàn)選取策略,針對后驗(yàn)選取規(guī)則的研究也很少。
本文考慮如下一個一維帶有時間依賴系數(shù)的非齊次熱傳導(dǎo)方程的反初值問題,
ut(x,t)-a(t)uxx(x,t)=f(x,t),0≤x≤L,0≤t≤T
u(0,t)=u(L,t)=0,0≤t≤T
u(x,T)=g(x),0≤x≤L(1)
其中f(x,t)是關(guān)于t的連續(xù)可微函數(shù)且f(x,t)∈L∞(0,T;L2[0,L]),g(x)∈L2[0,L],a(t)∈C∞[0,T],且存在正常數(shù)m和d,使得
0 反初值問題就是利用g(x)和f(x,t)帶有噪聲的測量數(shù)據(jù)gδ(x),fδ(x,t),求解u(x,0)=∶φ(x)。假設(shè)測量數(shù)據(jù)滿足條件: ‖gδ(x)-g(x)‖L2[0,L]≤δ ‖fδ(x,t)-f(x,t)‖L∞(0,T;L2[0,L])≤δ 本文使用擬邊值方法求解這個問題,擬邊值方法也稱為非局部邊值方法,是一種用新的近似條件代替終值條件或邊界條件的正則化方法,最早由Showalter[9]提出。擬邊值方法已經(jīng)被應(yīng)用于求解各種類型方程的反問題中,例如,分?jǐn)?shù)階擴(kuò)散方程[19-20]、非線性拋物方程[21]、橢圓型方程[16]等。 Triet Minh Le等在文[14]中提出了一種改進(jìn)的正則化方法來求解問題(1),并給出了一種特殊情況下的正則化參數(shù)的先驗(yàn)選取規(guī)則。馬宗立等[22]把這一方法推廣到二維圓域上給出了誤差估計(jì)。除此之外,還未見到其他文獻(xiàn)研究此問題。本文所用的擬邊值方法在求解u(x,0)時,與文[14]的方法是等價的,但是這兩種方法計(jì)算正則化解的方式是不同的;文[14]中的正則化解的計(jì)算需要用到橢圓算子的特征值和特征函數(shù),所以很難將其推廣到高維一般區(qū)域中,而本文所使用的擬邊值方法可以實(shí)現(xiàn)。本文不僅給出了正則化參數(shù)的先驗(yàn)選取規(guī)則,也研究了當(dāng)解滿足某種先驗(yàn)條件時的后驗(yàn)選取策略,根據(jù)相關(guān)引理和定理推導(dǎo)了正則化解和精確解的誤差估計(jì),最后用數(shù)值算例驗(yàn)證本文所采用的擬邊值方法求解變系數(shù)熱傳導(dǎo)方程的反初值問題具有可行性。 下面用(·,·)和‖·‖分別表示L2[0,L]上的內(nèi)積和范數(shù)。根據(jù)分離變量法,問題(1)的解形式上可以表示為 u(x,t)=∑∞n=1(e-λnA(t)φn+∫t0e-λn(A(t)-A(τ))fn(τ)dτ)ωn(x) 其中A(t)=∫t0a(s)ds,ωn(x)=2LsinnπxL,λn= n2π2L2,fn(t)=(f(x,t),ωn(x)),φn=(φ(x),ωn(x)), 再令上式中t=T,得到 g(x)=∑∞n=1(e-λnA(T)φn+∫T0e-λn(A(T)-A(τ))fn(τ)dτ)ωn(x) 故 φ(x)=∑∞n=1gn-∫T0e-λn(A(T)-A(τ))fn(τ)dτe-λnA(T)ωn(x)(2) 當(dāng)n→∞時,λn→∞,(e-λnA(T))-1→∞,故問題(1)是不適定的。 定義算子K[23]:L2[0,L]→L2[0,L], (Kφ)(x)=∫L0k(x,ξ)φ(ξ)dξ 其中k(x,ξ)=∑∞n=1e-λnA(T)ωn(x)ωξ(ξ),不難看出K:L2[0,L]→L2[0,L]是一個線性自伴緊算子。 1? 擬邊值方法 采用擬邊值方法求解問題(1),修改(1)中的終值條件u(x,T)=g(x),得到如下問題: uμ,δt(x,t)-a(t)uμ,δxx(x,t)=fδ(x,t),0≤x≤L,0≤t≤T uμ,δ(0,t)=uμ,δ(L,t)=0,0≤t≤T uμ,δ(x,T)+μuμ,δ(x,0)=gδ(x),0≤x≤L(3) 其中μ為正則化參數(shù)。利用分離變量法得到, φμ,δ(x)∶=uμ,δ(x,0)=∑∞n=1gδn-∫T0e-λn(A(T)-A(τ))fδn(τ)dτμ+e-λnA(T)ωn(x)(4) 上式即為擬邊值方法構(gòu)造的正則化解。定義 φμ(x)=∑∞n=1gn-∫T0e-λn(A(T)-A(τ))fn(τ)dτμ+e-λnA(T)ωn(x)(5) 1.1? 正則化參數(shù)的先驗(yàn)選取規(guī)則 引理1[22]? 令η>0,0≤a≤b,則對任意的k>0,都有 eka1+ηekb≤η-ab 引理2? 若p≥2,則對任意的n,有 μ(eλnA(T))2-p41+μeλnA(T)≤C2μ 其中C2是與n無關(guān)的常數(shù)。 證明:由p≥2,易得 μ(eλnA(T))2-p41+μeλnA(T)≤μ(eλnA(T))2-p4=μ(eλnA(T))p-24≤μ(eλ1A(T))p-24≤C2μ 引理3? 給定∑∞n=1gn-∫T0e-λn(A(T)-A(τ))fn(τ)dτ和f(x,t)∈L∞(0,T;L2[0,L]),有 ‖∑∞n=1(gn-∫T0e-λn(A(T)-A(τ))fn(τ)dτ)ωn(x)‖≤ 2(‖g‖2+M‖f‖2L∞(0,T;L2[0,L]))其中M=∑∞n=1(∫T0e-λn(A(T)-A(τ))dτ)2。 證明:與文[16]中引理2.4類似。 定理1? 若0<μ<1,問題(1)有精確解φ(x), 1)如果存在常數(shù)p和E1,滿足(∑∞n=1λpnφ2n)12≤E1<+∞,則有 ‖φμ(x)-φ(x)‖≤C1E1A(T)-lnμp2(o(1)+1)(μ→0+) 2)如果存在常數(shù)p和E2,滿足(∑∞n=1epλnA(T)φ2n)12≤E2<+∞,則有 ‖φμ(x)-φ(x)‖≤μP2E2,0 C2μE2,p≥2 其中C1,C2為正常數(shù)。 證明 ‖φμ(x)-φ(x)‖=∑∞n=1μμ+e-λnA(T)gn-∫T0e-λn(A(T)-A(τ))fn(τ)dτe-λnA(T)212 若φ(x)滿足條件1),則, ‖φμ(x)-φ(x)‖2=∑∞n=1μ2λ-pn(μ+e-λnA(T))2λpnφ2n 當(dāng)λnA(T)≤1時,令 S1=∑λnA(T)≤1μ2λpnφ2nλpn(μ+e-λnA(T))2≤∑λnA(T)≤1μ2λ-pne2λnA(T)(λpnφ2n)≤ ∑λnA(T)≤1μ2λ-p1e2(λpnφ2n) 當(dāng)λnA(T)>1時,令μZn=e-λnA(T)<1,則λn=-ln(μZn)A(T), 令 S2=∑λnA(T)>1μ2λpnφ2nλpn(μ+e-λnA(T))2= ∑λnA(T)>1μ2(μ+μZn)2(-ln(μZn)A(T))-pλpnφ2n= ∑λnA(T)>1-A(T)lnμp1(1+Zn)2lnμln(μZn)pλpnφ2n 再令γn=1(1+Zn)2lnμln(μZn)p,下證γn一致有界。 若0 γn=1(1+Zn)2lnμln(μZn)p≤1 若Zn>1,則lnZn>0,ln(μZn)=-λnA(T)<-1,接下來有 0 則 γn≤(1+lnZn)p(1+Zn)2≤(1+lnZn)p1+Zn<(1+lnZn)pZn=∶q(Zn) 又因?yàn)閝′(Zn)=p(1+lnZn)p-1-(1+lnZn)pZ2n,故γn≤qmax(Zn)=ppe1-p=∶Qp,所以γn一致有界。當(dāng)μ→0+,則 ‖φμ(x)-φ(x)‖2≤(μ2λ-p1e2+Qp-A(T)lnμp)∑∞n=1λpnφ2n≤ C21E21(-A(T)lnμ)p(o(1)+1) 其中C21=max{λ-p1e2,Qp}。 若φ(x)滿足條件(2),有 ‖φμ(x)-φ(x)‖=∑∞n=1μe-λnp2A(T)μ+e-λnA(T)eλnp2A(T)φn212 再由引理1和引理2,得 ‖φμ(x)-φ(x)‖≤μP2E2,0 C2μE2,p≥2(6) 定理得證。 定理2? 在定理1的條件下, 1)若存在常數(shù)p和E1,滿足(∑∞n=1λpnφ2n)12≤E1<+∞,令μ=δE11A(T)lnE1δp2,有 ‖φμ,δ(x)-φ(x)‖≤(2(M+1)+C1)E11A(T)lnE1δ-p2(o(1)+1)(δ→0+) 2)若存在常數(shù)p和E2,滿足(∑∞n=1epλnA(T)φ2n)12≤E2<+∞,有 (a) 當(dāng)0 ‖φμ,δ(x)-φ(x)‖≤(2(M+1)+1)δpp+2E2p+22 (b) 當(dāng)p≥2時,令μ=δE212,則 ‖φμ,δ(x)-φ(x)‖≤(2(M+1)+C2)E122δ12 證明 ‖φμ,δ(x)-φμ(x)‖2=∑∞n=1gδn-∫T0e-λn(A(T)-A(τ))fδn(τ)dτμ+e-λnA(T)- gn-∫T0e-λn(A(T)-A(τ))fn(τ)dτμ+e-λnA(T)ωn(x)2≤ 2∑∞n=1(gδn-gn)2+|∫T0e-λn(A(T)-A(τ))(fδn(τ)-fn(τ))dτ|2(μ+e-λnA(T))2≤ 2∑∞n=1gδn-gnμ2+2M∑∞n=1fδn(τ)-fn(τ)μ2≤ 2(M+1)δ2μ2 故 ‖φμ,δ(x)-φμ(x)‖≤2(M+1)δμ(7) 根據(jù)三角不等式, ‖φμ,δ(x)-φ(x)‖≤‖φμ,δ(x)-φμ(x)‖+‖φμ(x)-φ(x)‖,結(jié)合定理1,當(dāng)φ(x)滿足條件1),則 ‖φμ,δ(x)-φ(x)‖≤C1E1A(T)-lnμp2(o(1)+1)+2(M+1)δμ 令μ=δE11A(T)lnE1δp2,當(dāng)δ→0+,有 ‖φμ,δ(x)-φ(x)‖≤(2(M+1)+C1)E11A(T)lnE1δ-p2(o(1)+1) 當(dāng)φ(x)滿足條件2),則 ‖φμ,δ(x)-φ(x)‖≤μP2E2+2(M+1)δμ,0 C2μE2+2(M+1)δμ,p≥2 故當(dāng)0 ‖φμ,δ(x)-φ(x)‖≤(2(M+1)+1)δpp+2E2p+22 當(dāng)p≥2時,令μ=δE212,有 ‖φμ,δ(x)-φ(x)‖≤(2(M+1)+C2)E122δ12 定理得證。 1.2? 正則化參數(shù)的后驗(yàn)選取規(guī)則 應(yīng)用偏差原理,選擇以下方程的解作為正則化參數(shù): ‖μ(K+μI)-1(Kφμ,δ(x)- ∑∞n=1(gδn-∫T0e-λn(A(T)-A(τ))fδn(τ)dτ)ωn(x))‖=τδ 其中τ>2(M+1)是一個常數(shù)。 引理5? 令ρ(μ)=‖μ(K+μI)-1(Kφμ,δ(x)-∑∞n=1(gδn-∫T0e-λn(A(T)-A(τ))fδn(τ)dτ)ωn(x))‖ 如果(∑∞n=1(gδn-∫T0e-λn(A(T)-A(τ))fδn(τ)dτ)2)12>τδ,則有 (a)ρ(μ)是一個連續(xù)函數(shù); (b)limμ→0ρ(μ)=0; (c)limμ→∞ρ(μ)=∑∞n=1(gδn-∫T0e-λn(A(T)-A(τ))fδn(τ)dτ)2; (d)對任意的μ∈(0,∞),ρ(μ)是一個嚴(yán)格增函數(shù)。 證明:與文[16]中引理3.2.1類似。 定理3? 令φ(x)為問題(1)的精確解,φμ,δ(x)為正則化解,μ為正則化參數(shù);如果存在常數(shù)p和E2,滿足(∑∞n=1epλnA(T)φ2n)12≤E2<+∞,有以下結(jié)論, ‖φμ,δ(x)-φ(x)‖≤ (τ+2(M+1)pp+2+2(M+1)· 1τ-2(M+1)2p+2E2p+22δpp+2,0 (τ+2(M+1))12+2(M+1)· C22τ-2(M+1)12E122δ12,p≥2 其中C2為正常數(shù)。 證明? 由三角不等式, ‖φμ,δ(x)-φ(x)‖≤‖φμ,δ(x)-φμ(x)‖+‖φμ(x)-φ(x)‖ 當(dāng)0 ‖φμ(x)-φ(x)‖2=∑∞n=1-μμ+e-λnA(T)φnωn(x)2= ∑∞n=1μe-λnA(T)μ+e-λnA(T)p2μμ+e-λnA(T)1-p2 φn(e-λnA(T))p22= ∑∞n=1μe-λnA(T)μ+e-λnA(T)p μμ+e-λnA(T)2p-p2p+2 φn(e-λnA(T))p22pp+2× μμ+e-λnA(T)4-2pp+2φn(e-λnA(T))p24p+2≤ ∑∞n=1(μe-λnA(T)μ+e-λnA(T)pμμ+e-λnA(T)2p-p2p+2× φn(e-λnA(T))p22pp+2p+2ppp+2× ∑∞n=1μμ+e-λnA(T)4-2pp+2φn(e-λnA(T))p24p+2p+222p+2= ∑∞n=1μe-λnA(T)μ+e-λnA(T)p+22μμ+e-λnA(T)1-p2φn(e-λnA(T))p2ωn(x)2pp+2×∑∞n=1μμ+e-λnA(T)1-p2φn(e-λnA(T))p2ωn(x)4p+2≤ ∑∞n=1μμ+e-λnA(T)2φne-λnA(T)ωn(x)2pp+2∑∞n=1φn(e-λnA(T))p2ωn(x)4p+2≤ ∑∞n=1μμ+e-λnA(T)2(gn-∫T0e-λn(A(T)-A(τ))fn(τ)dτ)ωn(x)2pp+2E4p+22≤ ∑∞n=1μμ+e-λnA(T)2(gn(x)-gδn(x)- ∫T0e-λn(A(T)-A(τ))(fn(τ)-fδn(τ))dτ)ωn(x)+ ∑∞n=1μμ+e-λnA(T)2·(gδn(x)- ∫T0e-λn(A(T)-A(τ))fδn(τ)dτ)ωn(x)2pp+2E4p+22≤ (τ+2(M+1))2pp+2δ2pp+2E4p+22 即 ‖φμ(x)-φ(x)‖≤(τ+2(M+1))pp+2δpp+2E2p+22(8) 當(dāng)p≥2時,可以得到 ‖φμ(x)-φ(x)‖2=∑∞n=1-μμ+e-λnA(T)φnωn(x)2= ∑∞n=1μe-λnA(T)μ+e-λnA(T) φne-λnA(T)2 =∑∞n=1μe-λnA(T)μ+e-λnA(T)2φne-λnA(T)φne-λnA(T)≤ ∑∞n=1μe-λnA(T)μ+e-λnA(T)2φne-λnA(T)212∑∞n=1φne-λnA(T)212≤ ∑∞n=1μμ+e-λnA(T)2φne-λnA(T)212∑∞n=1φne-λnA(T)212= ∑∞n=1μμ+e-λnA(T)2·(gn-∫T0e-λn(A(T)-A(τ))fn(τ)dτ)ωn(x)· (∑∞n=1e2λnA(T)φ2n)12≤ ∑∞n=1μμ+e-λnA(T)2(gn-gδn- ∫T0e-λn(A(T)-A(τ))(fn(τ)-fδn(τ))dτ)ωn(x)+ ∑∞n=1μμ+e-λnA(T)2 (gδn- ∫T0e-λn(A(T)-A(τ))fδn(τ)dτ)ωn(x)E2≤ (δ2(M+1)+τδ)E2 故有 ‖φμ(x)-φ(x)‖≤(τ+2(M+1))12E122δ12(9) 下面對1μ進(jìn)行估計(jì): τδ≤∑∞n=1μμ+e-λnA(T)2((gn-gδn)- ∫T0e-λn(A(T)-A(τ))(fn(τ)-fδn(τ))dτ)ωn(x)+ ∑∞n=1μμ+e-λnA(T)2(gn-∫T0e-λn(A(T)-A(τ))fn(τ)dτ)ωn(x)≤ ∑∞n=1μ(eλnA(T))2-p41+μeλnA(T)2(e-λnA(T))-p2φn212+2(M+1)δ 當(dāng)0 ∑∞n=1μ(eλnA(T))2-p41+μeλnA(T)2(e-λnA(T))-p2φn212≤μ2+p2E2 當(dāng)p≥2時,根據(jù)引理2,得 ∑∞n=1μ(eλnA(T))2-p41+μeλnA(T)2(e-λnA(T))-p2φn212≤E2(C2μ)2 因此, 1μ≤1τ-2(M+1)22+pE2δ22+p,0 C22τ-2(M+1)12E2δ12,p≥2(10) 聯(lián)合式(7)、(8)、(9)和(10),可得到定理結(jié)論。 2? 數(shù)值實(shí)驗(yàn) 本節(jié)將列出兩個數(shù)值算例來顯示方法的可行性。測量數(shù)據(jù)是通過添加隨機(jī)擾動生成 gδ=g+εg(2·rand(size(g))-1) fδ=f+εf(2·rand(size(f))-1) 則誤差水平δ=max{ε‖g‖,ε‖f‖}。 例1? 令T=1,L=π,a(t)=2t+1,g(x)=u(x,1)=xsinxe2,f(x,t)=-2(2t+1)cosxet2+t,則反初值問題的解為u(x,0)=φ(x)=xsinx。 例2? 令T=1,L=π,a(t)=2t+1,g(x)=u(x,1)=2sin2xe2,f(x,t)=6(2t+1)sin2xet2+t,反初值問題的解為u(x,0)=φ(x)=2sin2x。 例1的解滿足(∑∞n=1λpnφ2n)12≤E1<+∞,如圖1所示,本文只畫出正則化參數(shù)先驗(yàn)選擇規(guī)則下正則化解和精確解的圖象;例2的解滿足(∑∞n=1epλnA(T)φ2n)12≤E2<+∞,圖2中畫出了先驗(yàn)和后驗(yàn)正則化參數(shù)選擇規(guī)則下近似解和精確解的圖象;兩個例子表明本文提出的正則化參數(shù)選取策略是有效的。 3? 結(jié)?? 論 本文考慮了帶有時間依賴系數(shù)的一維熱傳導(dǎo)方程的反初值問題,采用擬邊值方法構(gòu)造正則化解,并分別給出了正則化參數(shù)的先驗(yàn)和后驗(yàn)選取準(zhǔn)則,最后用數(shù)值算例驗(yàn)證了擬邊值方法的有效性。 參 考 文 獻(xiàn): [1]? HADAMARD J. Lectures on the Cauchy′s Problems in Linear Partial Differential Equations[M]. New Haven: Yale University Press, 1923. [2]? LIU C S, CHANG C W, CHANG J R. Past Cone Dynamics and Backward Group Preserving Schemes for Backward Heat Conduction Problems[J]. Computer Modeling in Engineering and Sciences, 2006, 12(1): 67. [3]? HUANG Y Z, ZHENG Q. Regularization for a Class of Ill-posed Cauchy Problems[J]. Proceedings of the American Mathematical Society, 2005, 133(10): 3005. [4]? QIN H H, WEI T. Some Filter Regularization Methods for a Backward Heat Conduction Problem[J]. Applied Mathematics and Computation, 2011, 217(24): 10317. [5]? ALEKSEEVA S M, YURCHUK N I. The Quasireversibility Method for the Problem of the Control of an Initial Condition for the Heat Equation with an Integral Boundary Condition[J]. Differential Equations, 1998, 34(4): 493. [6]? CLARK G W, OPPENHEIMER S F. Quasireversibility Methods for Non-well Posed Problems[J]. Electronic Journal of Differential Equations, 1994(8): 1. [7]? HUANG Y Z. Modified Quasi-reversibility Method for Final Value Problems in Banach Spaces[J]. Journal of Mathematical Analysis and Applications, 2008, 340(2): 757. [8]? LIUJ J, YAMAMOTO M. A Backward Problem for the Time-fractional Diffusion Equation[J]. Applicable Analysis, 2010, 89(11): 1769. [9]? SHOWALTER R E. The Final Value Problem for Evolution Equations[J]. Journal of Mathematical Analysis and Applications, 1974(47):563. [10]HO D N, DUC N V, LESNIC D. Regularization of Parabolic Equations Backward in Time by a Non-local Boundary Value Problem Method[J]. IMA Journal of Applied Mathematics, 2010, 75(2): 291. [11]TRONG D D, QUAN P H, TUAN N H. A Quasiboundary Value Method for Regularizing Nonlinear Ill-posed Problems[J]. Electronic Journal of Differential Equations,2009(109): 1. [12]HO D N, DUC N V, SAHLI H. A Non-local Boundary Value Problem Method for Parabolic Equations Backward in Time[J]. Journal of Mathematical Analysis and Applications, 2008, 345(2): 805. [13]FENG X L, ELDEN L, FU C L. A Quasi-boundary-value Method for the Cauchy Problem for Elliptic Equations with Non-homogeneous Neumann Data[J]. Journal of Inverse and Ill-posed Problems, 2010, 18(6): 617. [14]LE T M, PHAM Q H, DANG T D, et al. A Backward Parabolic Equation with a Time-dependent Coefficient: Regularization and Error Estimates[J]. Journal of Computational and Applied Mathematics, 2013, 237(1): 432. [15]LIU J J. Numerical Solution of Forward and Backward Problem for 2-D Heat Conduction Equation[J]. Journal of Computational and Applied Mathematics, 2002, 145(2): 459. [16]YANG F, SUN Y R, LI X X, et al. The Quasi-boundary Value Method for Identifying the Initial Value of Heat Equation on a Columnar Symmetric Domain[J]. Numerical Algorithms, 2019, 82(2): 623. [17]DENCHE M, BESSILA K. A Modified Quasi-boundary Value Method for Ill-posed Problems[J]. Journal of Mathematical Analysis and Applications, 2005, 301(2),419. [18]HO D N, DUC N V, LESNIC D. A Non-local Boundary Value Problem Method for the Cauchy Problem for Elliptic Equations[J]. Inverse Problems, 2009, 25(5): 055002. [19]WEI T, WANG J G. A Modified Quasi-boundary Value Method for the Backward Time-fractional Diffusion Problem[J]. European Series in Applied and Industrial Mathematics: Mathematical Modelling and Numerical Analysis, 2014, 48(2): 3. [20]WANG J G, ZHOU Y B, WEI T. A Posteriori Regularization Parameter Choice Rule for the Quasiboundary Value Method for the Backward Time-fractional Diffusion Problem[J]. Applied Mathematics Letters, 2013, 26: 741. [21]HO D N, DUC N V, LESNIC D. Regularization of Parabolic Equations Backward in Time by a Non-local Boundary Value Problem Method[J]. IMA Journal of Applied Mathematics, 2010, 75: 291. [22]MA Z L, YUE S F. Stability of the Backward Problem of Parabolic Equation with Time-dependent Reaction Coefficient[J]. Journal of University of Science and Technology of China, 2019, 49(5): 345. [23]KIRSCH A. An Introduction to the Mathematical Theory of Inverse Problems[M]. New York: Springer, 1996. (編輯:溫澤宇)