孫艷發,吳瓊,林如龍,陳紅萍,甘秋云,沈玥,王亞茹,薛鵬飛,陳飛帆,劉健濤,周陳鑫,蘭詩詩,潘浩哲,鄧凡,5,岳穩,江宵兵,李焰
龍巖山麻鴨蛋品質性狀的全基因組關聯研究

1龍巖學院生命科學學院,福建龍巖 364012;2龍巖學院/福建省家畜傳染病防治與生物技術重點實驗室/預防獸醫學與生物技術福建省高校重點實驗室,福建龍巖 364012;3龍巖市新羅區農業局山麻鴨原種場,福建龍巖 364031;4福建省畜牧總站,福州 350003;5福建農林大學動物科學學院(蜂學學院),福州 350002
【目的】通過全基因組關聯研究(genome-wide association study,GWAS)技術篩選和鑒定鴨蛋品質性狀的單核苷酸多態性(single nucleotide polymorphisms,SNPs)位點及候選基因,為龍巖山麻鴨蛋品質性狀分子育種提供參考。【方法】試驗測定產蛋后期235只龍巖山麻鴨母鴨蛋品質性狀,包括蛋重(egg weight,EW)、蛋形指數(egg shaped index,ESI)、蛋殼厚(eggshell thickness,EST)、蛋殼強度(eggshell strength,ESS)、蛋殼顏色L*、a*、b*值(eggshell colour L*, a*, b*,ESCL、ESCA和ESCB)、蛋白高度(albumin height,AH)、哈氏單位(Haugh unit,HU)、蛋黃顏色(egg yolk colour,EYC)、蛋黃重(egg yolk weight,EYW)和蛋黃比例(egg yolk percentage relative to egg weight,EYP)。使用ASReml-R 4.1軟件多性狀動物模型對蛋品質性狀進行遺傳參數估計。使用簡化基因組測序技術對鴨血液基因組DNA進行SNP分型,分型后進行蛋品質性狀與這些SNPs間的GWAS研究。【結果】龍巖山麻鴨蛋品質性狀中,EW、ESI、EST、ESL、ESA和AU具有中高等的遺傳力,遺傳力在0.21—0.70之間。EW與AU存在較強的正遺傳相關(g= 0.91±0.37)。ESI與EYC存在較強的遺傳負相關(g= -0.98±1.03)。EST與ESS具有表型正相關(p= 0.41±0.06),與ESA具有遺傳和表型負相關(g= -0.86±0.25和p= -0.15±0.07),與ESB具有遺傳和表型正相關(g= 0.96±0.37和p= 0.18±0.07)。ESA與ESB具有遺傳和表型負相關(g= -0.64±0.28和p= -0.31±0.06)。GWAS研究結果表明,7個SNPs位點與ESI、EST和EYC達到5%基因組水平顯著關聯(<4.74×10-6),涉及6個候選基因。與ESI關聯的SNP(chr20:11135563:G:C)位點位于20號染色體含有75A富含亮氨酸重復序列(leucine rich repeat containing 75A)基因內。與EST關聯的2個SNPs(chr13:5766560:A:G和chrZ:968819:C:T)位點分別位于13號下游6.86 kb處和Z染色體轉錄因子4(transcription factor 4)基因內。與EYC關聯的4個SNPs位點,其中1個(chr2:38155965:G:A)位于2號染色體鉀電壓門控通道亞家族H成員8(potassium voltage-gated channel subfamily H member 8)基因內;3個SNPs位于9號染色體上的位點,2個(chr9:22623156:G:A和chr9:22623155:T:C)位于胰島素受體底物1(insulin receptor substrate 1)內、1個(chr9:22490158:A:T)位于內。同時發現81個SNPs位點與蛋品質性狀達到基因組水平潛在關聯(<9.48×10-5)。13個與EYC關聯的SNPs位點集中在9號染色體0.84 Mb(22.16—23.00 Mb)區域內。【結論】估計了龍巖山麻鴨蛋品質性狀的遺傳參數,通過蛋品質性狀GWAS研究鑒定了影響ESI、EST和EYC性狀的7個顯著的SNPs位點、6個候選基因和1個候選基因區域,這些結果為龍巖山麻鴨蛋品質性狀分子育種提供參考信息。
龍巖山麻鴨;蛋品質;遺傳參數;單核苷酸多態性;全基因組關聯研究
【研究意義】禽蛋品質包括外部品質和內部品質。外部品質主要包括蛋重(egg weight,EW)、蛋殼顏色(eggshell color)、蛋形指數(egg shape index,ESI)、蛋殼厚度(eggshell thickness,EST)和蛋殼強度(eggshell strength,ESS),影響消費者的選擇和生產效益;內部品質主要包括蛋白高度(albumen height,AH)、哈氏單位(Haugh unit,HU)、蛋黃顏色(egg yolk color,EYC)、蛋黃重(egg yolk weight,EYW)、蛋黃比例(egg yolk percentage relative to egg weight,EYP),影響蛋的新鮮程度和營養價值[1]。日糧營養水平、飼養管理、產蛋階段以及蛋的存儲時間等因素影響蛋品質。蛋品質為數量性狀,受微效多基因控制[2-3]。研究人員[1,4-9]通過全基因組關聯研究(genome-wide association study,GWAS)技術,鑒定了影響雞蛋品質性狀的SNP位點和候選基因,雞蛋品質性狀的分子遺傳機制逐漸被揭示。目前,鴨蛋品質的候選基因和分子遺傳機制尚不完全清楚。通過GWAS技術鑒定影響鴨蛋品質性狀的候選基因和分子標記,可為蛋鴨蛋品質分子選育提供理論基礎。【前人研究進展】王珍珍[10]采用重測序法對166只紹興鴨血液基因組進行基因分型,通過GWAS技術檢測到10個與產蛋性狀顯著關聯的SNP,未檢測到與蛋品質性狀顯著關聯的SNP位點。LIU等[3]以352只北京鴨和麻鴨構建的F2雜交群體為研究對象,遺傳參數估計結果表明蛋品質性狀的遺傳力在0.16—0.71之間。GWAS技術鑒定到影響AH和HU的候選區域在5號染色體5.8 Mb(14.7—20.5 Mb),該區域內111候選基因中的黏蛋白6和低密度脂蛋白受體A類結構域包含3為影響鴨蛋清組成成分的重要候選基因。【本研究切入點】山麻鴨為我國主要蛋鴨地方品種之一,原產地為福建龍巖市新羅區龍門鎮,2017年中華人民共和國農業農村部正式批準對“龍巖山麻鴨”實施農產品地理標志登記保護[11]。龍巖山麻鴨具有體型小、性早熟、產蛋量高等特點,其蛋品質性狀候選基因和分子遺傳機制鮮見報道。龍巖山麻鴨高產系在進行選育的過程中,于72周產蛋結束后收集種蛋進行下一世代孵化。【擬解決的關鍵問題】以龍巖山麻鴨高產系第4世代為研究對象,采用簡化基因組測序(genotyping- by-sequencing,GBS)技術[12]對龍巖山麻鴨母鴨血液基因組DNA(genome DNA,gDNA)進行SNP分型,進行產蛋末期蛋品質性狀與SNPs間的GWAS,為揭示龍巖山麻鴨蛋品質性狀的候選基因和分子選育提供理論基礎。
龍巖山麻鴨高產系第4世代群體于2018年2月初孵化,2018—2019年飼養于福建省龍巖市新羅區農業局山麻鴨原種場。該群體在同一時間孵化,在相同的營養與環境條件下進行單籠飼養,常規免疫。
1.2.1 蛋品質測定 龍巖山麻鴨產蛋末期71—72周齡時開始收集鴨蛋,剔除破蛋、軟殼蛋和雙黃蛋,稱重,記為EW。蛋品質測定于龍巖學院生命科學學院實驗室進行。使用游標卡尺(日本Mitutoyo 公司)測定鴨蛋的長短徑,計算ESI。使用蛋殼厚度計(TQ-1A,南京銘奧儀器設備有限公司)測定蛋殼鈍端、銳端和中部位置的蛋殼厚度,平均值作為EST。使用蛋殼強度測定儀(KQ-1A,北京天翔飛域科技有限公司)測定ESS。采用WSC-S色差計(上海申光有限公司)以CIELAB體系測定蛋殼顏色。CIELAB體系測定結果記錄為蛋殼顏色的亮度值(L*,ESCL)、紅色值(a*,ESCA)和黃色值(b*,ESCB)。使用蛋黃分離器分離出蛋黃,稱重記EYW,并計算EYP。使用羅氏蛋黃比色扇(日本Robotmation公司)測定蛋黃顏色。使用蛋白高度測定計(日本Mitutoyo 公司)測定蛋白兩個位置的AU,計算平均值。根據下列公式計算HU:
=100×10(-1.7×0.37+7.57)
其中,HU為哈氏單位,AU為蛋白高度(mm),EW為蛋重(g)。
1.2.2 測序分型 72周末期進行龍巖山麻鴨翅靜脈采血,檸檬酸鈉(ACD)抗凝,液氮冷凍后-80℃冰箱保存備用。酚氯仿法提取血液gDNA。采用內切酶對gDNA 進行酶切,構建文庫后進行測序。GBS文庫構建的方法為:用I限制性內切酶對gDNA進行酶切。酶切后的片段兩端加Solexa P1、P2接頭(adapter)。加接頭后,使用III和III限制性內切酶組合再次進行酶切。使用PCR擴增兩端分別含有P1和P2接頭的序列,形成DNA片段池(pooling),電泳回收所需區間的DNA片段。AMPure XP beads試劑盒(美國Beckman公司)純化上述 PCR 產物,獲得GBS文庫。文庫質檢合格后使用Illumina公司NovaseqTM測序平臺進行雙末端(Paired-End)150測序。測序得到的原始數據(raw data)經過過濾得到高質量的clean data。Clean data通過BWA軟件[13]對比到鴨基因組(IASCAAS_PekingDuck_PBH1.5,GCF_003850225.1)[14]上,比對結果經SAMTOOLS軟件[15]去除重復。采用SAMTOOLS軟件(參數為-q 1 -C 50 -t AD,DP -m 2 -F 0.002)的進行多個樣本SNP的檢測,得到每個樣本的SNP分型數據。
1.2.3 測序數據的質控 使用Plink V1.9軟件[16]進行測序后基因型數據的質量控制。選擇標準設置為:個體基因型的缺失率小于20%;SNP位點缺失率小于10%;最小等位基因頻率大于5%;哈迪溫伯格平衡的P值大于1×10-6。剔除不符合上述條件的樣本和SNP位點。
1.3.1 表型值的描述性統計 使用Minitab V17.0軟件(美國Minitab Inc)對表型數據進行描述性統計分析,剔除異常值,計算蛋品質性狀的平均數(mean)、最小值(Min)、最大值(Max)、標準差(standard deviation,SD)和變異系數(coefficient of variation,CV)。
1.3.2 遺傳參數估計 使用VSN國際有限公司的 ASReml-R 4.1軟件的多性狀動物模型對蛋品質性狀的遺傳參數(遺傳力和遺傳相關)相關進行估計,并計算表型相關。模型如下:
=++
式中,為蛋品質性狀的表型值向量,為固定效應的向量(包括總體均值),為加性遺傳效應的向量,為隨機誤差的向量,、分別為固定效應、加性遺傳效應的指定矩陣。
結果以“平均數±標準誤”的形式表示,采用似然比檢驗(likelihood-ratio test,LRT)法對遺傳相關和表型相關進行顯著性檢驗,<0.05表明性狀具有相關性。
1.3.3 群體結構分析 使用 Plink V1.9軟件[16]中IBS距離聚類法檢測試驗群體是否存在分層現象。該過程以25個SNPs為一個窗口,5個SNPs為步移,利用indep-pairwise命令計算窗口內標記成對的r2值,閾值設為 0.2,篩選所有常染色體上獨立的SNPs 標記[17]。利用這些獨立標記使用Plink V1.9軟件主成分(principal component,PC)分析程序計算每個樣本的PC,并計算每個PC解釋群體結構變異的百分比。使用R V4.0.4軟件[18]以主成分1(PC1)和2(PC2)繪制群體結構圖。
1.3.4 關聯研究 使用Plink 1.9軟件中的線性回歸模型進行蛋品質性狀的GWAS。為了消除群體結構對關聯分析結果的影響,以前10個PC為協變量。使用模型為:
=+++
式中,為表型性狀值,為總體均值,為主成分效應,為SNP效應,為隨機殘差。
為了減少多重檢驗帶來的假陽性,以連鎖不平衡(linkage disequilibrium,LD)修正的Bonferroni方法[19]對GWAS結果的值進行校正。獨立檢驗數為群體結構分析中獲得的獨立SNP數量[17],全基因組顯著和潛在關聯閾值的計算公式為:

式中,為Bonferroni校正的全基因組顯著或潛在關聯的值,為群體結構分析中獲得的獨立SNPs數量。
蛋品質性狀表型值的描述性統計見表1。龍巖山麻鴨蛋品質性狀中EST、ESS、ESCA、ESCB、HU、EYC、EYW、EYP的CV范圍在10%—50%之間,表型性狀分離明顯,有助于基因定位。其中ESCA為負值,說明本研究使用群體中龍巖山麻鴨蛋殼顏色均偏綠色。

表1 蛋品質性狀表型值的描述性統計
蛋品質性狀的遺傳參數估計結果見表2。EW、ESI、EST、ESL、ESA和AU遺傳力在0.21—0.70之間,具有中高等遺傳力;ESS、ESB、H U、EYC、EYW和EYP遺傳力在0.01—0.16之間,具有較低的遺傳力;其中ESA遺傳力最高(2= 0.70±0.20),EYW為遺傳力最低(2= 0.01±0.12)。EW與AU存在較強的正遺傳相關(g= 0.91±0.37)。EW與AH、HU、EYC、EYW和EYP存在表型正相關或負相關,其中與EYW(p= 0.24±0.06)和EYP(p= -0.26±0.06)相關性最大。ESI與EYC存在較強的遺傳負相關(g= -0.98±1.03)和較弱的表型正相關(p= 0.07±0.06)。EST與ESS具有表型正相關(p= 0.41±0.06),與ESA具有遺傳和表型負相關(g= -0.86±0.25,p= -0.15±0.07),與ESB具有遺傳和表型正相關(g= 0.96±0.37,p= 0.18±0.07)。ESA與ESB具有遺傳和表型負相關(g= -0.64±0.28,p= -0.31±0.06)。EYW和EYP具有較強的表型正相關(p= 0.87±0.02)。
上三角為遺傳相關,下三角為表型相關;“-”表明性狀間沒有相關性; *<0.05;**<0.01;***<0.001
Genetic correlations are given above the diagonal and phenotypic correlation below the diagonal; “-” indicates that there was no correlation among traits
基因型數據經過質量控制后,303個個體和62 706 SNP用于后續的分析。SNPs在各染色體上的分布數量情況見表3。
常染色體上的SNP經篩選后,共得到10 428個獨立SNP標記(表3)。由群體結構主成分分析圖(圖1)可知,303個龍巖山麻鴨群體明顯分成幾個簇,存在分層現象,容易造成GWAS結果中出現假陽性和假陰性。主成分分析結果中前10個PC解釋了92.54%群體結構變異。因此,本研究以前10個PC為協變量,以消除群體分層對關聯分析結果的影響[20]。

表3 質控后和獨立的SNPs標記在各條染色體上的分布

圖1 群體結構主成分分析圖
由于基因組中獨立SNP標記數量為10 547(表3),Bonferroni校正的5%基因組顯著水平值閾值為4.74×10-6(0.05/10 547),基因組潛在關聯水平的閾值為9.48×10-5(1/10 547)。本研究發現7個SNP位點與ESI、EST和YC達到5%基因組顯著關聯(<4.74×10-6)(表4和圖2—4),81個SNP位點與蛋品質性狀達到基因組水平潛在關聯(<9.48×10-5)(表5)。
2.5.1 蛋形指數 1個SNP(chr20:11135563:G:C與)ESI達到5%Bonferroni校正的基因組顯著關聯(= 14.83×10-6)(表4和圖2)。該SNP位點位于20號染色體含有75A富含亮氨酸重復序列(leucine rich repeat containing 75A,)基因內。此外,10個SNP位點與ESI達到基因組潛在關聯(<9.48× 10-5)(表5和圖2)。其中3個SNPs(chr3:81386471: A:G、chr5:7009743:G:A和chr25:6315960:T:C)分別位于3號、5號和25號染色體上,2個SNP(chr16: 2579629:A:T和chr16:3098786:G:A)位于16號染色體上,位于5'-核苷酸酶ecto(5'-nucleotidase ecto,)、細胞周期素依賴激酶樣1(cyclin dependent kinase like 1,)、和內或下游;5個SNPs(chr15:11227397:T:C,chr15: 11227409: G:A,chr15:13294556:C:T,chr15:13395347: A:G和chr15:14536844:G:A)位于15號染色體3.31 Mb(11.23—14.54 Mb)區域內。
2.5.2 蛋殼厚度 2個SNP(chr13:5766560:A:G和chrZ:968819:C:T)與EST達到Bonferroni校正5%基因組水平顯著關聯(= 1.36×10-6,1.96×10-6)(表4和圖3)。SNP chr13:5766560:A:G位于13號下游6.86 kb處。SNP chrZ:968819:C:T位于Z染色體轉錄因子4(transcription factor 4,)基因內。此外,9個SNP與EST達到Bonferroni校正的基因組潛在關聯(<9.48×10-5),包括2號染色體上鋅指蛋白804B(zinc finger protein 804B,)基因內的3個SNP(chr2:22513511: C:A、chr2:22582514:A:G和chr2:22582670:G:A)、6號染色體上鉀雙孔結構域通道亞家族K成員18(potassium two pore domain channel subfamily K member 18,)基因下游18.98 kb處和SH3 and PX結構域2A(SH3 and PX domains 2A,)基因內的2個SNP(chr6:7192663:G:A和chr6:12756206:T: A)、12號染色體凝血酶反應蛋白1型結構域包含4(thrombospondin type 1 domain containing 4,)基因內的2個SNP(chr12:140915:T:A和chr12:198263:G:A)、13號染色體基因內的1個SNP(chr13:5721234:C:T)以及19號染色體基因內的1個SNP(chr19: 4873329:A:G)。

表4 Bonferroni校正5%基因組顯著的SNP位點
A1,次要的等位基因;BETA,回歸系數,正值表示次要等位基因提高性狀值;D代表SNP位于基因的下游;within代表SNP位于基因內。下同
A1, minor allele; BETA, regression coefficient, a positive regression coefficient means that the minor allele increases traits mean; D means SNP downstream of the nearest gene; within represent SNP located within genes.The same as below

橫坐標為SNPs標記在基因組中的物理位置,縱坐標為關聯研究中P值的-log10轉化結果。每一個點代表一個SNP標記。紅色實線為達到5%全基因組顯著的閾值線(-log10 (4.74×10-6)),黑色虛線為達到全基因組潛在關聯的閾值線(-log10 (9.48×10-5))。下同

表5 基因組水平潛在關聯的SNP位點

續表5 Continued table 5

圖3 蛋殼厚度全基因組關聯研究曼哈頓圖
2.5.3 蛋黃顏色 4個SNP(chr2:38155965:G:A,chr9:22490158:A:T,chr9:22623155:T:C和chr9: 22623156:G:A)與EYC達到Bonferroni校正5%基因組水平顯著關聯(<4.74×10-6)(表4和圖4)。其中SNP chr2:38155965:G:A位于2號染色體鉀電壓門控通道亞家族H成員8(potassium voltage-gated channel subfamily H member 8,)基因內。3個SNP位于9號染色體上,2個(chr9:22623156:G:A和chr9:22623155:T:C)位于胰島素受體底物1(insulin receptor substrate 1,)內、1個(chr9: 22490158:A:T)位于內。此外,20個SNP與EYC達到基因組水平潛在關聯(<9.48×10-5)(表5),其中有10個位于9號染色體上。9號染色體上一共有13個與EYC關聯的SNP集中在0.84 Mb(22.16—23.00 Mb)區域內。這一區域除和外,還包括神經元酪氨酸磷酸化磷酸肌醇 3-激酶接頭2(neuronal tyrosine- phosphorylated phosphoinositide-3-kinase adaptor 2,)、Ⅳ型膠原α3鏈(collagen type IV alpha 3 chain,)、動力蛋白組裝因子含WD重復1(dynein assembly factor with WD repeats 1,)。同時發現與EW、ESCL、ESCA、ESCB、AH、HU、EYW和EYP性狀達到基因組潛在關聯(<9.48× 10-5)的SNP位點總結于表5。

圖4 蛋黃顏色全基因組關聯研究曼哈頓圖
全基因組關聯研究,又稱全基因組關聯分析,使用高通量的基因分型技術在基因組范圍內尋找SNPs與畜禽重要經濟性狀的關聯,為鑒定畜禽重要經濟性狀分子標記和候選基因的一種有效方法[21]。鴨的重要經濟性狀GWAS研究主要集中在生長和飼養[22]、體重和胴體[23]、脂肪沉積和肉品質[24]、骨質量和飼喂效率[25]、血液成分[26]、攝食行為[27]以及肌纖維直徑[28]等性狀上,蛋品質性狀的GWAS報道較少[3]。本研究對龍巖山麻鴨產蛋末期產蛋性狀的遺傳參數進行了估計,鑒定了影響產蛋性狀的候選基因和候選區域,為揭示龍巖山麻鴨產蛋性狀分子遺傳機制和分子選育奠定了理論基礎。
ESI是描述蛋殼形狀的經典幾何參數[29],主要受家禽的產蛋率、產蛋間隔時間和蛋殼形成時物質需要量的影響[30]。本研究中龍巖山麻鴨高產系第4世代ESI遺傳力為0.29±0.17,與其早期選育的ESI遺傳力(2=0.34)[31]相近。ESI與蛋重、蛋白指數、哈氏單位等蛋品質性狀呈表型正相關[32]。本研究中發現ESI與蛋殼顏色(ESCA)呈表型負相關,與蛋黃顏色呈遺傳負相關和表型正相關,可能是由于蛋的形狀與蛋殼顏色、蛋黃顏色受相近的遺傳因素影響[33]。與ESI顯著關聯的1個SNP(chr20:11135563:G: C)位于20號染色體內。該基因編碼的蛋白質可作為細胞膜上的受體[34]。研究表明,反義長鏈非編碼RNA(lncRNA)在細胞增殖、遷移和浸潤中具有重要作用[35-36]。10個與ESI達到潛在關聯的位點中,5個SNP位于兩個蛋白質編碼基因(和)和非編碼RNA(和)基因內部或下游。編碼的蛋白質是一種質膜蛋白,催化細胞外核苷酸到膜透核苷的轉化,該編碼蛋白被用作淋巴細胞分化的決定因素[37]。編碼細胞周期素依賴激酶樣1蛋白,是細胞周期素依賴激酶超家族中的一員。研究發現該基因在胃癌細胞增殖和存活中起著重要的調節作用[38]。此外,研究還發現5個SNP集中在15號染色體3.31 Mb(11.23—14.54 Mb)區域內。前人的研究發現該區域內37 345 836 bp處的SNP與鴨飼料轉化效率顯著相關[39]。該區域內有119個基因,需要進一步精細定位研究該區域與ESI的關系。
蛋殼對家禽產業具有重要的生物學和經濟意義,EST影響商品蛋的破損率和種蛋的孵化率[40]。鴨蛋大多被加工成皮蛋或咸蛋,蛋殼在這一過程中起著至關重要的作用[41]。蛋殼礦化作用與EST密切相關,其中蛋殼特異性矩陣蛋白ovocleidins(OC-17和OC-116)、ovocalyxins(OCX-32和OCX-36)以及鈣離子結合蛋白REG4發揮關鍵作用[42]。本研究中龍巖山麻鴨EST為中等遺傳力為(2= 0.41±0.17),比早期選育遺傳力(2=0.28)高[31]。本研究鑒定2個SNP(chr13:5766560:A:G和chrZ:968819:C:T)與EST顯著關聯。其中SNP chrZ:968819:C:T位于Z染色體內部,編碼轉錄因子4蛋白,能夠調節幾種不同細胞類型的分化,在神經系統發育[41]、卵泡發育中起重要作用[43]。此外,與EST達到基因組潛在關聯的位點位于蛋白質編碼基因、、和內部或附近。編碼鋅指蛋白804B,是一種含鋅指蛋白結構域的轉錄因子,該基因的突變與神經系統疾病有關[44]。編碼鉀通道蛋白超家族的一個成員,包含兩個形成孔的P結構域,作為一個外向整流鉀通道,與細胞電興奮性的控制有關[45]。編碼蛋白為Tks5,是一種支架蛋白和Src底物,通過其在侵襲體形成和功能中的重要作用參與細胞遷移和基質降解[46]。編碼血栓反應蛋白1型結構域包含4,是一種微纖維相關蛋白,可直接與原纖蛋白-1結合并促進原纖蛋白-1基質組裝[47]。上述基因在先前禽蛋蛋殼形成的多組學研究中并未提及[42]。這些基因中特別是,可能是影響鴨蛋殼厚度的新基因,需要進一步研究。
由于消費者將蛋黃顏色與蛋所含的營養聯系在一起,蛋黃顏色作為蛋品質性狀中重要經濟性狀之一[2]。蛋黃顏色受遺傳因素、養殖方式、飼料中脂質和抗氧化物質的含量等方面的影響[48]。本研究中龍巖山麻鴨蛋黃顏色遺傳力低遺傳力(2= 0.07±0.14),常規育種方法蛋黃顏色的遺傳改良進展緩慢。因此,通過分子標記輔助育種,有助于加速龍巖山麻鴨蛋黃顏色的育種進程,提高育種效率。本研究發現9號染色體0.84 Mb(22.16—23.00 Mb)區域內13個SNP與EYC關聯。該區域內有4個蛋白質編碼基因包括、、和。編碼胰島素受體底物1,為胰島素受體酪氨酸激酶的關鍵靶蛋白,是激素調控代謝所必需的蛋白質[49]。研究表明直接參與卵泡生長的卵巢衰老和活化[50],其突變與女性多囊卵巢綜合征有關[51]。編碼神經元酪氨酸磷酸化磷酸肌醇3-激酶接頭2,參與神經元發育,并與 WAVE1 蛋白相互作用,參與細胞骨架建模有關[52]。編碼Ⅳ型膠原α3鏈蛋白,參與卵黃周隙內外亞層的組成,與蛋的受精、早期胚胎發育和抗菌素防御與胚胎發生有關[53]。編碼動力蛋白組裝因子含WD重復1蛋白,作為外部動力蛋白臂組件,是地中海真渦蟲()纖毛運動功能所必需的[54]。1個與EYC顯著關聯的SNP位點位于2號染色體內。該基因編碼鉀電壓門控通道子家族H成員8,為人類Elk K+通道基因家族成員。它們的多種已知功能包括調節神經遞質釋放、心率、胰島素分泌、神經元興奮性、上皮電解質運輸和平滑肌收縮[55]。上述基因和區域與EYC關系,需要進行進一步研究證實。
本研究未發現與蛋重、蛋殼顏色、蛋白高度與哈氏單位、蛋黃重與蛋白比例全基因組顯著的位點,需要增加群體數量和SNP標記密度提供統計功效(statistical power),以提高對這些性狀顯著位點的檢出[56-57]。
本研究采用GBS基因分型技術,通過全基因組關聯研究鑒定影響龍巖山麻鴨產蛋后期蛋品質性狀的SNP位點88個,其中與蛋形指數、蛋殼厚和蛋黃顏色關聯的7個位點(chr20:11135563:G:C、chr13:5766560:A:G、chrZ:968819:C:T、chr2:38155965:G:A、chr9:22490158: A:T、chr9:22623155:T:C和chr9:22623156:G:A)達到Bonferroni校正5%基因組顯著水平,找到了、、、等候選基因。發現9號染色體上0.84 Mb(22.16—23.00 Mb)區域可能是影響龍巖山麻鴨蛋黃顏色的候選區域。本研究為揭示龍巖山麻鴨蛋品質性狀的分子遺傳機制,為進一步分子標記輔助選擇提供了理論基礎。
[1] LIU Z, SUN C J, YAN Y Y, LI G Q, SHI F Y, WU G Q, LIU A Q, YANG N. Genetic variations for egg quality of chickens at late laying period revealed by genome-wide association study. Scientific Reports, 2018, 8: 10832. doi:10.1038/s41598-018-29162-7.
[2] GAO G, GAO D, ZHAO X, XU S, ZHANG K, WU R, YIN C, LI J, XIE Y, HU S, WANG Q. Genome-wide association study-based identification of SNPs and haplotypes associated with goose reproductive performance and egg quality. Front Genet, 2021, 12: 602583. doi:10.3389/fgene.2021.602583.
[3] LIU H, ZHOU Z, HU J, GUO Z, XU Y, LI Y, WANG L, FAN W, LIANG S, LIU D, ZHANG Y, XIE M, TANG J, HUANG W, ZHANG Q, HOU S. Genetic variations for egg internal quality of ducks revealed by genome-wide association study. Animal Genetics, 2021, 52(4): 536-541. doi:10.1111/age.13063.
[4] LIU W, LI D, LIU J, CHEN S, QU L, ZHENG J, XU G, YANG N. A genome-wide SNP scan reveals novel loci for egg production and quality traits in white leghorn and brown-egg dwarf layers. PLoS ONE, 2011, 6(12): e28600. doi:10.1371/journal.pone.0028600.
[5] WOLC A, ARANGO J, JANKOWSKI T, DUNN I, SETTAR P, FULTON J E, O'SULLIVAN N P, PREISINGER R, FERNANDO R L, GARRICK D J, DEKKERS J C. Genome-wide association study for egg production and quality in layer chickens. Journal of Animal Breeding and Genetics, 2014, 131(3): 173-182. doi:10.1111/jbg. 12086.
[6] ZHANG G X, FAN Q C, WANG J Y, ZHANG T, XUE Q, SHI H Q. Genome-wide association study on reproductive traits in Jinghai Yellow Chicken. Animal Reproduction Science, 2015, 163: 30-34. doi:10.1016/j.anireprosci.2015.09.011.
[7] SUN C, QU L, YI G, YUAN J, DUAN Z, SHEN M, QU L, XU G, WANG K, YANG N. Genome-wide association study revealed a promising region and candidate genes for eggshell quality in an F2resource population. BMC Genomics, 2015, 16: 565. doi:10.1186/ s12864-015-1795-7.
[8] LIAO R, ZHANG X, CHEN Q, WANG Z, WANG Q, YANG C, PAN Y. Genome-wide association study reveals novel variants for growth and egg traits in Dongxiang blue-shelled and White Leghorn chickens. Anim Genet, 2016, 47(5): 588-596. doi:10.1111/age.12456.
[9] QU L, SHEN M, GUO J, WANG X, DOU T, HU Y, LI Y, MA M, WANG K, LIU H. Identification of potential genomic regions and candidate genes for egg albumen quality by a genome-wide association study. Archives Animal Breeding, 2019, 62(1): 113-123. doi:10.5194/aab-62-113-2019.
[10] 王珍珍. 不同蛋鴨品種產蛋性能的比較分析及紹興鴨產蛋性能的全基因組關聯分析[D]. 金華: 浙江師范大學, 2020.
WANG Z Z. Analysis on egg quality traits of four laying duck breeds and genome-wide association study of laying performance in Shaoxing duck[D]. Jinhua: Zhejiang Normal University, 2020. (in Chinese)
[11] 孫艷發, 李焰, 林如龍, 陳紅萍, 吳瓊, 李建磊, 陳羽, 林澤. 龍巖山麻鴨產蛋量和蛋重性狀的遺傳參數估計. 中國畜牧雜志, 2020, 56(10): 51-55. doi:10.19556/j.0258-7033.20191022-03.
SUN Y F, LI Y, LIN R L, CHEN H P, WU Q, LI J L, CHEN Y, LIN Z. Estimation of genetic parameters for egg production and weight traits in Longyan Shan-ma duck. Chinese Journal of Animal Science, 2020, 56(10): 51-55. doi:10.19556/j.0258-7033.20191022-03. (in Chinese)
[12] ROWAN B A, SEYMOUR D K, CHAE E, LUNDBERG D S, WEIGEL D. Methods for genotyping-by-sequencing. Methods in Molecular Biology (Clifton, N J), 2017, 1492: 221-242. doi:10.1007/ 978-1-4939-6442-0_16.
[13] LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760. doi:10.1093/bioinformatics/btp324.
[14] HUANG Y H, LI Y R, BURT D W, CHEN H L, ZHANG Y, QIAN W B, KIM H, GAN S Q, ZHAO Y Q, LI J W, YI K, FENG H P, ZHU P Y, LI B, LIU Q Y, FAIRLEY S, MAGOR K E, DU Z L, HU X X, GOODMAN L, TAFER H, VIGNAL A, LEE T, KIM K W, SHENG Z Y, AN Y, SEARLE S, HERRERO J, GROENEN M A M, CROOIJMANS R P M A, FARAUT T, CAI Q L, WEBSTER R G, ALDRIDGE J R, WARREN W C, BARTSCHAT S, KEHR S, MARZ M, STADLER P F, SMITH J, KRAUS R H S, ZHAO Y F, REN L M, FEI J, MORISSON M, KAISER P, GRIFFIN D K, RAO M, PITEL F, WANG J, LI N. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nature Genetics, 2013, 45(7): 776-783. doi:10.1038/ng.2657.
[15] LI H, HANDSAKER B, WYSOKER A, FENNELL T, RUAN J, HOMER N, MARTH G, ABECASIS G, DURBIN R. 1000 GENOME PROJECT DATA PROCESSING SUBGROUP. The sequence alignment/map format and SAMtools. Microbiology Spectrum, 2009, 25(16): 2078-2079. doi:10.1093/bioinformatics/btp352.
[16] PURCELL S, NEALE B, TODD-BROWN K, THOMAS L, FERREIRA M A, BENDER D, MALLER J, SKLAR P, DE BAKKER P I, DALY M J, SHAM P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Biological Psychiatry, 2007, 81(3): 559-575. doi:10.1086/519795.
[17] 孫艷發. 基于全基因組關聯研究技術篩選雞產肉和肉品質性狀相關候選基因[D]. 揚州: 揚州大學, 2013.
SUN Y F. Filtration of candidate gene related to meat production and quality traits based on genome-wide association study technique in chickens[D]. Yangzhou: Yangzhou University, 2013. (in Chinese)
[18] DALGAARD P. R Development Core Team (2010): R: a language and environment for statistical computing. 2010.
[19] NICODEMUS K K, LIU W, CHASE G A, TSAI YY , FALLIN M D. Comparison of type I error for multiple test corrections in large single-nucleotide polymorphism studies using principal components versus haplotype blocking algorithms. BMC Genetics, 2005, 6(Supplement 1):S78. doi: 10.1186/1471-2156-6-S1-S78 .
[20] PRICE A L, PATTERSON N J, PLENGE R M, WEINBLATT M E, SHADICK N A, REICH D. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 2006, 38(8): 904-909. doi:10.1038/ng1847.
[21] SUN Y, ZHAO G, LIU R, ZHENG M, HU Y, WU D, ZHANG L, LI P, WEN J. The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study. BMC Genomics, 2013, 14: 458. doi:10.1186/1471-2164-14-458.
[22] ZHU F, CHENG S R, YANG Y Z, HAO J P, YANG F X, HOU Z C. Genome-wide association study of growth and feeding traits in Pekin ducks. Frontiers in Genetics, 2019, 10: 702. doi:10.3389/fgene.2019. 00702.
[23] DENG M T, ZHU F, YANG Y Z, YANG F X, HAO J P, CHEN S R, HOU Z C. Genome-wide association study reveals novel loci associated with body size and carcass yields in Pekin ducks. BMC Genomics, 2019, 20(1): 1. doi:10.1186/s12864-018-5379-1.
[24] DENG M T, ZHANG F, ZHU F, YANG Y Z, YANG F X, HAO J P, HOU Z C. Genome-wide association study reveals novel loci associated with fat-deposition and meat-quality traits in Pekin ducks. Animal Genetics, 2020, 51(6): 953-957. doi:10.1111/age.12995.
[25] LI G S, LIU W W, ZHANG F, ZHU F, YANG F X, HAO J P, HOU Z C. Genome-wide association study of bone quality and feed efficiency-related traits in Pekin ducks. Genomics, 2020, 112(6): 5021-5028. doi:10.1016/j.ygeno.2020.09.023.
[26] ZHU F, CUI Q Q, YANG Y Z, HAO J P, YANG F X, HOU Z C. Genome-wide association study of the level of blood components in Pekin ducks. Genomics, 2020, 112(1): 379-387. doi:10.1016/j.ygeno. 2019.02.017.
[27] LI G S, ZHU F, ZHANG F, YANG F X, HAO J P, HOU Z C. Genome-wide association study reveals novel loci associated with feeding behavior in Pekin ducks. BMC Genomics, 2021, 22(1): 334. doi:10.1186/s12864-021-07668-1.
[28] LIU D P, FAN W L, XU Y X, YU S M, LIU W J, GUO Z B, HUANG W, ZHOU Z K, HOU S S. Genome-wide association studies demonstrate that TASP1 contributes to increased muscle fiber diameter. Heredity, 2021, 126(6): 991-999. doi:10.1038/s41437-021- 00425-w.
[29] WANG L C, RUAN Z T, WU Z W, YU Q L, CHEN F, ZHANG X F, ZHANG F M, LINHARDT R J, LIU Z G. Geometrical characteristics of eggs from 3 poultry species. Poultry Science, 2021, 100(3): 100965. doi:10.1016/j.psj.2020.12.062.
[30] STODDARD M C, YONG E H, AKKAYNAK D, SHEARD C, TOBIAS J A, MAHADEVAN L. Avian egg shape: Form, function, and evolution. Science, 2017, 356(6344): 1249-1254. doi:10.1126/ science.aaj1945.
[31] LIN R L, CHEN H P, ROUVIER R, MARIE-ETANCELIN C. Genetic parameters of body weight, egg production, and shell quality traits in the Shan Ma laying duck (). Poultry Science, 2016, 95(11): 2514-2519. doi:10.3382/ps/pew222.
[32] DUMAN M, ?EKERO?LU A, Y?LD?R?M A, ELERO?LU H, CAMC?. Relation Between Egg Shape Index and Egg Quality Characteristics. Stuttgart: Verlag Eugen Ulmer, 2016. doi:10.1399/ eps.2016.117.
[33] RIZZI C. Yield performance, laying behaviour traits and egg quality of purebred and hybrid hens reared under outdoor conditions. Animals, 2020, 10(4): E584. doi:10.3390/ani10040584.
[34] WANG X, WANG H, ZHANG R, LI D, GAO M Q. LRRC75A antisense lncRNA1 knockout attenuates inflammatory responses of bovine mammary epithelial cells. International Journal of Biological Sciences, 2020, 16(2): 251-263. doi:10.7150/ijbs.38214.
[35] CHEN J, LAN J, YE Z, DUAN S, HU Y, ZOU Y, ZHOU J. Long noncoding RNA LRRC75A-AS1 inhibits cell proliferation and migration in colorectal carcinoma. Experimental Biology and Medicine (Maywood, N J), 2019, 244(14): 1137-1143. doi:10.1177/ 1535370219874339.
[36] LI S J, WU D, JIA H Y, ZHANG Z R. Long non-coding RNA LRRC75A-AS1 facilitates triple negative breast cancer cell proliferation and invasion via functioning as a ceRNA to modulate BAALC. Cell Death & Disease, 2020, 11: 643. doi:10.1038/s41419- 020-02821-2.
[37] BERTONI A P S, BRACCO P A, DE CAMPOS R P, LUTZ B S, ASSIS-BRASIL B M, DE SOUZA MEYER E L, SAFFI J, BRAGANHOL E, FURLANETTO T W, WINK M R. Activity of ecto-5'-nucleotidase (NT5E/CD73) is increased in papillary thyroid carcinoma and its expression is associated with metastatic lymph nodes. Molecular and Cellular Endocrinology, 2019, 479: 54-60. doi:10.1016/j.mce.2018.08.013.
[38] SUN W, YAO L, JIANG B, SHAO H, ZHAO Y, WANG Q. A role for Cdkl1 in the development of gastric cancer. Acta Oncologica (Stockholm, Sweden), 2012, 51(6): 790-796. doi:10.3109/0284186x. 2012.665611.
[39] LIU H, WANG L, GUO Z, XU Q, FAN W, XU Y, HU J, ZHANG Y, TANG J, XIE M, ZHOU Z, HOU S. Genome-wide association and selective sweep analyses reveal genetic loci for FCR of egg production traits in ducks. Genetics, Selection, Evolution, 2021, 53(1): 98. doi:10.1186/s12711-021-00684-5.
[40] 蔣晶晶. 三種家禽蛋殼厚度整齊性及蛋殼形狀指標的研究[D]. 杭州: 浙江農林大學, 2020.
JIANG J J. The uniformity of eggshell thickness and eggshell shape indicators of three poultry[D]. Hangzhou: Zhejiang A & F University, 2020. (in Chinese)
[41] ZHANG Y N, DENG Y Z, JIN Y Y, WANG S, HUANG X B, LI K C, XIA W G, RUAN D, WANG S L, CHEN W, ZHENG C T. Age-related changes in eggshell physical properties, ultrastructure, calcium metabolism-related serum indices, and gene expression in eggshell gland during eggshell formation in commercial laying ducks. Poultry Science, 2022, 101(2): 101573. doi:10.1016/j.psj.2021.101573.
[42] ZHANG F, YIN Z T, ZHANG J F, ZHU F, HINCKE M, YANG N, HOU Z C. Integrating transcriptome, proteome and QTL data to discover functionally important genes for duck eggshell and albumen formation. Genomics, 2020, 112(5): 3687-3695. doi:10.1016/j.ygeno. 2020.04.015.
[43] FORREST M P, HILL M J, QUANTOCK A J, MARTIN-RENDON E, BLAKE D J. The emerging roles of TCF4in disease and development. Trends in Molecular Medicine, 2014, 20(6): 322-331. doi:10.1016/ j.molmed.2014.01.010.
[44] ISMAIL A B, NAJI M ' S, NEBIH ?, TUNCEL G, OZBAKIR B, TEMEL S G, TULAY P, MOCAN G, ERGOREN M C. The expression profile of WNT/β-catanin signalling genes in human oocytes obtained from polycystic ovarian syndrome (PCOS) patients. Zygote (Cambridge, England), 2022, 30(4): 536-542. doi:10.1017/ s0967199422000028.
[45] CHUNG J, WANG X L, MARUYAMA T, MA Y Y, ZHANG X L, MEZ J, SHERVA R, TAKEYAMA H, LUNETTA K L, FARRER L A, JUN G R. Genome-wide association study of Alzheimer's disease endophenotypes at prediagnosis stages. Alzheimer's & Dementia, 2018, 14(5): 623-633. doi:10.1016/j.jalz.2017.11.006.
[46] IMBRICI P, NEMATIAN-ARDESTANI E, HASAN S, PESSIA M, TUCKER S J, D’ADAMO M C. Altered functional properties of a missense variant in the TRESK K^+ channel (KCNK18) associated with migraine and intellectual disability. Pflügers Archiv - European Journal of Physiology, 2020, 472(7): 923-930. doi:10.1007/s00424- 020-02382-5.
[47] CEJUDO-MARTIN P, YUEN A, VLAHOVICH N, LOCK P, COURTNEIDGE S A, DíAZ B. Genetic disruption of the sh3pxd2a gene reveals an essential role in mouse development and the existence of a novel isoform of tks5. PLoS ONE, 2014, 9(9): e107674. doi:10. 1371/journal.pone.0107674.
[48] ELBITAR S, RENARD M, ARNAUD P, HANNA N, JACOB M P, GUO D C, TSUTSUI K, GROSS M S, KESSLER K, TOSOLINI L, DATTILO V, DUPONT S, JONQUET J, LANGEOIS M, BENARROCH L, AUBART M, GHALEB Y, ABOU KHALIL Y, VARRET M, EL KHOURY P, HO-TIN-NOé B, ALEMBIK Y, GAERTNER S, ISIDOR B, GOUYA L, MILLERON O, SEKIGUCHI K, MILEWICZ D, DE BACKER J, LE GOFF C, MICHEL J B, JONDEAU G, SAKAI L Y, BOILEAU C, ABIFADEL M. Pathogenic variants in THSD4, encoding the ADAMTS-like 6 protein, predispose to inherited thoracic aortic aneurysm. Genetics in Medicine, 2021, 23(1): 111-122. doi:10. 1038/s41436-020-00947-4.
[49] KARUNAJEEWA H, HUGHES R J, MCDONALD M W,SHENSTONE F S. A review of factors influencing pigmentation of egg yolks. World's Poultry Science Journal, 1984, 40(1): 52-65. doi:10.1079/WPS19840006.
[50] COPPS K D, WHITE M F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia, 2012, 55(10): 2565-2582. doi:10.1007/ s00125-012-2644-8.
[51] SCHNEIDER A, ZHI X, MOREIRA F, LUCIA T, MONDADORI R G, MASTERNAK M M. Primordial follicle activation in the ovary of Ames dwarf mice. Journal of Ovarian Research, 2014, 7: 120. doi:10.1186/s13048-014-0120-4.
[52] THANGAVELU M, GODLA U R, PAUL S F D, MADDALY R. Single-nucleotide polymorphism of INS, INSR, IRS1, IRS2, PPAR-G and CAPN10 genes in the pathogenesis of polycystic ovary syndrome. Journal of Genetics, 2017, 96(1): 87-96. doi:10.1007/s12041-017- 0749-z.
[53] KUTTAPITIYA A, ASSI L, LAING K, HING C, MITCHELL P, WHITLEY G, HARRISON A, HOWE F A, EJINDU V, HERON C, SOFAT N. Microarray analysis of bone marrow lesions in osteoarthritis demonstrates upregulation of genes implicated in osteochondral turnover, neurogenesis and inflammation. Annals of the Rheumatic Diseases, 2017, 76(10): 1764-1773. doi:10.1136/annrheumdis- 2017-211396.
[54] BRéGEON M, TOMAS D, BERNAY B, ZATYLNY-GAUDIN C, GEORGEAULT S, LABAS V, RéHAULT-GODBERT S, GUYOT N. Multifaceted roles of the egg perivitelline layer in avian reproduction: Functional insights from the proteomes of chicken egg inner and outer sublayers. Journal of Proteomics, 2022, 258: 104489. doi:10.1016/j. jprot.2022.104489.
[55] LESKO S L, ROUHANA L. Dynein assembly factor with WD repeat domains 1 (DAW1) is required for the function of motile cilia in the planarian. Development, Growth & Differentiation, 2020, 62(6): 423-437. doi:10.1111/dgd.12669.
[56] ELLINGHAUS E, ELLINGHAUS D, KRUSCHE P, GREINER A, SCHREIBER C, NIKOLAUS S, GIEGER C, STRAUCH K, LIEB W, ROSENSTIEL P, FRINGS N, FIEBIG A, SCHREIBER S, FRANKE A. Genome-wide association analysis for chronic venous disease identifies EFEMP1 and KCNH8 as susceptibility loci. Scientific Reports, 2017, 7: 45652. doi:10.1038/srep45652.
[57] SPENCER C C, SU Z, DONNELLY P, MARCHINI J. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genetics, 2009, 5(5): e1000477. doi:10.1371/journal.pgen.1000477.
Genome-Wide Association Study of Egg Quality Traits in Longyan Shan-Ma Duck

1College of Life Sciences, Longyan University, Longyan 364012, Fujian;2Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology/Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology/Longyan University, Longyan 364012, Fujian;3Longyan Shan-Ma Duck Original Breeding Farm, Agricultural Bureau of Xinluo District, Longyan 364031, Fujian;4Fujian Provincial Animal Husbandry Headquarters, Fuzhou 350003;5College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002
【Objective】Single nucleotide polymorphisms (SNPs) and candidate genes for egg quality traits in duck were identified through genome-wide association study (GWAS) technology, so as to provide reference for molecular breeding to improve egg quality traits of Longyan Shan-Ma Duck.【Method】Egg quality traits of 235 female Longyan Shan-Ma Duck were measured, including egg weight (EW), egg shaped index (ESI), eggshell thickness (EST), eggshell strength (ESS), eggshell colour L* (ESCL), a* (ESCA), b* (ESCB), albumin height (AH), Haugh unit (HU), egg yolk colour (EYC), egg yolk weight (EYW), and egg yolk percentage relative to egg weight (EYP). Genetic parameters of these traits were estimated using multi-trait animal model by ASReml-R 4.1 software. Blood genomic DNAs of these ducks were genotyped using genotyping-by-sequencing (GBS) technology. The GWAS between egg quality traits of the late laying period and SNPs were performed. 【Result】 The heritability of EW, ESI, EST, ESL, ESA and AU was higher among the egg quality traits of Longyan Shan-Ma Duck, and ranged from 0.21 to 0.70. There was a strong positive genetic correlation (g= 0.91±0.37) between EW and AU, a strong negative genetic correlation (g= -0.98±1.03) between ESI and EYC. EST had a positive phenotypic correlation (p= 0.41±0.06) with ESS, negative genetic and phenotypic correlations with ESA (g= -0.86±0.25 andp= -0.15±0.07), and positive genetic and phenotypic correlations with ESB (g= 0.96±0.37 and 0.18±0.07). There were negative genetic and phenotypic correlations between ESA and ESB (g= -0.64±0.28 andp= -0.31±0.06). Results from the GWAS showed that seven SNPs were significantly associated with ESI, EST and yolk color (YC) at 5% Bonferroni-corrected genome-wide significance level (<4.74×10-6), involving six candidate genes. One SNP, chr20:11135563: G:C, was associated with ESI, which was in leucine rich repeat containing 75A gene, located on chromosome 20. Two SNPs, chr13:5766560:A:G and chrZ:968819:C:T, were associated with EST, which were located on chromosome 13, downstream 6.86 Kb ofand in transcription factor 4 gene, respectively. Four SNPs were associated with EYC, one SNP chr2: 38155965:G:A in potassium voltage-gated channel subfamily H member 8 gene located on chromosome 2; three SNPs located on chromosome 9, two SNPs, chr9:22623156:G:A and chr9:22623155:T:C, in insulin receptor substrate 1 gene, and one SNP, chr9:22490158:A:T, ingene. Eighty-one SNPs associated with egg quality traits reached at suggestive genome-wide significance level (<9.48×10-5) were also found. Thirteen SNPs associated with YC were distributed in the 0.84 Mb (22.16-23.00 Mb) region of chromosome 9.【Conclusion】In this study, genetic parameters of egg quality traits of Longyan Shan-Ma Duck were estimated. Seven significant SNPs, six candidate genes, and one candidate region affecting ESI, EST and EYC traits were identified through GWAS. The findings from the present study provided a reference for the molecular breeding of egg quality traits in Longyan Shan-Ma Duck.
Longyan Shan-Ma Duck; egg quality traits; genetic parameter; SNPs; GWAS

10.3864/j.issn.0578-1752.2023.03.014
2021-10-20;
2022-11-16
福建省種業創新與產業化工程(2021-2025)農業良種重大科研育種攻關與產業化工程項目(zycxny20211014)、福建省科技廳對外合作項目(2021I0045)、福建省科技廳引導性科技項目(2020N0034)、龍巖學院科研博士啟動基金(LB2019001)
孫艷發,Tel:18250071633;E-mail:boysun2010@163.com。通信作者江宵兵,Tel:13960752743;E-mail:fzjxb@163.com。通信作者李焰,Tel:13860217279;E-mail:529783204@qq.com
(責任編輯 林鑒非)