周長(zhǎng)攀 劉海峰 景國(guó)秀 劉 壇 孫向東
雙三相永磁同步電機(jī)缺相容錯(cuò)運(yùn)行虛擬矢量間接修正方法及其在直接轉(zhuǎn)矩控制中應(yīng)用
周長(zhǎng)攀1劉海峰1景國(guó)秀2劉 壇1孫向東1
(1. 西安理工大學(xué)電氣工程學(xué)院 西安 710054 2. 東北大學(xué)信息科學(xué)與工程學(xué)院 沈陽(yáng) 110819)
正常雙三相電機(jī)直接轉(zhuǎn)矩控制運(yùn)行需要對(duì)基本電壓矢量進(jìn)行修正,采用修正后的虛擬矢量進(jìn)行直接轉(zhuǎn)矩控制可以抑制諧波電流。雙三相電機(jī)缺一相故障直接轉(zhuǎn)矩控制時(shí),需要對(duì)電壓矢量重新進(jìn)行修正。該文給出了雙三相電機(jī)缺一相故障情況下的電壓矢量分布,提出一種雙三相電機(jī)缺一相運(yùn)行時(shí)虛擬矢量的間接修正方法,并且使虛擬矢量的幅值達(dá)到最大。構(gòu)建雙三相電機(jī)缺一相容錯(cuò)直接轉(zhuǎn)矩控制策略,其定子磁鏈分區(qū)和開(kāi)關(guān)表的選取規(guī)則與雙三相電機(jī)正常運(yùn)行時(shí)一致,其差別只是缺一相運(yùn)行時(shí)十二個(gè)虛擬矢量的幅值有所減少,因此比較易于實(shí)現(xiàn)。實(shí)驗(yàn)結(jié)果驗(yàn)證了所提方法的正確性和可行性。
雙三相永磁同步電機(jī) 直接轉(zhuǎn)矩控制 單相開(kāi)路故障 虛擬矢量修正
近年來(lái),多相電機(jī)驅(qū)動(dòng)系統(tǒng)因其具有低壓大功率輸出和高可靠性等優(yōu)勢(shì),在航空航天、艦船電力推進(jìn)、電動(dòng)汽車等領(lǐng)域具有廣泛的應(yīng)用前景[1-4]。在各類多相電機(jī)中,六相電機(jī)由于和傳統(tǒng)三相電機(jī)具有緊密的聯(lián)系而得到了更多的關(guān)注。其中相移30°雙三相電機(jī)(即不對(duì)稱六相電機(jī))消除了6次諧波轉(zhuǎn)矩脈動(dòng),其在抑制轉(zhuǎn)矩脈動(dòng)上具有更大的優(yōu)勢(shì),因此得到了廣泛的研究[5-10]。
與傳統(tǒng)三相電機(jī)類似,直接轉(zhuǎn)矩控制(Direct Torque Control, DTC)因其結(jié)構(gòu)簡(jiǎn)單、響應(yīng)快、參數(shù)依賴性小等優(yōu)點(diǎn),也被廣泛應(yīng)用于多相電機(jī)控制中。為了抑制多相電機(jī)諧波子平面的諧波電流,國(guó)內(nèi)外學(xué)者提出了基于虛擬矢量的DTC算法,即在一個(gè)控制周期內(nèi)將基本電壓矢量按照特定比例合成虛擬矢量,使虛擬矢量在諧波子平面的電壓為零,采用虛擬矢量構(gòu)建開(kāi)關(guān)表對(duì)多相電機(jī)進(jìn)行直接轉(zhuǎn)矩控制[11-18]。文獻(xiàn)[18]在控制周期中插入零矢量,通過(guò)優(yōu)化虛擬電壓矢量占空比以減小轉(zhuǎn)矩脈動(dòng)。文獻(xiàn)[19]針對(duì)雙三相永磁同步電機(jī)(Permanent Magnet Syn- chronous Motor, PMSM)提出了一種新穎的混合DTC算法,在電機(jī)的穩(wěn)態(tài)和動(dòng)態(tài)兩種模式下分別用不同的轉(zhuǎn)矩控制方法,實(shí)現(xiàn)平滑過(guò)渡的同時(shí)電機(jī)驅(qū)動(dòng)系統(tǒng)具有良好的動(dòng)靜態(tài)性能。
對(duì)于多相電機(jī)而言,適于容錯(cuò)運(yùn)行是它的一個(gè)顯著優(yōu)勢(shì)。電機(jī)驅(qū)動(dòng)系統(tǒng)中的各種開(kāi)路和短路故障通過(guò)故障隔離的方法都可以轉(zhuǎn)化為電機(jī)的缺相運(yùn)行。當(dāng)多相電機(jī)發(fā)生單相開(kāi)路故障缺相運(yùn)行時(shí),不需要改動(dòng)任何硬件拓?fù)洌恍柽x擇適當(dāng)?shù)娜蒎e(cuò)控制策略便可降額繼續(xù)運(yùn)行,避免了停機(jī)或系統(tǒng)重組。正常多相電機(jī)直接轉(zhuǎn)矩控制運(yùn)行時(shí)需要對(duì)電壓矢量進(jìn)行修正,當(dāng)多相電機(jī)發(fā)生缺相故障時(shí),同樣需要對(duì)缺相后的電壓矢量進(jìn)行修正。文獻(xiàn)[20-21]針對(duì)五相電機(jī)單相故障提出了一種基于虛擬矢量的DTC方法,構(gòu)建了五相電機(jī)故障后的八個(gè)虛擬矢量,并重新構(gòu)建了故障后的開(kāi)關(guān)表,采用虛擬矢量的DTC可降低計(jì)算量,且具有較強(qiáng)的魯棒性,有效抑制了3次諧波電流和轉(zhuǎn)矩脈動(dòng)。文獻(xiàn)[22]針對(duì)偏置60°六相對(duì)稱PMSM發(fā)生單相繞組開(kāi)路故障,提出了容錯(cuò)型DTC策略,采用重構(gòu)虛擬變量、虛擬定子電壓矢量方法,實(shí)現(xiàn)圓形虛擬定子磁鏈軌跡控制,進(jìn)而實(shí)現(xiàn)電磁轉(zhuǎn)矩直接控制。虛擬矢量同樣可以應(yīng)用到多相電機(jī)的空間矢量脈寬調(diào)制(Space Vector Pulse Width Modulation, SVPWM)和預(yù)測(cè)電流控制中,文獻(xiàn)[23]構(gòu)建五相電機(jī)故障后的虛擬矢量進(jìn)行SVPWM,以實(shí)現(xiàn)缺相后的容錯(cuò)矢量控制。文獻(xiàn)[24-25]將五相電機(jī)故障后的虛擬矢量應(yīng)用到缺相后的有限集模型預(yù)測(cè)控制中。上述基于合成虛擬矢量進(jìn)行控制的缺相容錯(cuò)DTC策略,存在一個(gè)共同問(wèn)題,就是電機(jī)在發(fā)生故障后,虛擬矢量的空間相位發(fā)生變化,需重新進(jìn)行定子磁鏈分區(qū)和開(kāi)關(guān)表的設(shè)計(jì),使得控制過(guò)程,尤其是正常運(yùn)行到缺相容錯(cuò)運(yùn)行的切換較為復(fù)雜。
本文以發(fā)生單相開(kāi)路故障的相移30°雙三相PMSM為研究對(duì)象,提出了一種雙三相電機(jī)缺相容錯(cuò)運(yùn)行虛擬電壓矢量的間接修正方法,并且構(gòu)建了基于虛擬矢量的無(wú)需重新設(shè)計(jì)定子磁鏈分區(qū)和開(kāi)關(guān)表的容錯(cuò)型DTC策略。首先給出了雙三相PMSM正常和單相開(kāi)路故障下的電壓矢量分布。闡述了正常情況下基于虛擬矢量的DTC基本原理,然后研究了雙三相PMSM缺一相故障運(yùn)行時(shí)虛擬矢量的修正方法,并且消除了虛擬矢量中包含的零矢量,實(shí)現(xiàn)了最大直流母線電壓利用。實(shí)驗(yàn)結(jié)果表明所提容錯(cuò)型DTC算法有效地抑制了缺相故障運(yùn)行時(shí)的轉(zhuǎn)矩脈動(dòng),并且具有良好的穩(wěn)態(tài)和動(dòng)態(tài)性能。
相移30°雙三相電機(jī)驅(qū)動(dòng)系統(tǒng)如圖1所示。根據(jù)矢量空間解耦理論,通過(guò)靜止坐標(biāo)變換式(1),雙三相電機(jī)的所有變量被映射到ab、12和o1o2三個(gè)相互正交的子平面中,其中ab子平面參與機(jī)電能量轉(zhuǎn)換。o1o2子平面為零序子平面。在中性點(diǎn)相互隔離的情況下,對(duì)應(yīng)到o1o2子平面中的變量都是零。

圖1 雙三相電機(jī)驅(qū)動(dòng)系統(tǒng)




圖2 正常運(yùn)行時(shí)ab 和z1z2子平面電壓矢量
當(dāng)雙三相PMSM驅(qū)動(dòng)系統(tǒng)發(fā)生單相開(kāi)路故障時(shí)(以F相故障為例),此時(shí)系統(tǒng)主電路拓?fù)淙鐖D3所示(中性點(diǎn)隔離)。雙三相PMSM一相開(kāi)路故障后,由于缺少了一個(gè)橋臂,基本電壓矢量由原來(lái)的64個(gè)變?yōu)?2個(gè),一相開(kāi)路故障后的32個(gè)基本電壓矢量按照ABCDE(二進(jìn)制)的順序重新表示為00~31。其中包含28個(gè)有效矢量和4個(gè)零矢量。雙三相PMSM發(fā)生F相開(kāi)路故障后剩余各相電壓可以表示為

式中,A、B、C、D、E分別為各相相電壓;AO、BO、CO、DO、EO分別為各相對(duì)應(yīng)的極電壓(逆變器輸出端對(duì)母線中點(diǎn));N1O、N2O分別為雙三相電機(jī)兩個(gè)隔離中性點(diǎn)相對(duì)直流母線中點(diǎn)的電壓。
雙三相PMSM發(fā)生單相開(kāi)路故障后,正常的靜止坐標(biāo)變換矩陣(見(jiàn)式(1))將不再適用缺相后的系統(tǒng),同樣根據(jù)基波子平面和諧波子平面互相解耦的原則,構(gòu)建單相開(kāi)路故障時(shí)的靜止坐標(biāo)變換矩陣5s[26]為

圖3 雙三相PMSM系統(tǒng)單相開(kāi)路故障下的電路拓?fù)?/p>

對(duì)剩余的五相相電壓進(jìn)行靜止坐標(biāo)變換,即

將式(3)和式(4)代入式(5)中可以得到

式中,F(xiàn)為故障F相繞組的反電動(dòng)勢(shì)。由式(6)所示,當(dāng)雙三相PMSM發(fā)生單相開(kāi)路故障后,系統(tǒng)不再對(duì)稱,O2不再為零。根據(jù)式(6),可以得到雙三相PMSM發(fā)生單相開(kāi)路故障后ab子平面和子平面電壓矢量如圖4所示,具體每個(gè)電壓矢量的幅值和相位見(jiàn)表1詳細(xì)列出。
圖4 單相故障后ab 子平面和z子平面的電壓矢量
Fig.4 Voltage vectors in the ab and z sub-planes in one open-phase fault operation

表1 單相開(kāi)路故障下ab子平面和z子平面基本電壓矢量

(續(xù))
由于雙三相電機(jī)基本電壓矢量在12子平面上的電壓矢量并不為0,且12子平面的諧波阻抗僅由定子電阻和漏感組成,很低的諧波電壓就可以產(chǎn)生大量的諧波電流,長(zhǎng)時(shí)間運(yùn)行會(huì)對(duì)電機(jī)造成損壞。因此雙三相電機(jī)直接轉(zhuǎn)矩控制不能直接采用基本電壓矢量,必須對(duì)電壓矢量進(jìn)行修正。
由圖2所示,只需控制大矢量和中矢量在一個(gè)控制周期之內(nèi)的作用時(shí)間與小矢量及中矢量的幅值成反比關(guān)系,即可保證在12子平面上的合成電壓矢量為零。定義ab子平面上同一方向上的大矢量和中矢量合成的新電壓矢量為虛擬矢量,設(shè)控制周期為s,大矢量作用時(shí)間為s,則中矢量作用時(shí)間(1-)s,虛擬矢量在ab和12子平面的幅值分別為



圖5 正常運(yùn)行時(shí)ab 子平面中的虛擬矢量

表2 開(kāi)關(guān)表

圖6 ab 子平面線性調(diào)制比m=0.277 3時(shí)各相參考電壓



式中,表示A、B、C、D、E;D為相占空比。


圖7 單相開(kāi)路故障時(shí)虛擬矢量的PWM波形

表3 單相開(kāi)路故障后的等幅虛擬矢量所對(duì)應(yīng)的基本電壓矢量及其所占比例
由表3可以看出,修正后的12個(gè)等幅虛擬矢量所對(duì)應(yīng)的電壓矢量中均含有一定比例的零矢量(00和31),零矢量的存在表明系統(tǒng)沒(méi)有實(shí)現(xiàn)最大的直流母線電壓利用率。因此通過(guò)減小零矢量的作用時(shí)間可進(jìn)一步提高這12個(gè)虛擬矢量的幅值,當(dāng)零矢量作用時(shí)間為零時(shí)對(duì)應(yīng)該虛擬矢量的幅值達(dá)到最大為|max|。
將表3中虛擬矢量的零矢量作用時(shí)間按相應(yīng)比例分配給其余四個(gè)基本矢量,則有

式中,|max|為優(yōu)化后不含零矢量的虛擬矢量幅值;0為零矢量(00,31)的作用時(shí)間。
對(duì)比圖5(正常運(yùn)行)和圖9(缺相故障運(yùn)行)時(shí)的虛擬矢量可以看出12個(gè)虛擬矢量的方向完全一致,只是缺相故障運(yùn)行時(shí)虛擬矢量的幅值有所減少,因此雙三相電機(jī)缺相故障與正常直接轉(zhuǎn)矩控制時(shí)其定子磁鏈分區(qū)和開(kāi)關(guān)表的選取規(guī)則一致,不需要重新進(jìn)行定子磁鏈分區(qū)和開(kāi)關(guān)表設(shè)計(jì),即本文構(gòu)建的雙三相電機(jī)缺相故障直接轉(zhuǎn)矩控制運(yùn)行策略與正常直接轉(zhuǎn)矩控制運(yùn)行時(shí)控制策略基本一致,其差別只是虛擬矢量的幅值有所減少,比較易于實(shí)現(xiàn)。雙三相永磁同步電機(jī)缺相容錯(cuò)直接轉(zhuǎn)矩控制算法框圖如圖10所示。開(kāi)關(guān)表與正常DTC控制時(shí)開(kāi)關(guān)表2一致,只是電壓矢量選用單相開(kāi)路故障后的虛擬矢量表3(等幅虛擬矢量)或表4(最大幅值虛擬矢量),其中等幅虛擬矢量,幅值相等但相對(duì)較小,適合低速輕載情況(相電流THD和轉(zhuǎn)矩脈動(dòng)較小);最大幅值虛擬矢量幅值不相等,但可以提高直流母線電壓利用率,從而得到較大的速度和轉(zhuǎn)矩輸出,適合高速重載情況。定子磁鏈估算采用反電動(dòng)勢(shì)積分算法的電壓模型,即式中,s為定子電阻;sa、sb分別為定子磁鏈在a、b軸上的分量;a0、b0分別為轉(zhuǎn)子磁鏈在定子a、b軸上的初始磁鏈;為定子磁鏈角。

表4 單相開(kāi)路故障后的最大幅值虛擬矢量所對(duì)應(yīng)的基本電壓矢量及其占比

圖8 虛擬矢量在ab 和z子平面的矢量合成圖




圖9 單相開(kāi)路故障后ab 子平面上的最大幅值虛擬矢量分布圖

圖10 基于虛擬矢量的容錯(cuò)型DTC算法框圖
為驗(yàn)證本文提出控制策略的可行性,在一臺(tái)表貼式雙三相PMSM上進(jìn)行實(shí)驗(yàn)驗(yàn)證。電機(jī)參數(shù)為:定子電阻0.5W,直交軸電感2.04mH,永磁體磁鏈0.12Wb,極對(duì)數(shù)為4。實(shí)驗(yàn)平臺(tái)如圖11所示。控制器采用Infineon公司的XE164高性能微控制器,逆變器采用英飛凌公司的FF300R12ME4功率模塊。采用直流電機(jī)作為負(fù)載,控制頻率為10kHz,死區(qū)時(shí)間為2ms,直流母線電壓為200V。

圖11雙三相PMSM驅(qū)動(dòng)系統(tǒng)實(shí)驗(yàn)平臺(tái)
圖12為雙三相電機(jī)正常運(yùn)行時(shí)的相電流、轉(zhuǎn)矩和轉(zhuǎn)速波形。電機(jī)負(fù)載恒定為7N·m,轉(zhuǎn)速恒定為200r/min。雙三相電機(jī)正常運(yùn)行時(shí)A相相電流的THD為5.6%,轉(zhuǎn)矩脈動(dòng)為1N?m。
實(shí)驗(yàn)中使F相開(kāi)路故障,電機(jī)負(fù)載恒定為7N·m,轉(zhuǎn)速恒定為200r/min。圖13為雙三相電機(jī)正常運(yùn)行、未使用虛擬矢量(缺一相)、等幅虛擬矢量(缺一相)和最大幅值虛擬矢量(缺一相)四種控制方式下諧波電流i和轉(zhuǎn)矩脈動(dòng)的比較波形,不同控制方式下的A相相電流THD和轉(zhuǎn)矩脈動(dòng)見(jiàn)表5。未使用虛擬矢量(缺一相)方式為雙三相電機(jī)缺一相故障后采用圖4中的原始矢量(18、26、27、11、09、13、05、07、23、22)進(jìn)行直接轉(zhuǎn)矩控制,即未對(duì)電壓矢量進(jìn)行修正,由于原始矢量在平面的電壓幅值不為零,因此此時(shí)諧波電流較大,由圖13b所示A相相電流的THD為141.8%,轉(zhuǎn)矩脈動(dòng)為1.7N?m。圖13c為雙三相電機(jī)缺一相故障后采用表3中的等幅虛擬矢量進(jìn)行直接轉(zhuǎn)矩控制時(shí)的波形,A相相電流的THD為7.8%,轉(zhuǎn)矩脈動(dòng)為1.2N?m。比雙三相電機(jī)正常運(yùn)行時(shí)略大,與圖13b未使用虛擬矢量(缺一相)方式相比諧波電流得到了明顯的抑制。圖13d為雙三相電機(jī)缺一相故障后采用表4中的最大幅值虛擬矢量進(jìn)行直接轉(zhuǎn)矩控制時(shí)的波形,A相相電流的THD為15.7%,轉(zhuǎn)矩脈動(dòng)為1.4N?m,與圖13c等幅虛擬矢量(缺一相)方式相比最大幅值虛擬矢量(缺一相)諧波電流和轉(zhuǎn)矩脈動(dòng)都有所增大,主要是由于最大幅值虛擬矢量幅值較大且不同方向上的幅值不相等,但最大幅值虛擬矢量可以提高直流母線電壓利用率。因此在低速輕載工況場(chǎng)合下采用等幅虛擬矢量可以得到較小的相電流THD和轉(zhuǎn)矩脈動(dòng),在高速重載工況場(chǎng)合下需要采用最大幅值虛擬矢量,從而得到較大的速度和轉(zhuǎn)矩輸出。

圖12 正常運(yùn)行時(shí)的實(shí)驗(yàn)結(jié)果

圖13 不同控制方式下諧波電流和轉(zhuǎn)矩脈動(dòng)比較

表5 不同控制方式下的相電流THD和轉(zhuǎn)矩脈動(dòng)
由于本文實(shí)驗(yàn)條件為低速輕載工況,因此以下實(shí)驗(yàn)均采用等幅虛擬矢量(缺一相)方式,圖14為雙三相電機(jī)采用等幅虛擬矢量缺相容錯(cuò)運(yùn)行時(shí)的相電流、電磁轉(zhuǎn)矩和轉(zhuǎn)速波形,電機(jī)負(fù)載恒定為7N·m,轉(zhuǎn)速恒定為200r/min。可以看出相電流正弦性良好,采用本文提出的缺一相容錯(cuò)直接轉(zhuǎn)矩控制策略可以較好地抑制諧波電流和轉(zhuǎn)矩脈動(dòng),且具有較好的穩(wěn)態(tài)性能。圖15為雙三相電機(jī)從100r/min加速到300r/min時(shí)的相電流、電磁轉(zhuǎn)矩和轉(zhuǎn)速的實(shí)驗(yàn)波形。圖16為負(fù)載轉(zhuǎn)矩從3N?m突加到7N?m時(shí)對(duì)應(yīng)的相電流、電磁轉(zhuǎn)矩和轉(zhuǎn)速實(shí)驗(yàn)波形,圖17為負(fù)載轉(zhuǎn)矩從7N?m突減到3N?m時(shí)對(duì)應(yīng)的相電流、電磁轉(zhuǎn)矩和轉(zhuǎn)速實(shí)驗(yàn)波形,電機(jī)轉(zhuǎn)速給定為200r/min。負(fù)載突變時(shí),電機(jī)電磁轉(zhuǎn)矩經(jīng)過(guò)短暫調(diào)節(jié)就可以跟隨給定,電機(jī)轉(zhuǎn)速波動(dòng)較小。可以看出系統(tǒng)的動(dòng)態(tài)性能良好,且具有較好的抗干擾能力。

圖14 等幅虛擬矢量容錯(cuò)運(yùn)行

圖15 電機(jī)加速時(shí)的實(shí)驗(yàn)結(jié)果

圖16 負(fù)載突增時(shí)的實(shí)驗(yàn)結(jié)果

圖17 負(fù)載突減時(shí)的實(shí)驗(yàn)結(jié)果
圖18為正反轉(zhuǎn)實(shí)驗(yàn)波形,電機(jī)轉(zhuǎn)速?gòu)?00r/min突變到-200r/min。從實(shí)驗(yàn)結(jié)果可以看出,采用本文構(gòu)建的容錯(cuò)直接轉(zhuǎn)矩控制策略,雙三相電機(jī)缺一相故障后可以穩(wěn)定運(yùn)行,且具有較好的動(dòng)靜態(tài)性能。圖19為雙三相電機(jī)從正常運(yùn)行到故障運(yùn)行的切換波形,可以看到當(dāng)F相發(fā)生開(kāi)路故障后,F(xiàn)相電流突變?yōu)榱悖S嘞嚯娏靼l(fā)生較大畸變,同時(shí)具有較大的轉(zhuǎn)矩脈動(dòng)。圖20為雙三相電機(jī)從故障運(yùn)行到容錯(cuò)直接轉(zhuǎn)矩控制運(yùn)行時(shí)的切換波形,可以看到采用本文構(gòu)建的容錯(cuò)直接轉(zhuǎn)矩控制策略可以有效抑制轉(zhuǎn)矩脈動(dòng)。

圖18 電機(jī)正反轉(zhuǎn)切換運(yùn)行時(shí)的實(shí)驗(yàn)結(jié)果

圖19 正常運(yùn)行到缺相故障運(yùn)行時(shí)的切換波形

圖20 缺相故障運(yùn)行到容錯(cuò)運(yùn)行時(shí)的切換波形
本文針對(duì)雙三相永磁同步電機(jī)缺一相故障情況,主要提出了一種雙三相電機(jī)缺相容錯(cuò)運(yùn)行虛擬矢量的間接修正方法,并且構(gòu)建了雙三相電機(jī)缺一相容錯(cuò)直接轉(zhuǎn)矩控制策略,得到以下結(jié)論:
1)雙三相永磁同步電機(jī)缺一相直接轉(zhuǎn)矩控制需要對(duì)虛擬矢量進(jìn)行重新修正,采用修正后的虛擬矢量可以有效抑制故障運(yùn)行時(shí)的轉(zhuǎn)矩脈動(dòng),實(shí)現(xiàn)缺一相故障后的有效直接轉(zhuǎn)矩控制。
2)本文提出的雙三相PMSM缺一相故障運(yùn)行虛擬矢量間接修正方法,可以得到等幅和最大幅值兩種虛擬矢量,其中最大幅值虛擬矢量消除了零矢量,實(shí)現(xiàn)了最大直流母線電壓利用。
3)本文構(gòu)建的雙三相電機(jī)缺一相直接轉(zhuǎn)矩控制策略,其定子磁鏈分區(qū)和開(kāi)關(guān)表的選取規(guī)則與雙三相電機(jī)正常運(yùn)行直接轉(zhuǎn)矩控制一致,其差別只是12個(gè)虛擬矢量的幅值有所減少,因此比較易于實(shí)現(xiàn)。
4)本文提出的缺相容錯(cuò)運(yùn)行虛擬電壓矢量間接修正方法對(duì)于其他類型多相電機(jī)如五相電機(jī),正常運(yùn)行以及缺兩相運(yùn)行情況均適用,只需要分別采用對(duì)應(yīng)運(yùn)行情況下的靜止變換陣即可。虛擬電壓矢量也可以用于多相電機(jī)缺相容錯(cuò)運(yùn)行時(shí)的SVPWM和預(yù)測(cè)電流控制中。
[1] Levi E. Advances in converter control and innovative exploitation of additional degrees of freedom for multiphase machines[J]. IEEE Transactions on Indu- strial Electronics, 2016, 63(1): 433-448.
[2] Duran M J, Barrero F. Recent advances in the design, modeling, and control of multiphase machines—part II[J]. IEEE Transactions on Industrial Electronics, 2016, 63(1): 459-468.
[3] Duran M J, Barrero F. Recent advances in the design, modeling, and control of multiphase machines-part II[J]. IEEE Transactions on Industrial Electronics, 2016, 63(1): 459-468.
[4] 劉自程, 李永東, 鄭澤東. 多相電機(jī)控制驅(qū)動(dòng)技術(shù)研究綜述[J]. 電工技術(shù)學(xué)報(bào), 2017, 32(24): 17-29.
Liu Zicheng, Li Yongdong, Zheng Zedong. Control and drive techniques for multiphase machines: a review[J]. Transactions of China Electrotechnical Society, 2017, 32(24): 17-29.
[5] Suhel S M, Maurya R. A new switching sequences of SVPWM for six-phase induction motor with features of reduced switching losses[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(2): 100- 107.
[6] 卜飛飛, 羅捷, 劉皓喆, 等. 雙繞組感應(yīng)發(fā)電機(jī)系統(tǒng)無(wú)差拍電流預(yù)測(cè)控制策略[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(24): 5213-5224.
Bu Feifei, Luo Jie, Liu Haozhe, et al. Deadbeat predictive current control strategy of dual winding induction generator system[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5213-5224.
[7] 蔣錢, 盧琴芬, 李焱鑫. 雙三相永磁直線同步電機(jī)的推力波動(dòng)及抑制[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(5): 883-892.
Jiang Qian, Lu Qinfen, Li Yanxin. Thrust ripple and depression method of dual three-phase permanent magnet linear synchronous motors[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 883- 892.
[8] 韓一, 聶子玲, 許金, 等. 雙三相非周期瞬態(tài)直線感應(yīng)電機(jī)能量鏈切換控制策略[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(2): 258-267.
Han Yi, Nie Ziling, Xu Jin, et al. Energy chain switching control of a dual three-phase linear induction motor operating in non-periodic transient conditions[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 258-267.
[9] 周長(zhǎng)攀, 楊貴杰, 蘇健勇, 等. 基于正常解耦變換的雙三相永磁同步電機(jī)缺相容錯(cuò)控制策略[J]. 電工技術(shù)學(xué)報(bào), 2017, 32(3): 86-96.
Zhou Changpan, Yang Guijie, Su Jianyong, et al. The control strategy for dual three-phase PMSM based on normal decoupling transformation under fault con- dition due to open phases[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 86-96.
[10] 趙勇, 黃文新, 林曉剛, 等. 基于權(quán)重系數(shù)消除和有限控制集優(yōu)化的雙三相永磁容錯(cuò)電機(jī)快速預(yù)測(cè)直接轉(zhuǎn)矩控制[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(1): 3-14.
Zhao Yong, Huang Wenxin, Lin Xiaogang, et al. Fast predictive direct torque control of dual three-phase permanent magnet fault tolerant machine based on weighting factor elimination and finite control set optimization[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 3-14.
[11] 王學(xué)慶, 王政, 程明. T型三電平逆變器饋電雙三相PMSM直接轉(zhuǎn)矩控制[J]. 電工技術(shù)學(xué)報(bào), 2017, 32(增刊1): 116-123.
Wang Xueqing, Wang Zheng, Cheng Ming. Direct torque control of T-type three-level inverter fed dual three-phase PMSM drives[J]. Transactions of China Electrotechnical Society, 2017, 32(S1): 116-123.
[12] Zheng Libo, Fletcher J E, Williams B W, et al. A novel direct torque control scheme for a sensorless five-phase induction motor drive[J]. IEEE Transa- ctions on Industrial Electronics, 2011, 58(2): 503- 513.
[13] Ren Yuan, Zhu Z Q. Reduction of both harmonic current and torque ripple for dual three-phase permanent- magnet synchronous machine using modified switching- table-based direct torque control[J]. IEEE Transa- ctions on Industrial Electronics, 2015, 62(11): 6671- 6683.
[14] 周長(zhǎng)攀, 蘇健勇, 楊貴杰. 雙三相永磁同步電機(jī)直接轉(zhuǎn)矩控制諧波電流抑制研究[J]. 電機(jī)與控制學(xué)報(bào), 2015, 19(9): 46-53.
Zhou Changpan, Su Jianyong, Yang Guijie. Harmonic currents suppression in direct torque control of dual three-phase permanent magnet synchronous motor[J]. Electric Machines and Control, 2015, 19(9): 46-53.
[15] 黃林森, 趙文祥, 吉敬華, 等. 穩(wěn)態(tài)性能改善的雙三相永磁電機(jī)直接轉(zhuǎn)矩控制[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(2): 355-367.
Huang Linsen, Zhao Wenxiang, Ji Jinghua, et al. Direct torque control for dual three-phase permanent- magnet machine with improved steady-state perfor- mance[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 355-367.
[16] 耿乙文, 鮑宇, 王昊, 等. 六相感應(yīng)電機(jī)直接轉(zhuǎn)矩及容錯(cuò)控制[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2016, 36(21): 5947-5956, 6039.
Geng Yiwen, Bao Yu, Wang Hao, et al. Direct torque and fault tolerant control for six-phase induction motor[J]. Proceedings of the CSEE, 2016, 36(21): 5947-5956, 6039.
[17] 陳浩, 和陽(yáng), 趙文祥, 等. 基于占空比調(diào)制的五相容錯(cuò)永磁游標(biāo)電機(jī)直接轉(zhuǎn)矩控制[J]. 電工技術(shù)學(xué)報(bào), 2020, 35(5): 1055-1064.
Chen Hao, He Yang, Zhao Wenxiang, et al. Direct torque control of five-phase fault-tolerant permanent magnet vernier motor based on duty cycle modu- lation[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1055-1064.
[18] 武雪松, 宋文勝, 薛誠(chéng). 基于虛擬電壓矢量集占空比優(yōu)化的五相永磁同步電機(jī)直接轉(zhuǎn)矩控制算法[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2019, 39(3): 857-867, 964.
Wu Xuesong, Song Wensheng, Xue Cheng. Direct torque control schemes for five-phase permanent- magnet synchronous machines based on duty ratio optimization of virtual voltage vector sets[J]. Pro- ceedings of the CSEE, 2019, 39(3): 857-867, 964.
[19] Wang Xueqing, Wang Zheng, Xu Zhixian. A hybrid direct torque control scheme for dual three-phase PMSM drives with improved operation perfor- mance[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1622-1634.
[20] Bermudez M, Gonzalez-Prieto I, Barrero F, et al. Open-phase fault-tolerant direct torque control technique for five-phase induction motor drives[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 902-911.
[21] Bermudez M, Gonzalez-Prieto I, Barrero F, et al. An experimental assessment of open-phase fault-tolerant virtual-vector-based direct torque control in five- phase induction motor drives[J]. IEEE Transactions on Power Electronics, 2018, 33(3): 2774-2784.
[22] 周揚(yáng)忠, 程明, 陳小劍. 基于虛擬變量的六相永磁同步電機(jī)缺一相容錯(cuò)型直接轉(zhuǎn)矩控制[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2015, 35(19): 5050-5058.
Zhou Yangzhong, Cheng Ming, Chen Xiaojian. A tolerated fault direct torque control for six-phase permanent magnet synchronous motor with one opened phase based on fictitious variables[J]. Pro- ceedings of the CSEE, 2015, 35(19): 5050-5058.
[23] Chen Qian, Liu Guohai, Zhao Wenxiang, et al. Asymmetrical SVPWM fault-tolerant control of five-phase PM brushless motors[J]. IEEE Transa- ctions on Energy Conversion, 2017, 32(1): 12-22.
[24] Liu Guohai, Song Chengyan, Chen Qian. FCS-MPC- based fault-tolerant control of five-phase IPMSM for MTPA operation[J]. IEEE Transactions on Power Electronics, 2020, 35(3): 2882-2894.
[25] Tao Tao, Zhao Wenxiang, Du Yuxuan, et al. Simplified fault-tolerant model predictive control for a five-phase permanent-magnet motor with reduced computation burden[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 3850-3858.
[26] 楊金波, 李鐵才, 楊貴杰. 一相開(kāi)路雙三相永磁同步電機(jī)建模與控制[J]. 電工技術(shù)學(xué)報(bào), 2011, 26(10): 167-173, 187.
Yang Jinbo, Li Tiecai, Yang Guijie. Modeling and control of dual three-phase PMSM with one open phase[J]. Transactions of China Electrotechnical Society, 2011, 26(10): 167-173, 187.
The Indirect Correction Method of Virtual Vectors for Dual Three-Phase Permanent Magnet Synchronous Motors under the Open-Phase Fault and Its Application in the Direct Torque Control
11211
(1. School of Electrical Engineering Xi’an University of Technology Xi’an 710054 China 2. College of Information Science and Engineering Northeastern University Shenyang 110819 China)
Multiphase machines have low voltage, high power, low torque pulsation, and good fault tolerance, which have good application prospects in high-power driving applications such as electric vehicles, marine electric propulsion, and wind power generation. The phase-shifted 30° dual three-phase motor (the asymmetric six-phase motor) has a greater application advantage due to the cancellation of the sixth torque harmonic among various multiphase machines. The high fault-tolerant capability is an important application feature of multiphase machines. Various open-circuit and short-circuit faults in the machine drive system can be converted into open-phase faults through fault isolation. Therefore, the research of fault-tolerant control strategies for multiphase machines is mainly focused on the open-phase fault. Currently, the common control strategies for fault-tolerant operation include field-oriented control (FOC), model predictive control, and direct torque control (DTC). Among them, DTC does not need complex coordinate transformation, which weakens the influence of motor parameter changes on the control effect. In addition, DTC also has the advantages of a simple structure and fast torque response. Thus, it is widely researched in the fault-tolerant control of multi-phase motors.
Firstly, the basic voltage vectors in the direct torque control for dual three-phase permanent magnet synchronous motor (PMSM) drives must be modified. Using the modified virtual vectors for DTC, the harmonic currents in the1-2sub-plane can be suppressed significantly. When an open-phase fault occurs, the voltage vectors need to be modified again. The voltage vector distribution in the open-phase fault operation is introduced. An indirect correction method of virtual voltage vectors is proposed under the single-phase open-circuit fault, and the amplitudes of the virtual voltage vectors are maximized. Moreover, the single-phase open-circuit fault-tolerant direct torque control strategy for a dual three-phase motor based on virtual voltage vectors is constructed. Its stator flux chain partition and switching table selection rules are the same as the dual three-phase motor under healthy operation. The only difference is that the amplitudes of twelve virtual vectors are reduced in the open-phase fault operation.
Experimental verification was carried out on a surface-mounted dual three-phase PMSM. The parameters of the dual three-phase PMSM are listed as follows:n=4,s=0.5W,D=2.04mH,Q=2.04mH, andfd=0.12Wb. The DC bus voltage is 200V. The switching frequency is 10kHz with a dead time of 2ms. Harmonic currents and torque pulsations in different control methods are compared and analyzed. The THD of phase current A is 5.6%, and the torque pulsation is 1N·m in the healthy DTC operation of dual three-phase PMSM. The THD of phase current A is 141.8%, and the torque pulsation is 1.7N·m under the single-phase open-circuit fault of dual three-phase PMSM when the original vectors are used. The THD of phase current A is 7.8%, and the torque pulsation is 1.2N·m in the open-phase fault DTC operation when the same amplitude virtual vectors are used. The THD of phase current A is 15.7%, and the torque pulsation is 1.4N·m in the open-phase fault DTC operation when the maximum amplitude virtual vectors are used. The amplitudes of the maximum amplitude virtual vectors are not equal, but the DC bus voltage utilization rate is improved. Compared with the same amplitude virtual vectors, the THD of phase currents and the torque pulsation are larger when the maximum amplitude virtual vectors are used. The same amplitude virtual vectors can be used under low speed and light load conditions for low harmonic currents and torque pulsations. The maximum amplitude virtual vectors can be used under high speed and heavy load conditions for larger speed and torque output.
The following conclusions can be drawn from the theoretical analysis and experimental results: ① An indirect correction method of virtual voltage vectors is proposed under the single-phase open-circuit fault, and the amplitudes of the virtual voltage vectors are maximized. ②The proposed control strategy ensures that the sector distribution and the selection rule of the look-up tables after the single-phase open-circuit fault are consistent with those in the healthy operation, simplifying the control process. ③ The virtual vectors indirect correction method proposed in this paper can also be extended to other multiphase motors, such as five-phase motors. And be applied to two-phase faults of motors.
Dual three-phase permanent magnet synchronous motor, direct torque control, one phase open fault, virtual vector correction
TM301.2
10.19595/j.cnki.1000-6753.tces.211702
國(guó)家自然科學(xué)基金(51707157)、中國(guó)博士后科學(xué)基金(2017M623210)和陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃(2023-JC-YB-377)資助項(xiàng)目。
2021-10-28
2022-04-13
周長(zhǎng)攀 男,1986年生,講師,研究方向?yàn)槎嘞嚯姍C(jī)驅(qū)動(dòng)與控制,新能源電力電子變換。
E-mail: zhoucp@xaut.edu.cn(通信作者)
劉海峰 男,1994年生,碩士研究生,研究方向?yàn)槎嘞嘤来磐诫姍C(jī)驅(qū)動(dòng)與控制。
E-mail: 1049734472@qq.com
(編輯 郭麗軍)