999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

ON THE BOUNDS OF THE PERIMETER OF AN ELLIPSE*

2023-01-09 10:54:14TiehongZHAO趙鐵洪

Tiehong ZHAO(趙鐵洪)

Department of Mathematics,Hangzhou Normal University,Hangzhou 311121,China E-mail: tiehong.zhao@hznu.edu.cn

Miaokun WANG(王淼坤)Yuming CHU(褚玉明)

Department of Mathematics,Huzhou University,Huzhou 313000,China E-mail :wmk000@126.com; chuuming2005@126.com

The complete elliptic integrals and the Gaussian hypergeometric function play a very important and basic role in many branches of modern mathematics, including classical analysis,number theory,geometric function theory,and conformal and quasi-conformal mappings[9-23].Recently,the complete elliptic integrals have attracted the attention of many researchers on account of their extreme importance. We note that many remarkable monotonicity and convexity properties, as well as inequalities for K (r) and E(r), can be found in the literature [24-47].

In what follows, we denote by

the harmonic,geometric, arithmetic, quadratic, and p-th power means of two positive numbers a and b, respectively.

In recent decades, the bounds and approximate formulae for the perimeter of an ellipse have attracted the attention of many researchers [48-56].

Vuorinen, in [57], conjectured that

In their latest paper[62],the authors improved upon the lower and upper bounds for L(a,b)by using the convex combination of the lower bound in (1.6) and the upper bound in (1.7).More precisely, they showed that the double inequality

which is used to provide new bounds for the perimeter of an ellipse L(a,b).

2 Lemmas

In order to prove our main results, we need several formulae and lemmas, and we present them in this section.

be a convergent power series on the interval (0,r) (r > 0). Then the following statements are true:

(1) If S(r-)≥0, then S(x)>0 for all x ∈(0,r).

(2) If S(r-)<0, then there is a unique x0∈(0,r) such that S(x)>0 for x ∈(0,x0) and S(x)<0 for x ∈(x0,r).

Lemma 2.2 (See [64]) We have the double inequality

where cnis defined as in Lemma 2.4.

On the other hand, it is clear that c3= (3-32λ)/256. Lemma 2.4(1) and (4) lead to the conclusion that

3 Main Results

holds for all a,b>0 with a/=b, where λ is defined as in (1.11).

Proof Since L(a,b) and A(a,b),H(a,b),G(a,b),Q(a,b) are symmetric and homogeneous of degree one, without loss of generality, we assume that a >b>0 with b/a=(1-r)/(1+r)for r ∈(0,1). Then it follows from (1.1), (1.4), (1.5) and the Landau identity (2.1) that

It is easy to see that ?(r) is strictly increasing on(0,1). Actually, the absolute error is less than?(3/4)=7.42011×10-7on (0,3/4], which is better than that given in [62, Remark 3.5].

主站蜘蛛池模板: 国产 在线视频无码| 91蝌蚪视频在线观看| 美女扒开下面流白浆在线试听| 综合五月天网| 情侣午夜国产在线一区无码| 精品精品国产高清A毛片| 99福利视频导航| 日本欧美在线观看| 中文国产成人精品久久| 中文无码精品a∨在线观看| 无码人妻免费| 亚洲日韩AV无码精品| 三上悠亚在线精品二区| 孕妇高潮太爽了在线观看免费| 色视频久久| 91亚瑟视频| a级毛片免费网站| 国产日本一区二区三区| 国产老女人精品免费视频| 永久免费精品视频| 国产精品久久久久久影院| 日韩专区第一页| 又爽又大又黄a级毛片在线视频 | P尤物久久99国产综合精品| 亚洲欧美激情小说另类| 91在线播放国产| 欧美激情成人网| 欧美性猛交xxxx乱大交极品| 国产国产人成免费视频77777 | 久久久久无码精品| 国产精品视频导航| 熟妇丰满人妻| 国产精品女熟高潮视频| jizz国产在线| 亚洲制服中文字幕一区二区| 狠狠五月天中文字幕| 97影院午夜在线观看视频| 91精品啪在线观看国产60岁| 国产va免费精品| 亚洲侵犯无码网址在线观看| 一本大道在线一本久道| 国产精品手机视频一区二区| 精品99在线观看| 亚洲第一视频区| 91国语视频| 国产免费久久精品99re丫丫一| 日韩精品一区二区三区中文无码| 2022国产无码在线| 国产96在线 | 91最新精品视频发布页| 欧美日本在线观看| 色婷婷综合激情视频免费看| 欧美中文字幕一区| 亚洲日韩久久综合中文字幕| 特级aaaaaaaaa毛片免费视频| 91美女视频在线| 视频二区欧美| 国产成熟女人性满足视频| 91亚瑟视频| 国产美女无遮挡免费视频| 天天躁夜夜躁狠狠躁躁88| 国产在线91在线电影| 国产女人18水真多毛片18精品 | 99这里只有精品免费视频| 国产精品美女免费视频大全| 午夜精品区| 国产精品美女免费视频大全| www.狠狠| 久久99热66这里只有精品一 | 天堂亚洲网| 欧美亚洲一区二区三区导航| 特级做a爰片毛片免费69| 四虎影视8848永久精品| 一级看片免费视频| 亚洲第一福利视频导航| 亚洲无码精彩视频在线观看 | 色噜噜在线观看| 毛片基地视频| 亚洲国产精品久久久久秋霞影院| 福利姬国产精品一区在线| 在线播放91| 国产综合网站|