999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

COMPLETE MONOTONICITY FOR A NEW RATIO OF FINITELY MANY GAMMA FUNCTIONS*

2023-01-09 10:57:40FengQI祁鋒

Feng QI (祁鋒)

Institute of Mathematics,Henan Polytechnic University,Jiaozuo 454010,ChinaSchool of Mathematical Sciences,Tiangong University,Tianjin 300387,ChinaE-mail: qifeng618@yeah.net;qifen618@gmail.com; qifeng618@hotmail.com

In [17, Theorem 2.1] and [34, Theorem 4.1], the functions

2 A Lemma

For stating and proving our main results, we need a lemma below.

Lemma 2.1 Let

3 Complete Monotonicity

4. for all ρ ≥1 and θ ≥0, the second derivative [ln Fρ,θ(x)]''is a completely monotonic function on (0,∞).

Proof Taking the logarithm on both sides of (1.8) and computing give

By virtue of inequality (2.1), we derive readily that, when ρ ≥1 and θ ≥0, the second derivative [ln Fρ,θ(x)]''is completely monotonic on (0,∞). Hence, the first derivative [ln Fρ,θ(x)]'is increasing on (0,∞).

When ρ=1 and θ =0, it is easy to see that

4 A Simple Review

In this section, we simply review complete monotonicity of several linear combinations of finitely many digamma or trigamma functions.

Let

is a completely monotonic function on (0,∞), where q ∈(0,1), ψq(x) is the q-analogue of the digamma function ψ(x), and λk> 0 for 1 ≤k ≤n. The function in (4.2) is the q-analogue of the one in (4.1).

From the proof of [34, Theorem 4.1], we can conclude that the linear combination

From the proof of [30, Theorem 5.1], we can conclude that if ρ ≤2 and θ ≥0, then the linear combination

5 Remarks

In this section, we mainly mention some conclusions of the paper [51], which was brought to the author’s attention by an anonymous referee.

Remark 5.1 It is well known that the Bernoulli numbers Bncan be generated by

which has a unique minimum and is logarithmically convex on (0,∞). This implies that the introduction of the parameter ρ in the function Fρ,θ(x) is significant and is not trivial.

Remark 5.3This paper is a revised version of the electronic preprint [23], and a companion of the series of papers [18, 20, 30, 34, 35, 40] and the references therein.

AcknowledgementsThe author thanks the anonymous referees for their careful corrections to, valuable comments on, and helpful suggestions regarding the original version of this paper.

主站蜘蛛池模板: 一本大道无码日韩精品影视| 2021无码专区人妻系列日韩| 五月天香蕉视频国产亚| 8090成人午夜精品| 亚洲成人在线免费观看| 成人午夜免费观看| 亚洲国产欧美国产综合久久 | 日韩 欧美 国产 精品 综合| 91精品伊人久久大香线蕉| 国产全黄a一级毛片| 欧美a级完整在线观看| 有专无码视频| 看国产毛片| 2021国产在线视频| 日本成人在线不卡视频| 四虎永久免费地址在线网站| 久久久久中文字幕精品视频| 日韩中文字幕亚洲无线码| 亚洲国产第一区二区香蕉| 999福利激情视频| 国产成人免费手机在线观看视频| 色哟哟色院91精品网站| 国产成人欧美| 香蕉视频在线精品| 在线观看免费AV网| 米奇精品一区二区三区| 中文一区二区视频| 日韩一级毛一欧美一国产| 久久综合AV免费观看| 99这里只有精品免费视频| 亚洲色偷偷偷鲁综合| 亚洲天天更新| 欧美国产在线一区| 亚洲欧美在线看片AI| 青青热久麻豆精品视频在线观看| www.日韩三级| 91 九色视频丝袜| 国内精品手机在线观看视频| 国产成人久视频免费| 91久久国产成人免费观看| 无码丝袜人妻| 久草热视频在线| 国产精品美女网站| 国产免费观看av大片的网站| 欧美成人亚洲综合精品欧美激情 | 午夜国产精品视频| 欧美色伊人| 亚洲美女一区| 99精品视频在线观看免费播放| 国产精品亚洲一区二区三区z| 99这里只有精品免费视频| 欧美专区在线观看| 狠狠亚洲五月天| 欧美在线中文字幕| 国产精品免费福利久久播放| 国产精品青青| 国产精品成人观看视频国产| 青青操视频在线| 亚洲成a人片77777在线播放| 国产在线观看第二页| 国产精品护士| 精品国产香蕉伊思人在线| 91破解版在线亚洲| 国产日韩欧美成人| 国产成人综合在线观看| 麻豆国产在线不卡一区二区| 免费无码一区二区| 亚洲精品无码av中文字幕| 亚洲精品成人7777在线观看| 一级毛片网| 国内视频精品| 一本综合久久| 亚洲综合第一区| 国产aⅴ无码专区亚洲av综合网| 国产精品一区二区国产主播| 国产黄网永久免费| 久久青草视频| 强乱中文字幕在线播放不卡| 高清免费毛片| 成人精品免费视频| 国产手机在线观看| 无码中文字幕乱码免费2|