努爾哈提·斯拉甫爾,烏斯?jié)M·依米提
氨基酸副產(chǎn)物對(duì)白高粱青貯飼料發(fā)酵品質(zhì)及體外消化率的影響
努爾哈提·斯拉甫爾,烏斯?jié)M·依米提
新疆大學(xué)生命科學(xué)與技術(shù)學(xué)院,烏魯木齊 830046
【目的】研究適量的氨基酸副產(chǎn)物(amino acid by-products,ABP)對(duì)白高粱發(fā)酵品質(zhì)及其消化率的影響,為減輕環(huán)境污染及新型飼料添加劑的開(kāi)發(fā)與利用研究提供思路?!痉椒ā垦芯恐性O(shè)無(wú)任何添加劑的對(duì)照組與添加ABP、ABP+飼用菌的2個(gè)試驗(yàn)組進(jìn)行白高粱青貯發(fā)酵試驗(yàn),通過(guò)測(cè)定飼料成分和體外消化率得出ABP對(duì)青貯飼料發(fā)酵品質(zhì)及消化率的影響,并通過(guò)掃描電鏡(SEM)觀察探討ABP對(duì)改善飼料發(fā)酵品質(zhì)及提高消化率的機(jī)制?!窘Y(jié)果】研究表明2.0%的ABP添加到白高粱秸稈可降低飼料pH至3.65,與對(duì)照組(5.13)差異顯著(<0.05),感官評(píng)分屬于優(yōu)質(zhì)青貯飼料區(qū)間。各試驗(yàn)組乳酸含量(ABP 組:11.95 g·kg-1,混合組:15.14 g·kg-1)極顯著高于對(duì)照組(3.54 g·kg-1)(<0.01)、乙酸與丁酸含量(乙酸:ABP組:2.87 g·kg-1、混合組:2.75 g·kg-1,丁酸:ABP組:0.72 g·kg-1、混合組:0.78 g·kg-1)顯著低于對(duì)照組(乙酸:3.85 g·kg-1、丁酸:1.39 g·kg-1)(<0.05),其中ABP+飼用菌的試驗(yàn)組乳酸含量比對(duì)照組高了327.85%;各組干物質(zhì)(DM)含量變化不顯著(>0.05),中性洗滌纖維(NDF)(ABP組:58.67%,混合組:57.67%)、酸性洗滌木質(zhì)素(ADL)(ABP組:4.77%,混合組:4.27%)和灰分(Ash)(ABP 組:1.56%,混合組:2.04%)低于對(duì)照組(NDF:63.66%、ADL:5.15%、Ash:2.76%),但差異不顯著(>0.05),酸性洗滌纖維(ADF)(ABP組:35.77%,混合組:28.63%)極顯著低于對(duì)照組(40.58%)(<0.01),粗蛋白含量(ABP組:9.65%,混合組:9.67%)極顯著高于對(duì)照組(6.88%)(<0.01);各試驗(yàn)組體外消化率 DM(ABP組:74.66%,混合組:80.03%)、NDF(ABP 組:72.74%,混合組:83.08%)和ADF(ABP組:68.29%,混合組:79.56%)均顯著高于對(duì)照組(DM:60.67%、NDF:48.06%、ADF:44.81%)(<0.05);結(jié)果表明ABP對(duì)青貯飼料發(fā)酵品質(zhì)及消化率有明顯的改善和提高作用。由SEM結(jié)果可知對(duì)照組橫切面和表面結(jié)構(gòu)完整、黏附的微生物數(shù)量少,而試驗(yàn)組表面結(jié)構(gòu)蠟質(zhì)層被破壞并黏附著大量的飼用菌、橫切面細(xì)胞或組織內(nèi)部黏附大量的飼用菌。以此初步得知ABP改善和提高青貯飼料發(fā)酵品質(zhì)及消化率的機(jī)制是除飼用菌提供碳源和氮源外,飼料表面蠟質(zhì)層被破壞從而促進(jìn)飼用菌的黏附并降解細(xì)胞壁纖維素。【結(jié)論】2.0%的ABP添加到白高粱青貯飼料中可顯著提高發(fā)酵品質(zhì)和消化率,對(duì)ABP的再利用、減輕環(huán)境污染及新型飼料添加劑的開(kāi)發(fā)與利用有很大的經(jīng)濟(jì)和社會(huì)意義。
ABP;青貯飼料;發(fā)酵品質(zhì);體外消化率;SEM顯微鏡
【研究意義】氨基酸副產(chǎn)物(amino acid by-products,ABP)是氨基酸發(fā)酵液經(jīng)離子交換提取純氨基酸后除菌體的高濃度廢水[1],包括母液和洗水液兩部分,兩種廢水是由有機(jī)物和基本鹽分構(gòu)成的[2],其pH低、碳含量和氮含量高、具有豐富的礦質(zhì)元素[3]。氨基酸產(chǎn)業(yè)是我國(guó)的支柱行業(yè)之一,年總產(chǎn)值達(dá)600億元,目前我國(guó)氨基酸年總產(chǎn)量達(dá)400萬(wàn)噸,將近為全球產(chǎn)量的一半[4],隨著生產(chǎn)規(guī)模的擴(kuò)大,所產(chǎn)生的廢棄物越多,對(duì)環(huán)境的污染越大[5]。與國(guó)際氨基酸行業(yè)比較,我國(guó)在氨基酸生產(chǎn)過(guò)程中經(jīng)常會(huì)排放大量的生產(chǎn)副產(chǎn)物,即每生產(chǎn)1噸氨基酸純產(chǎn)品約產(chǎn)生40 m3副產(chǎn)物[6],環(huán)境污染問(wèn)題較為嚴(yán)重。目前在國(guó)內(nèi)外ABP的再利用技術(shù)一直是研究的熱點(diǎn)和難點(diǎn)。白高粱作為新疆南疆地區(qū)的主要糧食品種之一,其種植面積較大,約占高粱總種植面積的65%,而其產(chǎn)生的秸稈副產(chǎn)物較多,利用率較低?!厩叭搜芯窟M(jìn)展】目前,國(guó)內(nèi)外關(guān)于ABP的處理,已做了大量的ABP微生物多樣性研究工作,如曾德霞等利用ABP發(fā)酵制備酵母蛋白飼料[7];成西瑤等利用ABP發(fā)酵生產(chǎn)飼料用漢遜德巴利酵母及產(chǎn)朊假絲酵母[8-9];BAUTISTA等[10]將ABP中存在的氨氮轉(zhuǎn)換成蛋白質(zhì),從而生產(chǎn)出可生物降解的氨基酸表面活性劑;WANG等[11]利用ABP生產(chǎn)產(chǎn)朊假絲酵母并應(yīng)用于飼料中;YIMITI等將不同ABP添加到意大利黑麥草青貯飼料中,有效改善了發(fā)酵品質(zhì)并提高了消化率[12]。眾多的研究發(fā)現(xiàn)ABP含有豐富的氮源和礦質(zhì)元素,可提高飼料品質(zhì),但幾乎所有研究都是通過(guò)利用ABP生產(chǎn)菌體蛋白或產(chǎn)朊假絲酵母等添加劑來(lái)提高飼料品質(zhì)[13],而將ABP直接添加到青貯飼料的研究較少?!颈狙芯壳腥朦c(diǎn)】青貯飼料添加乳酸菌可提高乳酸和乙酸含量,但中性洗滌纖維、酸性洗滌纖維和酸性洗滌木質(zhì)素含量也被提高,降低飼料的營(yíng)養(yǎng)價(jià)值,而一定比例的纖維素分解菌可降解青貯飼料的纖維成分,與乳酸菌互補(bǔ)提高青貯飼料的營(yíng)養(yǎng)價(jià)值[14]。但這仍滿足不了發(fā)酵初期飼用菌對(duì)碳源和氮源的需求[15-16],而ABP中無(wú)重金屬或其他有毒有害物質(zhì),其中的氨氮和有機(jī)成分可為飼用菌提供豐富的氮源和碳源,硫酸根和氯離子可降低青貯初始pH促進(jìn)發(fā)酵,并降解細(xì)胞壁纖維成分[12]。【擬解決的關(guān)鍵問(wèn)題】筆者先前的研究結(jié)果表明適量的ABP對(duì)飼用菌生長(zhǎng)繁殖具有促進(jìn)作用[17],本研究在此基礎(chǔ)上將ABP直接添加到白高粱青貯飼料中,將ABP轉(zhuǎn)化為可利用的資源,改善青貯飼料發(fā)酵品質(zhì)及提高消化率、緩解飼料短缺現(xiàn)象的同時(shí),又能減輕對(duì)環(huán)境的污染,具有重大的經(jīng)濟(jì)效益與生態(tài)效益。
白高粱秸稈:2018年10月收割于新疆吐魯番地區(qū)托克遜縣的乳熟期高粱;
ABP:由新疆某生物科技有限公司提供;
飼用菌:乳酸菌A4、A7,纖維素分解菌Nf、Y6均為新疆大學(xué)飼料微生物學(xué)實(shí)驗(yàn)室篩選出的本地飼用菌[18-19]。
試驗(yàn)于2018年至2019年在新疆大學(xué)飼料微生物學(xué)實(shí)驗(yàn)室進(jìn)行。白高粱秸稈切割成2.0—3.0 cm長(zhǎng)度[20],在室溫下自然風(fēng)干24 h后采用瓶裝發(fā)酵法制白高粱青貯飼料,每組設(shè)3個(gè)平行的瓶裝試驗(yàn),每瓶裝大約1 000.0 g飼料(瓶?jī)?nèi)基本無(wú)空氣為準(zhǔn))并于室溫密封發(fā)酵45 d,ABP(pH為3.9,干物質(zhì)含量為7.0%的液體狀)及各飼用菌(用2.0%葡萄糖液體培養(yǎng)基分別制菌懸液)添加百分率按瓶裝量計(jì)算。
試驗(yàn)分無(wú)任何添加劑的對(duì)照組和添加2.0%ABP、2.0%ABP+6.0%飼用菌(乳酸菌﹕纖維素分解菌=1﹕1)的兩個(gè)試驗(yàn)組。
1.4.1 ABP成分測(cè)定 取2.0 mg ABP樣品包好后用元素分析儀(FLASH2000)測(cè)定總氮和總碳含量;稱取5.0 mg ABP樣品于25.0 mL容量瓶中,加20.0 mL蒸餾水溶解,超聲(Thermo BR4I)提取20.0 min,用蒸餾水定容至25.0 mL,過(guò)0.45 μm濾膜后用離子色譜儀(IC-8628)測(cè)定硫酸根和氯離子;稱取5.0 mg樣品至聚四氟乙烯消解罐中,加入5.0 mL硝酸,靜置,反應(yīng)結(jié)束后,加蓋密封放入微波消解儀(ETHOS 1)中消解,待冷卻至50.0℃以下后,取出消解罐于通風(fēng)櫥中打開(kāi),用超純水潤(rùn)洗,轉(zhuǎn)移至50.0 mL容量瓶中稀釋定容后用電感耦合等離子體發(fā)射光譜儀(optima 8000)測(cè)定礦質(zhì)元素。
1.4.2 pH測(cè)定 青貯45 d后開(kāi)封,均勻稱取10.0 g樣品,加蒸餾水至100.0 mL,于組織搗碎機(jī)(春海DG160C)中攪碎3 min用4層紗布過(guò)濾,浸出液用pH計(jì)(HANNA HI98103)測(cè)定其pH[21]。
1.4.3 飼料營(yíng)養(yǎng)成分分析 白高粱青貯飼料感官評(píng)價(jià)依據(jù)國(guó)內(nèi)青貯飼料感官評(píng)定標(biāo)準(zhǔn)進(jìn)行評(píng)分[22];樣品于真空干燥箱(Keelrein DHG-9140A)內(nèi)135℃恒溫干燥至恒重后測(cè)干物質(zhì)(DM)含量[23];采用高效液相色譜法測(cè)定揮發(fā)性脂肪酸含量[24],國(guó)標(biāo)微量凱氏定氮法測(cè)定粗蛋白(CP)含量[25],范氏法測(cè)定中性洗滌纖維(NDF)、酸性洗滌纖維(ADF)、酸性洗滌木質(zhì)素(ADL)含量[26],灼燒法測(cè)定粗灰分(Ash)含量[27];體外消化率采用模擬瘤胃消化實(shí)驗(yàn)進(jìn)行測(cè)定[28];通過(guò)掃描電子顯微鏡(卡爾·蔡司SIGMA 500)觀察飼料樣品葉與莖部表面及橫切面結(jié)構(gòu)[29]。
采用Microsoft Excel 2010計(jì)算數(shù)據(jù)并作圖,用SPSS22.0軟件對(duì)數(shù)據(jù)進(jìn)行單因素方差分析和Duncan法多重比較,<0.01表示差異極顯著,<0.05表示差異顯著,>0.05表示差異不顯著,用Photoshop CS6處理SEM圖片。
ABP成分分析結(jié)果如表1所示,可看出ABP總氮含量達(dá)1.43×105mg·kg-1、總碳含量為2.57×105mg·kg-1、硫酸根離子為2.52×105mg·kg-1,表明ABP中含有較豐富的碳源和氮源及鉀、鈣、鈉和鎂等礦質(zhì)元素等,有助于降低發(fā)酵初始pH從而促進(jìn)飼用菌的生長(zhǎng)繁殖改善發(fā)酵品質(zhì)。
白高粱秸稈原料發(fā)酵前成分測(cè)定結(jié)果見(jiàn)表2,pH為6.08,干物質(zhì)、纖維素含量都較高,粗蛋白含量較低,為4.25%,表明白高粱原料纖維成分高、粗蛋白含量低,其營(yíng)養(yǎng)水平較低。
由表3可知,各試驗(yàn)組pH顯著低于對(duì)照組(<0.05),其中ABP與飼用菌混合添加可使白高粱青貯飼料pH降到3.65;除對(duì)照組外各試驗(yàn)組中青貯飼料在氣味、色澤及質(zhì)地上差異不大,都呈酸酒香味、黃綠色、質(zhì)地松散,屬于優(yōu)質(zhì)青貯飼料。表明白高粱青貯飼料中直接添加2.0%的ABP,可有效改善青貯飼料感官指標(biāo)。

表1 ABP成分及含量

表2 白高粱化學(xué)成分及含量

表3 白高粱青貯飼料感官評(píng)定表
不同小寫(xiě)字母表示各處理間差異顯著(<0.05),數(shù)值用平均值±標(biāo)準(zhǔn)誤差表示
Different lowercase letters indicate significant differences between treatments (<0.05), and values are expressed as mean ± standard error
不同處理對(duì)白高粱青貯飼料揮發(fā)性脂肪酸含量的影響如圖1和圖2所示。由圖1可知,各試驗(yàn)組乳酸含量極顯著高于對(duì)照組(<0.01),添加2.0%ABP可使白高粱青貯飼料乳酸含量高出對(duì)照組237.64%,而ABP與飼用菌混合添加后乳酸含量高出對(duì)照組327.85%。各試驗(yàn)組乙酸和丁酸含量顯著低于對(duì)照組(<0.05),其中添加2.0%ABP的試驗(yàn)組丁酸含量最低,比對(duì)照組低了48.03%。由圖2可知,各試驗(yàn)組乳酸/乙酸及乳酸/總酸都顯著高于對(duì)照組(<0.05),其中ABP與飼用菌混合添加處理可使白高粱青貯飼料乳酸/乙酸、乳酸/總酸分別達(dá)到5.52和0.81。表明添加2.0%的ABP可增加白高粱青貯飼料的乳酸含量,降低丁酸含量,有效地改善白高粱青貯飼料的發(fā)酵品質(zhì)。
不同處理對(duì)白高粱青貯飼料化學(xué)成分含量影響的結(jié)果如圖3所示。白高粱青貯飼料添加ABP與否其干物質(zhì)含量變化不大,各試驗(yàn)組含量略高于對(duì)照組,但差異不顯著(>0.05)。各試驗(yàn)組粗蛋白含量極顯著高于對(duì)照組(<0.01),但各試驗(yàn)組之間無(wú)顯著差異,其中ABP與飼用菌混合添加的試驗(yàn)組粗蛋白含量最高為9.67%。中性洗滌纖維含量?jī)蓚€(gè)試驗(yàn)組比對(duì)照組略低,但差異不顯著(>0.05),其中ABP與飼用菌混合添加的試驗(yàn)組含量最低為57.67%。各試驗(yàn)組酸性洗滌纖維含量極顯著低于對(duì)照組(<0.01),ABP組為35.77%、ABP與飼用菌混合組為28.63%。酸性洗滌木質(zhì)素含量與灰分含量各處理組之間差異不顯著(>0.05)。ABP組半纖維素含量最低為22.90%,但ABP與飼用菌混合組的含量顯著高于對(duì)照組及ABP組,達(dá)到29.04%。表明白高粱青貯飼料中添加2.0%的ABP可降解飼料纖維素成分,提高粗蛋白等營(yíng)養(yǎng)成分含量。

不同小寫(xiě)字母表示各處理間差異顯著(P<0.05),不同大寫(xiě)字母表示各處理間差異極顯著(P<0.01)。下同

圖2 白高粱青貯飼料乳酸比例
各試驗(yàn)組干物質(zhì)體外消化率顯著高于對(duì)照組和原料(<0.05),ABP組干物質(zhì)體外消化率為74.66%、ABP與飼用菌混合組為80.03%。ABP與飼用菌混合組中性洗滌纖維體外消化率顯著高于對(duì)照組(<0.05),比對(duì)照組高出了72.87%,但與原料組差異不顯著,只高出27.05%,同樣ABP組中性洗滌纖維體外消化率與對(duì)照組及原料組差異不顯著。各試驗(yàn)組酸性洗滌纖維體外消化率顯著高于對(duì)照組及原料組(<0.05),其中ABP與飼用菌混合組的最高,為79.56%。表明添加2.0%的ABP可有效提高白高粱青貯飼料體外消化率(圖4)。

DM:干物質(zhì);CP:粗蛋白;NDF:中性洗滌纖維;ADF:酸性洗滌纖維;ADL:酸性洗滌木質(zhì)素;HC:半纖維素;Ash:灰分。下同
對(duì)照組表面蠟質(zhì)層保持完整黏附的微生物數(shù)量較少,橫切面纖維結(jié)構(gòu)堅(jiān)韌完整且無(wú)微生物黏附;而ABP組表面蠟質(zhì)層被破壞,黏附著大量的微生物,橫切面纖維結(jié)構(gòu)被破壞較嚴(yán)重且黏附著一定量的微生物;ABP與飼用菌混合組表面結(jié)構(gòu)蠟質(zhì)層被破壞較嚴(yán)重并黏附大量的飼用菌,橫切面纖維結(jié)構(gòu)被破壞,細(xì)胞或組織內(nèi)黏附著大量的飼用菌。表明ABP通過(guò)破壞葉表面蠟質(zhì)層促進(jìn)飼用菌的黏附,并降解細(xì)胞壁纖維成分來(lái)改善青貯飼料發(fā)酵品質(zhì)并提高消化率(圖5)。

圖4 白高粱青貯飼料體外消化率

A1、B1、C1分別為對(duì)照組、ABP組、ABP與飼用菌混合組表面結(jié)構(gòu)圖,A2、B2、C2分別為對(duì)照組、ABP組、ABP與飼用菌混合組橫切面結(jié)構(gòu)圖
本研究從青貯飼料感官評(píng)定、營(yíng)養(yǎng)成分、揮發(fā)性脂肪酸、體外消化率及青貯飼料表面與橫切面結(jié)構(gòu)變化等方面對(duì)無(wú)任何添加劑的對(duì)照組、添加2.0%ABP的試驗(yàn)組及ABP與飼用菌混合添加的試驗(yàn)組進(jìn)行比較,探討適量的ABP直接添加到白高粱青貯飼料中能否改善飼料發(fā)酵品質(zhì)及提高消化率。研究結(jié)果對(duì)氨基酸工廠廢水回收利用,減輕環(huán)境污染;改善青貯飼料發(fā)酵品質(zhì)并提高消化率,解決飼料短缺現(xiàn)象等提供了理論依據(jù)。
青貯飼料原料中可溶性碳源和氮源含量比較低,滿足不了發(fā)酵初期飼用菌對(duì)碳源和氮源的需求,而ABP中無(wú)重金屬或其他有毒有害物質(zhì),其中的氨氮和有機(jī)成分可為飼用菌提供豐富的氮源和碳源。然而國(guó)內(nèi)外對(duì)ABP的利用局限在制肥料、菌體蛋白或飼用酵母等,將ABP直接利用到青貯飼料的研究很少。本研究在“氨基酸副產(chǎn)物對(duì)飼用菌生長(zhǎng)量”研究的基礎(chǔ)上將適量濃度的ABP直接添加到白高粱青貯飼料上,通過(guò)發(fā)酵改善飼料品質(zhì)及提高消化率。
目前,青貯飼料作為反芻動(dòng)物的當(dāng)家粗飼料,在我國(guó)反芻動(dòng)物生產(chǎn)日糧配方中占20%以上比例[30],因此對(duì)青貯飼料進(jìn)行品質(zhì)鑒定尤為重要,但是目前國(guó)內(nèi)外制青貯飼料的原料局限在玉米、飼用甜高粱、飼草等,用白高粱制青貯飼料的研究還未發(fā)現(xiàn)。感官評(píng)定是通過(guò)色澤、質(zhì)地、氣味等指標(biāo)對(duì)青貯飼料進(jìn)行評(píng)定的常用且方便快捷的方法[21]。本研究中添加ABP后白高粱青貯飼料pH低至3.65,感官評(píng)定總分達(dá)到88.67,均優(yōu)于市售飼料添加劑的效果[31],而干物質(zhì)含量略低,但依然處于理想青貯飼料區(qū)間。化學(xué)成分是評(píng)定青貯飼料發(fā)酵品質(zhì)的主要指標(biāo),本研究中添加ABP后白高粱青貯飼料粗蛋白含量高達(dá)9.67%、NDF及ADF分別降至57.67%和28.63%,明顯優(yōu)于部分飼用添加劑的效果[32];乳酸含量最高為15.14 g·kg-1、乙酸含量為2.75 g·kg-1、乳酸/乙酸為0.81,都低于添加乳酸菌后玉米與葦狀羊茅混合飼料的揮發(fā)性脂肪酸含量[33],而丁酸含量略高,表明本研究中添加ABP后白高粱青貯飼料發(fā)酵效率低于李永凱的研究。
青貯飼料的消化率在確定青貯方法、合理配制動(dòng)物日糧等方面起至關(guān)重要的作用。本研究中干物質(zhì)體外消化率ABP與飼用菌混合組的顯著高于其他組,達(dá)到80.03%,屬于理想青貯飼料區(qū)間;各試驗(yàn)組的NDF體外消化率超出70.0%、ADF體外消化率超出60.0%,均高于分別添加甲酸、甲醛及纖維素酶的青貯飼料體外消化率[34],表明添加適量濃度的ABP可提高白高粱青貯飼料的消化率。本研究室將同濃度的ABP添加到甜玉米秸稈中進(jìn)行青貯試驗(yàn),青貯后甜玉米飼料CP含量、乳酸含量、乙酸含量、DM消化率、NDF消化率和ADF消化率分別為8.08%、12.82 g·kg-1、1.35 g·kg-1、26.0%、56.78%和45.87%,均低于白高粱青貯飼料的含量,NDF含量為59.67%,高于白高粱青貯飼料的含量[35],表明同添加量的ABP對(duì)白高粱青貯飼料的作用效果遠(yuǎn)好于甜玉米青貯飼料的效果。楊紅等[36]和楊志剛等[37]的研究表明乳酸菌和纖維素分解菌可破壞羊草和青貯飼料的細(xì)胞壁結(jié)構(gòu),降解細(xì)胞壁和細(xì)胞內(nèi)容物,將其轉(zhuǎn)化為可溶性糖和有機(jī)酸;YIMITI[12]和YAMAMOTO等[38]的研究表明氨基酸發(fā)酵副產(chǎn)液中硫酸根和氯離子等無(wú)機(jī)酸直接影響意大利黑麥草細(xì)胞壁的酸性水解,從而破壞細(xì)胞壁與蠟質(zhì)層結(jié)構(gòu);本研究所用的ABP總碳(1.43×105mg·kg-1)和總氮(2.57×105mg·kg-1)含量高,為乳酸菌和纖維素分解菌提供充足的能源,促進(jìn)其對(duì)飼料細(xì)胞壁的破壞,降解纖維成分;而ABP豐富的硫酸根離子(2.52×105mg·kg-1)和氯離子(3.18×104mg·kg-1)影響飼料細(xì)胞壁的酸性水解,進(jìn)一步破壞表面蠟質(zhì)層與橫切面纖維結(jié)構(gòu),促使飼用菌的黏附。掃描電鏡結(jié)果初步確定ABP通過(guò)破壞飼料蠟質(zhì)層與細(xì)胞壁纖維結(jié)構(gòu)促進(jìn)飼用菌的黏附來(lái)改善白高粱青貯飼料發(fā)酵品質(zhì)及消化率,其具體作用機(jī)制有待進(jìn)一步研究確認(rèn)。
白高粱青貯飼料中添加2.0%的氨基酸副產(chǎn)物可降低飼料pH,感官評(píng)定屬于優(yōu)質(zhì)青貯飼料區(qū)間;乳酸含量、乳酸/乙酸得到提高,使丁酸含量降低;粗蛋白含量高出對(duì)照組,中性洗滌纖維、酸性洗滌纖維及酸性洗滌木質(zhì)素含量均變少,表明青貯白高粱發(fā)酵品質(zhì)得以改善;干物質(zhì)消化率、中性洗滌纖維消化率及酸性洗滌纖維消化率明顯提高;掃描電鏡結(jié)果初步證實(shí)ABP通過(guò)破壞葉表面蠟質(zhì)層促進(jìn)飼用菌的黏附,并降解細(xì)胞壁纖維成分來(lái)改善青貯飼料發(fā)酵品質(zhì)并提高消化率。
[1] 趙蘭坤, 徐太海, 范婷婷, 劉世周, 郇月偉. 氨基酸發(fā)酵廢水的分類處理和利用. 發(fā)酵科技通訊, 2018, 47(3): 180-183. doi:10.16774/j. cnki.issn.1674-2214.2018.03.013.
ZHAO L K, XU T H, FAN T T, LIU S Z, XUN Y W. The classification and utilization of amino acid fermentation wastewater. Bulletin of Fermentation Science and Technology, 2018, 47(3): 180-183. doi:10.16774/j.cnki.issn.1674-2214.2018.03.013. (in Chinese)
[2] 梁志輝. 氨基酸生產(chǎn)廢水處理技術(shù)探討. 機(jī)電信息, 2013(9): 114-115. doi:10.19514/j.cnki.cn32-1628/tm.2013.09.074.
LIANG Z H. Discussion on treatment technology of amino acid production wastewate. Mechanical and Electrical Information, 2013(9): 114-115. doi:10.19514/j.cnki.cn32-1628/tm.2013.09.074. (in Chinese)
[3] 張彥麗. 利用味精廢水培養(yǎng)枯草芽孢桿菌產(chǎn)γ-聚谷氨酸及初步表征. 生態(tài)環(huán)境學(xué)報(bào), 2018, 27(10): 1949-1957. doi:10.16258/j.cnki. 1674-5906.2018.10.021.
ZHANG Y L. Cultivation ofwith monosodium glutamate wastewater to produce γ-polyglutamic acid and preliminary characterization. Ecology and Environmental Sciences, 2018, 27(10): 1949-1957. doi:10.16258/j.cnki.1674-5906.2018.10.021. (in Chinese)
[4] 本刊. 氨基酸關(guān)鍵技術(shù)與產(chǎn)業(yè)化應(yīng)用*: 訪中國(guó)科學(xué)院微生物研究所“賴氨酸和蘇氨酸工業(yè)化生產(chǎn)菌改造”項(xiàng)目組. 科技促進(jìn)發(fā)展, 2015(5): 697-699. doi:10.11842/chips.2015.05.023.
SCIENCE & TECHNOLOGY FOR DEVELOPMENT. Key Technology of Amino Acids and Industrial Application--Interview with the "Reconstruction of Industrial Production of Lysine and Threonine" by the Institute of Microbiology, Chinese Academy of Sciences. Science & Technology for Development, 2015(5): 697-699. doi:10.11842/ chips.2015.05.023. (in Chinese)
[5] TOCZYLOSKA M R. Limits and perspectives of pulp and paper industry wastewater treatment-A review. Renewable and Sustainable Energy Reviews, 2017.
[6] 王宏齡, 富春江. 中國(guó)氨基酸工業(yè)現(xiàn)狀及發(fā)展趨勢(shì). 飼料廣角, 2007(10): 12-15. doi:10.3969/j.issn.1002-8358.2007.10.005.
WANG H L, FU C J. The status of Chinese amino acid industry and its tendency. Feed China, 2007(10): 12-15. doi:10.3969/j.issn.1002- 8358.2007.10.005. (in Chinese)
[7] 曾德霞, 繆禮鴻, 周鳳鳴, 楊雄振. 利用氨基酸廢液發(fā)酵制備酵母蛋白飼料的工藝. 糧食與飼料工業(yè), 2016(7): 39-43. doi:10.7633/j. issn.1003-6202.2016.07.012.
ZENG D X, MIAO L H, ZHOU F M, YANG X Z. Producing of yeast protein feed from amino acid waste by fermentation. Cereal & Feed Industry, 2016(7): 39-43. doi:10.7633/j.issn.1003-6202.2016.07.012. (in Chinese)
[8] 成細(xì)瑤, 楊波, 劉志剛, 堯晨光, 胡征. 利用氨基酸廢水發(fā)酵生產(chǎn)飼料用漢遜德巴利酵母的研究. 飼料工業(yè), 2014, 35(S1): 102-105. doi:10.13302/j.cnki.fi.2014.z1.029.
CHENG X Y, YANG B, LIU Z G, YAO C G, HU Z. Study on fermentation of debaryomyces hansenii with amino acid industrial wastewater. Feed Industry, 2014, 35(S1): 102-105. doi:10.13302/j.cnki. fi.2014.z1.029. (in Chinese)
[9] 成細(xì)瑤, 胡征, 王輝, 楊波, 劉志剛, 尹紫燕, 邱翠翠, 唐銳. 利用氨基酸工業(yè)廢水生產(chǎn)飼用產(chǎn)朊假絲酵母. 糧食與飼料工業(yè), 2014(7): 47-49.
CHENG X Y, HU Z, WANG H, YANG B, LIU Z G, YIN Z Y, QIU C C, TANG R.production with amino acid industrial wastewater. Cereal & Feed Industry, 2014(7): 47-49. (in Chinese)
[10] BAUTISTA M E, PéREZ L, GARCíA M T, CUADROS S, MARSAL A. Valorization of tannery wastes: Lipoamino acid surfactant mixtures from the protein fraction of process wastewater. Chemical Engineering Journal, 2015, 262: 399-408. doi:10.1016/j.cej.2014.10.004.
[11] WANG D H, NIE M, WEI G Y. Improved glutathione production by Candida utilis using a two-stage amino acids addition strategy. Food Science, 2017, 4(073): 116.
[12] YIMITI W, YAHAYA M S, HIRAOKA H, YAMAMOTO Y, INUI K, TAKEDA M, TSUKAHARA A, GOTO M. Effects of amino acids fermentation by-product on fermentation quality andrumen degradability of Italian ryegrass () silage. Asian-Australasian Journal of Animal Sciences, 2004, 17(5): 633-637. doi:10.5713/ajas.2004.633.
[13] 曾德霞. 酵母菌及細(xì)菌對(duì)氨基酸母液的利用研究[D]. 武漢: 武漢輕工大學(xué), 2016.
ZENG D X. Studying the utilization of yeast and bacteria in amino acid mother liquor[D]. Wuhan: Wuhan Polytechnic University, 2016. (in Chinese)
[14] 美合熱阿依·木臺(tái)力甫, 烏斯?jié)M·依米提. 乳酸菌與纖維素分解菌混合菌劑對(duì)玉米青貯飼料發(fā)酵品質(zhì)的影響. 飼料工業(yè), 2016, 37(23): 51-54. doi:10.13302/j.cnki.fi.2016.23.012.
Mihray·Mutallip, Wusiman·Yimit. Effects of mixed additive of lactobacillus and cellulose decomposition bacteria on the quality of corn stover silage. Feed Industry, 2016, 37(23): 51-54. doi:10.13302/ j.cnki.fi.2016.23.012. (in Chinese)
[15] Deepa K, Senthilkumar S, Suganya T. Constraints in preparation of silage. International Journal of Science, Environment and Technology, 2016, 5(3): 1193-1199.
[16] 劉穎慧, 郭明, 賈樹(shù)利, 尹建國(guó). 影響青貯玉米品質(zhì)因素研究進(jìn)展. 作物雜志, 2018(2): 6-10. doi:10.16035/j.issn.1001-7283.2018.02.002.
LIU Y H, GUO M, JIA S L, YIN J G. Advance on the factors effecting on maize forage nutritive value. Crops, 2018(2): 6-10. doi:10.16035/j. issn.1001-7283.2018.02.002. (in Chinese)
[17] 努爾哈提·斯拉甫爾, 古麗努爾·吐拉甫, 烏斯?jié)M·依米提. 氨基酸副產(chǎn)物對(duì)飼用菌生長(zhǎng)量的影響. 飼料研究, 2018(5): 77-81. doi:10.13557/j.cnki.issn1002-2813.2018.05.017.
NUERHATI·SILAFUER, GULINUER·TULAFU,WUSIMAN·YIMIT. Effect of amino acid by-products on the growth of forage bacteria. Feed Research, 2018(5): 77-81. doi:10.13557/j.cnki.issn1002-2813. 2018.05.017. (in Chinese)
[18] 烏斯?jié)M·依米提, 古麗斯瑪依, 張永輝, 樊振. 高效乳酸菌對(duì)青貯飼料發(fā)酵品質(zhì)的改善效果. //中國(guó)微生物學(xué)會(huì). 第三屆全國(guó)微生物資源學(xué)術(shù)暨國(guó)家微生物資源平臺(tái)運(yùn)行服務(wù)研討會(huì)論文集. 2011: 123-129.
W.Yimiti, Gulsimay, ZHANG Y H, FAN Z. Effect of high- efficiency lactic acid bacteria on fermentation quality of silage. //Chinese Society of Microbiology.Proceedings of the 3rd National Microbial Resources Academic and National Microbial Resources Platform Operation Service Seminar. 2011: 123-129.(in Chinese)
[19] 買爾哈巴·艾合買提, 樊振, 李越中, 古麗斯瑪依·艾拜都拉, 烏斯?jié)M·依米提. 瘤胃中纖維素分解菌的分離、鑒定及其產(chǎn)酶條件的優(yōu)化. 微生物學(xué)報(bào), 2013, 53(5): 470-477. doi:10.13343/j.cnki.wsxb. 2013.05.005.
MAIERHABA AIHEMAITI, FAN Z, LI Y Z, GULISIMAYI AIBAIDOULA, WUSIMAN YIMIT. Isolation and identification of rumen bacteria for cellulolytic enzyme production. Acta Microbiologica Sinica, 2013, 53(5): 470-477. doi:10.13343/j.cnki.wsxb.2013.05.005. (in Chinese)
[20] 趙云. 青貯飼料制作注意事項(xiàng). 現(xiàn)代農(nóng)村科技, 2016(16): 70.
ZHAO Y. Silage production considerations. Modern Rural Technology, 2016(16): 70. (in Chinese)
[21] 李玲, 馬小強(qiáng). 全株青貯玉米不同生長(zhǎng)期青貯技術(shù)研究. 畜牧獸醫(yī)雜志, 2015, 34(4): 68-69. doi:10.3969/j.issn.1004-6704.2015.04.024.
LI L, MA X Q. Research whole plant silage corn silage different growth techniques. Journal of Animal Science and Veterinary Medicine, 2015, 34(4): 68-69. doi:10.3969/j.issn.1004-6704.2015.04. 024. (in Chinese)
[22] 王杰, 張養(yǎng)東, 鄭楠, 王加啟, 張佩華. 青貯飼料感官評(píng)定研究進(jìn)展. 中國(guó)奶牛, 2019(1): 1-3. doi:10.19305/j.cnki.11-3009/s.2019.01.001.
WANG J, ZHANG Y D, ZHENG N, WANG J Q, ZHANG P H. Research rrogress in sensory evaluation of sliage. China Dairy Cattle, 2019(1): 1-3. doi:10.19305/j.cnki.11-3009/s.2019.01.001. (in Chinese)
[23] WILSON R F, TILLEY J M, STEEMERS M A. Comparison of oven drying and toluene distillation in the determination of the dry-matter content of silage. Journal of the Science of Food and Agriculture, 1964, https://doi.org/10.1002/jsfa.2740150310.
[24] ROBERT-PEILLARD F, MATTIO E, KOMINO A, BOUDENNE J, COULOMB B. Development of a simple, low-cost and rapid thin-layer chromatography method for the determination of individual volatile fatty acids. Analytical methods, 2019, 11(14): 1891-1897.
[25] 王麗霞. 甲醛法在玉米粗蛋白測(cè)定中的應(yīng)用. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào), 2010, 45(4): 147-150. doi:10.13432/j.cnki.jgsau.2010.04.009.
WANG L X. Comparison of formol-titration method and Kjeldahl method on determination of crude protein in maize. Journal of Gansu Agricultural University, 2010, 45(4): 147-150. doi:10.13432/j.cnki. jgsau.2010.04.009. (in Chinese)
[26] 王曉娜, 徐春城, 溫定英, 陶雅, 孫啟忠, 韓海波. 不同測(cè)定方法對(duì)青貯飼料中NDF和ADF含量的影響. 草業(yè)科學(xué), 2012, 29(1): 144-149.
WANG X N, XU C C, WEN D Y, TAO Y, SUN Q Z, HAN H B. Effects of different methods on NDF and ADF of silage. Pratacultural Science, 2012, 29(1): 144-149. (in Chinese)
[27] 袁玖, 萬(wàn)欣杰, 孫烈濤, 孔維斌, 趙奇天. 不同降溫方法對(duì)飼料中粗灰分測(cè)定的影響. 中國(guó)飼料, 2014(18): 35-37. doi:10.15906/j.cnki. cn11-2975/s.2014.18.023.
YUAN J, WAN X J, SUN L T, KONG W B, ZHAO Q T. Effects of different cooling methods on measuring crude ash of feeds. China Feed, 2014(18): 35-37. doi:10.15906/j.cnki.cn11-2975/s.2014.18.023. (in Chinese)
[28] 楊曙明. 測(cè)定反芻動(dòng)物飼料消化率體外方法的研究進(jìn)展. 中國(guó)飼料, 1997(20): 33-35.
YANG S M. Advances inmethods for determination of ruminant feed digestibility. China Feed, 1997(20): 33-35. (in Chinese)
[29] 甘肅農(nóng)業(yè)大學(xué). 一種制備青貯玉米葉片掃描電鏡樣品的方法: CN201510205563.9. 2015-07-15.
Gansu Agricultural University. Method for preparing scanning electron microscope sample of silage corn leaf: CN201510205563.9. 2015-07-15.(in Chinese)
[30] 張養(yǎng)東, 楊軍香, 王宗偉, 鄭楠, 李松勵(lì), 趙圣國(guó), 文芳, 王加啟. 青貯飼料理化品質(zhì)評(píng)定研究進(jìn)展. 中國(guó)畜牧雜志, 2016, 52(12): 37-42.
ZHANG Y D, YANG J X, WANG Z W, ZHENG N, LI S L, ZHAO S G, WEN F, WANG J Q. Progress assessment of chemical indicators of silage. Chinese Journal of Animal Science, 2016, 52(12): 37-42. (in Chinese)
[31] 董妙音, 王曙陽(yáng), 姜伯玲, 張修坤, 李文建, 陳積紅, 胡偉, 劉敬. 添加不同的青貯菌劑對(duì)甜高粱青貯品質(zhì)的影響. 飼料工業(yè), 2016, 37(1): 28-31. doi:10.13302/j.cnki.fi.2016.01.006.
DONG M Y, WANG S Y, JIANG B L, ZHANG X K, LI W J, CHEN J H, HU W, LIU J. Effects of different silage inoculants on silage quality of sweet sorghum silage. Feed Industry, 2016, 37(1): 28-31. doi:10.13302/j.cnki.fi.2016.01.006. (in Chinese)
[32] 陳麗君. 不同青貯添加劑對(duì)甜高粱青貯質(zhì)量的影響. 中國(guó)甜菜糖業(yè), 2018(1): 33-35. doi:10.3969/j.issn.1002-0551.2018.01.007.
CHEN L J. Effects of different silage additives on the quality of sweet sorghum silage. China Beet & Sugar, 2018(1): 33-35. doi:10.3969/j. issn.1002-0551.2018.01.007. (in Chinese)
[33] 李永凱. 西藏乳酸菌的分離篩選及對(duì)青貯飼料發(fā)酵品質(zhì)的影響[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2012.
LI Y K. Screening, identification and evaluation of lactic acid bacteria for the fermentation and quality of silage in Tibet[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese)
[34] 張樹(shù)攀, 陳錚, 韓娟, 劉大林. 不同添加劑對(duì)雜交高粱-蘇丹草青貯性能及體外降解特性的影響. 飼料廣角, 2009(13): 45-49. doi:10.3969/j.issn.1002-8358.2009.13.017.
ZHANG S P, CHEN Z, HAN J, LIU D L. Effects of different additives on silage performance anddegradation behavior of sorghum- Sudanense hybrids. Feed China, 2009(13): 45-49. doi:10.3969/j.issn. 1002-8358.2009.13.017. (in Chinese)
[35] 努爾哈提·斯拉甫爾, 麥提圖爾蓀·阿卜杜克熱木, 烏斯?jié)M·依米提. 氨基酸副產(chǎn)物對(duì)青貯飼料發(fā)酵品質(zhì)及消化率的影響. 中國(guó)畜牧獸醫(yī), 2020, 47(10): 3183-3192. doi:10.16431/j.cnki.1671-7236.2020.10.017.
NUERHATI·SILAFUER, MAIMAITITUERSUN·ABUDUKEREMU, WUSIMAN·YIMITI. Effects of amino acid by-products on fermentation quality and digestibility of silage. China Animal Husbandry & Veterinary Medicine, 2020, 47(10): 3183-3192. doi:10.16431/j.cnki. 1671-7236.2020.10.017. (in Chinese)
[36] 楊紅, 張慶, 侯建建, 玉柱. 生物添加劑對(duì)羊草青貯飼料超微結(jié)構(gòu)和纖維變化的影響. 草業(yè)學(xué)報(bào), 2016, 25(12): 94-101. doi:10.11686/ cyxb2016059.
YANG H, ZHANG Q, HOU J J, YU Z. Effect of biological additives on ultrastructure and fiber content ofsilage. Acta Prataculturae Sinica, 2016, 25(12): 94-101. doi:10.11686/cyxb2016059. (in Chinese)
[37] 楊志剛, 沈益新. 纖維素酶制劑在青貯飼料中的應(yīng)用. 畜牧與獸醫(yī), 2002, 34(9): 37-40. doi:10.3969/j.issn.0529-5130.2002.09.022.
YANG Z G, SHEN Y X. Application of cellulytic enzymes to ensilage. Animal Husbandry & Veterinary Medicine, 2002, 34(9): 37-40. doi:10.3969/j.issn.0529-5130.2002.09.022. (in Chinese)
[38] Yamamoto Y, Yimamu A, Yimiti W, KENICHI H, MASAKAZU G. Effects of various amino acid fermentation byproducts on the fermentation quality and feed characteristics of Italian ryegrass (Lam.) silage. Japanese Journal of Grassland Science, 2008, 4(53): 289-294.
2023年全國(guó)畜牧獸醫(yī)期刊征訂目錄

序號(hào)期刊名稱郵發(fā)代號(hào)刊期年定價(jià)/元聯(lián)系人電話地址郵編E-mail 57草食家畜58-71雙月刊72.00 楊 志0991-3075315新疆烏魯木齊市經(jīng)濟(jì)技術(shù)開(kāi)發(fā)區(qū)阿里山街468號(hào)新疆畜牧科學(xué)院830011caoshijiachu@sina.cn 58畜牧獸醫(yī)科學(xué)自辦發(fā)行半月刊480.00 金 峰010-64882916北京德勝門(mén)外北沙灘1號(hào)(中國(guó)農(nóng)機(jī)化科學(xué)研究院)100083xmsykxbjb@163.com 59今日養(yǎng)豬業(yè)80-261雙月刊90.00 趙秋菊010-51503820北京市海淀區(qū)曙光花園中路9號(hào)北京市農(nóng)林科學(xué)院農(nóng)業(yè)信息與經(jīng)濟(jì)研究所100097pigstoday@vip.163.com 60廣西畜牧獸醫(yī)48-107 雙月刊30.00 羅 林0771-3235650廣西南寧市秀靈路廣西大學(xué)東校園530005gxxmsy5650@126.com 61中國(guó)獸醫(yī)學(xué)報(bào)12-105月刊240.00 李文紅0431-87836534吉林省長(zhǎng)春市西安大路5333號(hào)130062xbcjvs@jlu.edu.cn 62當(dāng)代畜牧82-338月刊120.00 李建秋010-82070129北京市朝陽(yáng)區(qū)德勝門(mén)外清河南鎮(zhèn)洼里鄉(xiāng)倉(cāng)營(yíng)6號(hào)北京奶牛中心100192tougao@bjddxm.com 63畜禽業(yè)62-184月刊192.00 鄧成玲028-86783176四川省成都市大慈寺路32號(hào)610016xqyzzs@163.com 64畜牧獸醫(yī)雜志52-56雙月刊54.00 劉炳琪029-87092806陜西省楊凌區(qū)西農(nóng)路22號(hào)西北農(nóng)林科技大學(xué)動(dòng)物科技學(xué)院712100xmsy2806@163.com 65云南畜牧獸醫(yī)自辦發(fā)行雙月刊30.00 蔣文俊0871-65017073云南省昆明市盤(pán)龍區(qū)金殿青龍山云南省畜牧獸醫(yī)科學(xué)院650224ynxmsy@188.com 66糧食與飼料工業(yè)38-151雙月刊60.00 梅 竹027-87406138/027-50657966湖北省武漢市卓刀泉南路3號(hào)430079lsyslgy@126.com 67畜牧獸醫(yī)科技信息14-48月刊180.00 朱明艷0451-51051813黑龍江省哈爾濱市香坊區(qū)哈平路678號(hào)中國(guó)農(nóng)業(yè)科學(xué)院哈爾濱獸醫(yī)研究所150069xmsykjxx2016@163.com 68國(guó)外畜牧學(xué)-豬與禽4-361雙月刊120.00 王晶晶021-62204554上海市閔行區(qū)北翟路2901號(hào)201106shzyq2005@126.com 69中國(guó)畜牧獸醫(yī)報(bào)1-155周刊150.00 魏敬秋010-85835474北京市朝陽(yáng)區(qū)惠新西街15號(hào)100029zgxmsyb@sina.com
Effects of Amino Acid By-Products on Fermentation Quality and Digestibility of White Sorghum Silage
NUerhati·Silafuer, WUsiman·Yimiti
College of Life Science and Technology, Xinjiang University, Urumqi 830046
【Objective】The aim of this study was to investigate the effects of appropriate amino acid by-products (ABP) on fermentation quality and digestibility of white sorghum, so as to provide ideas for reducing environmental pollution as well as developing and utilizing new feed additives.【Method】In the study, the control group without any additives and the two experimental groups with ABP and ABP+ forage bacteria were used to carry out the experiment of white sorghum silage fermentation. The effects of ABP on the fermentation quality and digestibility of silage were obtained by measuring the feed composition and in vitro digestibility, and scanning electron microscopy (SEM) was used to observe the mechanism of ABP on improving feed fermentation quality and digestibility.【Result】The study has shown that the addition of 2.0% ABP to white sorghum straw could reduce the pH of the feed to 3.65, which was significantly different from the control group (5.13) (<0.05). The sensory score belonged to the quality silage interval. The lactic acid content of each experimental group (ABP:11.95 g·kg-1; MIX:15.14 g·kg-1) was significantly higher than that of the control group (3.54 g·kg-1) (<0.01), the content of acetic acid and butyric acid (AA: ABP:2.87 g·kg-1, MIX:2.75 g·kg-1; BA: ABP:0.72 g·kg-1, MIX:0.78 g·kg-1) was significantly lower than that of the control group (acetic acid:3.85 g·kg-1; butyric acid: 1.39 g·kg-1) (<0.05), and the lactic acid content of the experimental group of ABP+ forage bacteria was 327.85% higher than that of the control group; the content of dry matter (DM) in each group did not change significantly (>0.05). Neutral detergent fiber (NDF) (ABP:58.67%; MIX:57.67%), acid detergent lignin (ADL)(ABP:4.77%; MIX:4.27%) and ash (Ash) (ABP : 1.56%; mixed: 2.04%) lower than the control group (NDF:63.66%; ADL:5.15%; Ash:2.76%), but the difference was not significant (>0.05), the acid detergent fiber (ADF) (ABP:35.77%; MIX:28.63%) was significantly lower than that of the control group (40.58%) (<0.01), and the crude protein content (ABP: 9.65%, MIX:9.67%) was significantly higher than the control group (6.88%) (<0.01); the in vitro digestibility of each experimental group was DM (ABP: 74.66%; MIX: 80.03%), NDF (ABP: 72.74%; MIX: 83.08%) and ADF (ABP: 68.29%; MIX: 79.56%), which were significantly higher than the control group (DM: 60.67%, NDF: 48.06%; ADF: 44.81%) (<0.05); the results showed that ABP significantly improved and increased the fermentation quality and digestibility of silage. From the SEM results, it was found that the cross-section and surface structure of the control group were small, and the number of adhering microorganisms was small too, while the wax layer of the surface structure of the treatment group was destroyed and adhered to a large number of forage bacteria, cross-section cells or a large amount of forage bacteria adhered inside the tissue. Therefore, it was preliminarily informed that ABP improved and increased the fermentation quality and digestibility of silage. In addition, the carbon and nitrogen sources provided by the feed bacteria, the wax layer on the surface of the feed was destroyed to promote the adhesion of the feed bacteria and degrade the cell wall cellulose.【Conclusion】2.0% ABP added to white sorghum silage could significantly improve the fermentation quality and digestibility, and had great economic and social significance for the reuse of ABP, the reduction of environmental pollution, and the development and utilization of new feed additives.
ABP; silage; fermentation quality;digestibility; SEM

10.3864/j.issn.0578-1752.2022.20.016
2021-01-07;
2022-08-30
國(guó)家自然科學(xué)基金(31660014)
努爾哈提·斯拉甫爾,Tel:15719980625;E-mail:1143044185@qq.com。通信作者烏斯?jié)M·依米提,E-mail:dilxad@sina.com
(責(zé)任編輯 林鑒非)