周玉蘭,陳嘉,孔華芳,薛蕊,程秀強
(西北師范大學數學與統計學院,甘肅蘭州 730070)
Bernoulli泛函空間中廣義計數算子的表示
周玉蘭,陳嘉,孔華芳,薛蕊,程秀強
(西北師范大學數學與統計學院,甘肅蘭州 730070)
得到離散時間正規鞅平方可積泛函空間中廣義計數算子的5種表示:(1)量子Bernoulli噪聲(quantum Bernoulli noises,QBN)的加權表示;(2)的譜表示,廣義計數算子以-計數測度的值域為其點譜;(3)的“對角化”表示,可表示為的標準正交基所生成的一維對角化正交投影算子的加權極限;(4)廣義Skorohod積分-廣義隨機梯度表示,可表示為互共軛算子和的復合算子;(5)對上的任意非負函數,可構造一列有界廣義計數算子,恰為該有界廣義計數算子的強極限,當可和時,為該有界廣義計數算子的一致極限。
算子譜;廣義計數算子;對角化算子;廣義Skorohod積分;廣義隨機梯度
在量子物理研究中,具有增生、湮滅等性質的物理系統廣泛存在,這類系統的演化過程可用Fock空間中的量子隨機微分方程描述,其中以增生算子、湮滅算子和保守(計數)算子作為基本過程。量子隨機積分實際上是Fock空間中適當的適應量子過程關于基本過程的積分,這是經典It隨機積分理論在算子領域的非交換擴張,將隨機分析理論提升至算子水平,在不同的分析框架下有不同的擴張形式[1-5]。ATTAL等[6]提出了連續時間Guichardet-Fock空間中的量子隨機積分,這為Fock空間中的量子隨機積分提供了統一的理論框架,并擴大了量子隨機積分的定義域,從而脫離了指數域的限制。在經典隨機分析中,半鞅、鞅、局部鞅是適應過程關于基本噪聲過程(包括連續時間的Gauss噪聲和離散情形的Bernoulli噪聲以及帶跳的Poission過程)的隨機積分。作為該內容在量子理論中的推廣,關于量子鞅、量子半鞅及局部量子鞅的表示是很重要的研究內容。為研究量子鞅的性質及表示,有必要對增生、湮滅和計數算子以及相應過程的性質進行深入討論。
近年來,離散時間正規鞅噪聲廣受關注,WANG等[7]給出了關于離散時間正規鞅的分析框架,提出了量子Bernoulli噪聲(quantum Bernoulli noises,QBN)的概念[8],并討論了其典則反交換關系等性質。QBN為中的一列點態增生、湮滅算子,其在離散時間量子隨機分析理論研究中具有重要作用,且應用廣泛[9-18],如WANG等[9]提出了量子Bernoulli噪聲局部化的概念,并用其構造了一致連續的量子Markov半群(quantum Markov semigroups,QMS);CHEN[14]用QBN直接構造了QMS,并討論了該半群不變態的存在性。計數算子為中稠定自伴無界閉線性算子,與QBN共同構成了離散時間正規鞅泛函框架下量子隨機分析理論的基本算子,其在量子隨機積分中扮演了重要角色?;舅阕有再|在很大程度上影響積分算子性質。
WANG等[15]用QBN討論了一類加權計數算子,認為應用加權計數算子可構造一類QMS。文獻[19]討論了連續時間Guichardet-Fock空間中計數算子的表示問題,可表示為修正點態廣義隨機梯度族及共軛族的算子值Bochner積分,也可表示為修正隨機梯度及Skorohod積分復合,以及的特征值。周玉蘭等[20]討論了在離散時間正規鞅平方可積泛函空間中計數算子的進一步推廣,提出了廣義計數算子的概念,并證明了這類算子的性質,廣義計數算子為中稠定自伴閉線性算子,而有界當且僅當為上的平方可和函數,且與QBN滿足一定的交換關系?;诖耍疚某浞掷弥姓换奶攸c,進一步提出的對角表示和極限表示,討論了中廣義計數算子的表示問題,并得到5種表示:
定理6表明,QBN是可交換的、冪零的,且滿足典則反交換關系。
為廣義Skorohod積分算子。
絕對收斂,且
故式(13)絕對收斂,且
則
故
其中,
(iii)顯然,
另外,由
知
故
其中,
又
即式(22)成立。
[1]BARNETT C, STREATER R F,WILDE I F. The It-Clifford integral[J]. Journal of Functional Analysis, 1982,48(2): 172-212. DOI:10.1016/0022-1236(82)90066-0
[2]BARNETT C, STREATER R F,WILDE I F. Quasi-free quantum stochastic integrals for the CAR and CCR[J]. Journal of Functional Analysis, 1983,52(1): 19-47. DOI:10.1016/0022-1236(83)90089-7
[3]BIANE P, SPEICHER R. Stochastic calculus with respect to free Brownian motion and analysis on Wigner space[J]. Probability Theory and Related Fields, 1998,112(3): 373-409. DOI:10.1007/s004400050194
[4]HUDSON R L, PARTHASARATHY K R. Quantum Itapos;s formula and stochastic evolutions[J]. Communications in Mathematical Physics, 1984,93(3): 301-323. DOI:10.1007/BF01258530
[5]HUDSON R L, PARTHASARATHY K R. Unification of fermion and Boson stochastic calculus[J]. Communications in Mathematical Physics, 1986,104(3): 457-470. DOI:10.1007/BF01210951
[6]ATTAL S, LINDSAY J M. Quantum stochastic calculus with maximal operator domains[J]. The Annals of Probability, 2004, 32(1A):488-529. DOI:10.1214/aop/1078415843
[7]WANG C S, LU Y C,CHAI H F. An alternative approach to Privaultapos;s discrete-time chaotic calculus[J]. Journal of Mathematical Analysis and Applications, 2011,373(2): 643-654. DOI:10.1016/j.jmaa.2010. 08.021
[8]WANG C S, CHAI H F,LU Y C. Discrete-time quantum Bernoulli noises[J]. Journal of Mathematical Physics, 2010,51(5): 053528. DOI:10.1063/1.3431028
[9]WANG C S, ZHANG J H. Localization of quantum Bernoulli noises[J]. Journal of Mathematical Physics, 2013,54(10):103502. DOI:10.1063/1. 4824130
[10]WANG C S, YE X J. Quantum walk in terms of quantum Bernoulli noises[J]. Quantum Information Processing, 2016,15(5): 1897-1908. DOI:10.1007/s11128-016-1259-2
[11]WANG C S, WANG B P. Dirichlet forms constructed from annihilation operators on Bernoulli functionals[J]. Advances in Mathematical Physics, 2017,2017: 8278161. DOI:10.1155/2017/8278161
[12]WANG C S, CHEN J S. A characterization of operators on functionals of discrete-time normal martingales[J]. Stochastic Analysis and Applications,2017, 35(2):305-316. DOI:10.1080/07362994.2016.1248779
[13]CHEN J S. Convergence theorems for operators sequences on functionals of discrete-time normal martingales[J]. Journal of Function Spaces, 2018,2018: 8430975. DOI:10.1155/2018/8430975
[14]CHEN J S. Invariant States for a quantum Markov semigroup constructed from quantum Bernoulli noises[J]. Open Systems and Information Dynamics, 2018,25(4): 1850019. DOI:10.1142/S123016 1218500191
[15]WANG C S, TANG Y L,REN S L. Weighted number operators on Bernoulli functionals and quantum exclusion semigroups[J]. Journal of Mathematical Physics, 2019,60(11):113506. DOI:10.1063/1.5120102
[16]WANG C S, REN S L,TANG Y L. A new limit theorem for quantum walk in terms of quantum Bernoulli noises[J]. Entropy,2020, 22(4):486. DOI:10.3390/e22040486
[17]WANG C S, WANG C,REN S L, et al. Open quantum random walk in terms of quantum Bernoulli noise[J]. Quantum Information Processing, 2018, 17:46. DOI:10.1007/s11128-018-1820-2
[18]CHEN J S, TANG Y L. Quantum integral equations of Volterra type in terms of discrete-time normal martingale[J]. Turkish Journal of Mathematics, 2019,43: 1047-1060. DOI:10.3906/mat-1805-149
[19]周玉蘭,李曉慧,程秀強,等. 連續時間Guichardet-Fock空間中的計數算子的表示[J]. 山東大學學報(理學版),2019, 54(11):108-114. DOI:10.6040/j.issn. 1671-9352.0.2019.513
ZHOU Y L, LI X H,CHENG X Q, et al. Representation of the number operator in continuous-time Guichardet-Fock space[J]. Journal of Shandong University(Natural Science), 2019,54(11):108-114. DOI:10.6040/j.issn.1671-9352.0.2019.513
[20]周玉蘭,程秀強,薛蕊,等. 廣義修正隨機梯度與廣義Skorohod積分[J]. 吉林大學學報(理學版),2020, 58(3):479-485. DOI:10.13413/j.cnki.jdxblxb.2019300
ZHOU Y L, CHENG X Q,XUE R, et al. Generalized modified stochastic gradient and generalized skorohod integral[J]. Journal of Jilin University(Science Edition), 2020,58(3): 479-485. DOI:10.13413/j.cnki.jdxblxb.2019300
[21]周玉蘭,薛蕊,程秀強,等. 廣義計數算子的交換性質[J].山東大學學報(理學版),2021,56(4):94-101. DOI:10.6040/j.issn.1671-9352.0.2020.494
ZHOU Y L, XUE R,CHENG X Q, et al. Commutative properties of generalized number operators[J]. Journal of Shandong University(Natural Science), 2021,56(4): 94-101. DOI:10.6040/j.issn.1671-9352.0. 2020.494
The representation of generalized number operator acting on the Bernoulli functionals space
ZHOU Yulan, CHEN Jia, KONG Huafang, XUE Rui, CHENG Xiuqiang
(College of Mathematics and Statistics,Northwest Normal University,Lanzhou730070,China)
This paper presents five representations for the generalized number operatordefined in, the space of square integrable functionals in terms of the discrete-time normal martingale, (1) The weighted representation of the quantum Bernoulli noises (QBN); (2) The spectrum representation, the spectrum ofis just the range of the-counting measureon; (3) The quot;diagonalizationquot; representation, i.e.,can be expressed as the weighted limit of the one-dimensional diagonalized orthogonal projection operators generated by the QNB; (4) The representation in terms of the generalized Skorohod integral-generalized stochastic gradient, specifically,is the composition of the generalized Skorohodand its adjoint, the generalized stochastic gradient; (5) For many nonnegative functionon, a bounded generalized number operators are constructed, which is convergent strongly toand ifis summable, the sequence is convergent uniformly to.
spectrum of operator; generalized number operator; diagonalization operator; generalized Skorohod integral; generalized stochastic gradient
O 211
A
1008?9497(2022)03?316?08
10.3785/j.issn.1008-9497.2022.03.008
2020?12?23.
國家自然科學基金地區科學基金項目(11861057).
周玉蘭(1978—),ORCID:https://orcid.org/0000-0003-4831-7149,女,博士,副教授,主要從事隨機分析研究,E-mail:zhouylw123@163.com