999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE DIRICHLET PROBLEM OF A SPECIAL LAGRANGIAN TYPE EQUATION WITH SUPERCRITICAL PHASE

2022-11-23 04:06:58ZHUSheng
數學雜志 2022年6期

ZHU Sheng

(School of Mathematics and Statistics,Ningbo University,Ningbo 315211,China)

Abstract:In this paper,we introduce a special Lagrangian type operator,and consider the corresponding Dirichlet problem of the special Lagrangian type equation with supercritical phase.By establishing the global C2estimates,we obtain the existence theorem of classical solutions by the method of continuity.

Keywords: special lagrangian type equation;Dirichlet problem;supercritical phase

1 Introduction

was introduced by Harvey-Lawson[2]in the study of calibrated geometries.Here Θ is a constant called the phase angle.In this case the graphx(x,Du(x))defines a calibrated,minimal submanifold of R2n.Since the work of Harvey-Lawson,special Lagrangian manifolds have gained wide interests,due in large part to their fundamental role in the Strominger-Yau-Zaslow description of mirror symmetry[3].For the special Lagrangian equations with supercritical phase,Yuan obtained the interiorC1estimate with Warren in[4]and the interiorC2estimate with Wang in[5].Recently Collins-Picard-Wu[6]obtained the existence theorem of the Dirichlet problem by adopting the classic method with some important observation about the concavity of the operator.

In fact,the Dirichlet problems of elliptic equations in Rnwere widely studied.For the Laplace equation,the Dirichlet problem was well studied in[7,8].For fully nonlinear elliptic equations,the pioneering work was done by Caffarelli-Nirenberg-Spruck in[1,9]and Ivochkina in[10].In their papers,they solved the Dirichlet problem for Monge-Amp`ere equations andk-Hessian equations elegantly.Since then,many interesting fully nonlinear equations with different structure conditions have been researched,such as Hessian quotient equations,which were solved by Trudinger in[11].For more information,we refer the citations of[9].

In this paper,we establish the following existence theorem of(1.1)

Theorem 1.1Suppose Ω?Rnis aC4strictly convex domain,φ∈C2(?Ω) andwithin.Then there exists a unique solutionu∈to the Dirichlet problem(1.1).

Remark 1.2In addition,if Ω, Θ andφare all smooth,the solutionuis also smooth on.

Remark 1.3As in[6],if we assume there is a subsolutioninstead of the strict convexity of Ω,Theorem 1.1 still holds.

The rest of the paper is organized as follows.In Section 2,we give some properties and establish theC0estimates.In Section 3 and 4,we establish theC1andC2estimates for the Dirichlet problem(1.1).And Theorem 1.1 is proved in the Section 5.

2 Some Properties and a Priori Estimates

3 Global Gradient Estimate

4 Global Second Derivatives Estimate

5 Proof of Theorem 1.1

In this section,we complete the proof of the Theorem 1.1.

For the Dirichlet problem of equation(1.1),we have established theC0,C1andC2estimates in Section 2,3 and 4.By the globalC2priori estimate,the equation(1.1)is uniformly elliptic in.From Property 2.2,we know-e-Aarctanηis concave with respect toD2u,whereAis defined in Property 2.2.Following the discussions in the Evans-Krylov theorem[15,16],we can get the global H?lder estimate of second derivatives,

whereCandαdepend onn,Ω,,|Θ|C2and|φ|C2.From(5.1),one also obtainsC3,α()estimates by differentiating the equation(1.1)and applies the Schauder theory for linear uniformly elliptic equations.

Applying the method of continuity(see[6]),the existence of the classical solution holds.By the standard regularity theory of uniformly elliptic partial differential equations,we can obtain the higher regularity.

主站蜘蛛池模板: 熟妇无码人妻| 波多野结衣一级毛片| 欧美在线精品怡红院| 99热线精品大全在线观看| 综合网久久| 国产成人福利在线视老湿机| 99热这里只有精品久久免费| 国产 在线视频无码| 91无码国产视频| 露脸真实国语乱在线观看| 日本a级免费| 91最新精品视频发布页| 精品撒尿视频一区二区三区| 国产一二视频| 国产真实乱人视频| 无遮挡国产高潮视频免费观看| 国产高清在线丝袜精品一区| 欧美中文字幕第一页线路一 | 网友自拍视频精品区| 黄色网页在线播放| 国产网站免费观看| 91在线精品麻豆欧美在线| 国产成人精品日本亚洲| 亚洲无码在线午夜电影| 国产日韩丝袜一二三区| 亚洲性日韩精品一区二区| 国产成人夜色91| 久青草网站| 国产精品性| 这里只有精品在线播放| 天堂久久久久久中文字幕| 久久精品国产在热久久2019| 亚洲无码日韩一区| 热99re99首页精品亚洲五月天| 国产精品无码作爱| 亚洲男人天堂久久| 国产不卡网| 欧美区一区二区三| 99久久国产自偷自偷免费一区| 国产一级裸网站| 亚洲侵犯无码网址在线观看| 99热这里只有精品久久免费| 麻豆精品在线| 亚洲天堂免费在线视频| 久久免费精品琪琪| 国产精品无码一区二区桃花视频| 55夜色66夜色国产精品视频| 99久久精品免费看国产免费软件| 欧美激情伊人| 国产第一页免费浮力影院| 国产香蕉在线视频| 久久福利网| 国产真实二区一区在线亚洲| 亚洲成人高清无码| 呦视频在线一区二区三区| 国产成人AV男人的天堂| 狠狠v日韩v欧美v| 欧美高清国产| 久久人妻系列无码一区| 国产丝袜精品| 鲁鲁鲁爽爽爽在线视频观看 | 国产亚洲精品自在线| 一本大道香蕉久中文在线播放| 色噜噜中文网| 国产麻豆aⅴ精品无码| 国产三区二区| 国产亚洲欧美在线人成aaaa| 亚洲欧美日韩成人高清在线一区| 国产青榴视频在线观看网站| 亚洲水蜜桃久久综合网站| 亚洲不卡影院| 国产资源免费观看| 久久精品国产国语对白| 亚洲中文在线视频| 国产自视频| 亚洲V日韩V无码一区二区| 欧美v在线| 夜夜操天天摸| 少妇精品网站| 狠狠五月天中文字幕| 欧美黑人欧美精品刺激| 无码专区国产精品第一页|