999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

GLEASON’S PROBLEM ON THE SPACE Fp,q,s(B) IN Cn*

2022-11-04 09:06:40PengchengTANG唐鵬程XuejunZHANG張學(xué)軍

Pengcheng TANG (唐鵬程) Xuejun ZHANG (張學(xué)軍)

College of Mathematics and Statistics,Hunan Normal University,Changsha 410081,China

E-mail: 1228928716@qq.com;xuejunttt@263.net

Abstract Let Ω be a domain in Cn and let Y be a function space on Ω.If a ∈Ω and g ∈Y with g(a)=0,do there exist functions f1,f2,···,fn ∈Y such that This is Gleason’s problem.In this paper,we prove that Gleason’s problem is solvable on the boundary general function space Fp,q,s(B) in the unit ball B of Cn.

Key words boundary general function space;Gleason’s problem;solvability;unit ball

1 Introduction

Letα=(α1,α2,···,αn) be a multi-index,where eachαlis a nonnegative integer.In this paper,the following abbreviated notations will be used: |α|=α1+α2+··· +αn,α!=

For any pointz∈B-{0},the involution automorphisms ofBare defined by

such thatφz(0)=z,φz(z)=0 andOtherwise,we defineφ0(w)=-w.

In this paper,the notation “EF” means that there exist two constantsa >0 andb >0 such thataF≤E≤bF.If there exists a constanta >0 such thatG≤aH(G≥aH),then we denote it by “GH” (“G?H”).

Fors≥0,p >0,q+n >-1 andq+s >-1,the spaceF(p,q,s),which we call the general function space,consists off∈H(B) and

where the complex gradient offis defined by

In [1],we proved that

In [2],Zhao Ruhan first introduced theF(p,q,s) space on the unit disk.Later,many function spaces associated withF(p,q,s) were studied in various domains;see,for example,[1,3–11].In the definition of theF(p,q,s) space,the integral is on the unit ballBor the other domain Ω,for example,a bounded symmetric domain.In this paper,we will consider the corresponding function space of an integral on the unit sphere?B,which we write asFp,q,s(B).

Definition 1.1Fors≥0,p >0,q+s≥0 andq+n≥0,the functionf∈H(B) is said to belong to the boundary general function spaceFp,q,s(B) if

It is easy to prove thatFp,q,s(B) is a Banach space under the norm ||.||p,q,swhenp≥1,and theFp,q,s(B) is also a complete distance space under the distanced(a,b)=||a-b||pp,q,swhen 0<p <1.We may also consider many properties ofFp,q,s(B).Gleason’s problem is one of these properties.

LetYbe a holomorphic function space on the domain Ω ?Cn.Gleason’s problem onYis the following: ifa∈Ω andg∈Ywithg(a)=0,are there functionsf1,···,fn∈Ysuch that

There have been many works addressing Gleason’s problem,for example [12–26].We know that Gleason’s problem is solvable onF(p,q,s) (see [26]).Is this problem also solvable onFp,q,s(B) ? In this paper,we seek to solve this problem.

The following function spaces are also used in this paper:

Definition 1.2For 0<β≤1,the functionfis in the Lipschitz space Lipβ(B) if

The space Λβ(B)=Lipβ(B) ∩H(B) is called a holomorphic Lipschitz space.By Theorem 7.9 in [27],if 0<β <1,thenf∈Λβ(B) if and only iff∈H(B) and

Definition 1.3Forα >-1 andp >0,the functionf∈H(B) is said to belong to the weighted Bergman space(B) if

where dvα(w)=cα(1 -|w|2)αdv(w),with the constant

2 Some Lemmas

Lemma 2.1(see [14]) Forδ >-1,the integrals

have the following properties:

Lemma 2.2(see [28,29]) Letwandabe two points inB.Forl >0 andt >0,let

Then the following results hold:

Lemma 2.3Fors≥0,p >0,q+n≥0,q+s≥0,ifh∈Fp,q,s(B),then

Moreover,the exponent (q+n)/pis the best possible.

ProofFor anya∈B,let=E*(a,1/3) (see [30]) be the Bergman ball.If,then Lemma 2.20 in [27] shows that

By the proof process of Lemma 2.1 in [30],we may get that

For anyl∈{1,2,···,n},letDlhdenote the partial derivative ofhwith respect to thel-th component.By Lemma 2.24 and Lemma 1.8 in [27],we have that

In what follows,we prove that this exponent (q+n)/pis the best possible.

For fixedξ∈?B,we take

wherew∈B.

Whens=q=0,it follows from Lemma 2.1 that

On the other hand,for anyδ <n/p,Lemma 2.1 means that

This shows that this exponent (q+n)/pis the best possible whenq=s=0.

In what follows,we consider the other cases.

For the case (i)s≥nandq+n≥0 or (ii)s=0<q,it is easy to prove that ||hξ||p,q,s?1,by Lemma 2.1.If 0<s <nandq+s >0,thenn(q+n)/(n-s)>nandn/s >1.By Lemma 2.1 and Hlder’s inequality,we have that

Next,we consider the case 0<s <nandq+s=0.

Ifn <2s,then Lemma 2.2(3) shows that

Ifn=2s,then Lemma 2.2(2) and

Ifn >2s >0,then Lemma 2.2(1) means that

Therefore,(2.1)–(2.4) show that ||hξ||p,q,s?1.

If there exists someδ <(q+n)/psuch that

This contradiction shows that the exponent (n+q)/pis the best possible.

This proof is complete. □

Lemma 2.4(see [29]) Forδ >-1 and 0 ≤ρ <1,the integral

has the following asymptotic properties:

(1)J(ρ) ?(1 -ρ)-twhent >0.

(2)J(ρ) ?1 whent <0.

(3)J(ρ) ?logwhent=0.

3 Main Results

In order to consider the solvability of Gleason’s problem onFp,q,s(B),we first prove the following result:

Theorem 3.1Lets≥0,p >0,q+n≥0,q+s≥0,0<β <1,α >β/2+max{1/p-1,0}n-1 andα >max{1/p,1} max{q+s,q+n}+max{1/p-1,0}n-1,l∈{1,2,···,n}.Ifφ∈Lipβ(B),then

for allh∈Fp,q,s(B),where

ProofWhenφ∈Lipβ(B),it is clear that

Otherwise,ifz,w∈B,then we have that

We first consider the operator

By (3.2) andφ∈Lipβ(B),we have that

For any 0 ≤ρ <1 anda∈B,let

(i) Casep >1.

This means that

When 2s <n,by (3.4) andn+α+1 -β/2>n,Lemma 2.2(3),Lemma 1.8 in [27],α-q-s >-1 and Lemma 2.4,,we may obtain that

When 2s >n,by (3.4) andn+α+1 -β/2>n,Lemma 2.2(4),Lemma 1.8 in [27],α-q-s >-1 and Lemmas 2.3–2.4,,s+(q+s)-(2s-n)=q+n≥0,α-q-n >-1,Lemma 2.1,s+(q+s)-(2s-n)-(n+α+1-β/2)+(α-q-n)+n+1=β/2>0,

we can get that

When 2s=n,the conditionsq+s≥0 andα >q+n-1 mean that we may chooseδ0=min{(n-β)/4,(α-q-n+1)/2} such thatα-q-n-δ0>-1,q+2s-δ0≥(α+n+1 -β/2 -2δ0) -(α-q-n-δ0) -n-1=q+2s-β/2 -δ0>0.By (3.4),Lemma 2.2(5),Lemma 2.3 and Lemma 2.1,we have that

(ii) Case 0<p≤1.

Forw∈B,we take(z∈B).Applying Lemma 2.15 in [27] toHw,we can obtain that

The above inequality and (3.3) mean that

Therefore,by (3.8) and Fubini’s theorem,we may get that

Using (3.9),as long as we usepβ/2 andα′to replaceβ/2 andαin (3.4),respectively,the rest of the proof is similar to the proof of casep >1.

The above result and (3.5)–(3.7) mean that we have proved that

Lemma 2.3 means thatDlh∈(B) whenα >(q+n)/p-1 andh∈Fp,q,s(B).It follows from Theorem 2.2 in [27] that

Therefore,Tφh(w)=φ(w)Dlh(w) -Gφh(w).By (a+b)p?ap+bpfor alla≥0 andb≥0,φ∈Lipβ(B) ?C(),we can get that

This means that (3.1) holds.This proof is complete. □

Next,we discuss the solvability of Gleason’s problem onFp,q,s(B).

Theorem 3.2Lets≥0,p >0,q+n≥0 andq+s≥0.For any integerγ≥1 anda∈B,there exist bounded linear operatorsWm(|m|=γ) onFp,q,s(B) such that

for anyh∈Fp,q,s(B) andw∈BwithDλh(a)=0 (|λ|=0,1,···,γ-1),wheremandλare multi-index.

ProofWe mainly consider the caseγ=1.

For fixeda∈Bandl∈{1,2,···,n},we take that

ThenWlis a linear operator and

In what follows,we prove thatWlis bounded onFp,q,s(B) for everyl∈{1,2,···,n}.

We take a positive integerα >max{1/p-1,0}n-1/2 andα >max{1/p,1} max{q+s,q+n}+max{1/p-1,0}n-1.By (3.10)–(3.11),Fubini’s theorem and a simple calculation,we have that

For anyk∈{1,2,···,n},it is clear that

We consider the operator

Forγ≥2,the proof is similar to that of Theorem 5 in [25].The main difference is that the calculation is more difficult.We omit the details here.

The proof of Theorem 3.2 is complete. □

主站蜘蛛池模板: 国产精品人莉莉成在线播放| 蜜桃视频一区二区| 亚洲视频无码| 成人福利在线免费观看| 欧美日韩在线亚洲国产人| 国产成人精品一区二区三在线观看| 97人人做人人爽香蕉精品| 国产第一福利影院| 中文字幕有乳无码| 狠狠色婷婷丁香综合久久韩国| 在线a视频免费观看| 国产人成午夜免费看| 午夜毛片免费观看视频 | 亚洲欧洲日韩综合色天使| 亚洲男人在线天堂| 欧美中文字幕在线二区| 国产精品第页| 亚洲乱码在线播放| 国产又爽又黄无遮挡免费观看| 91视频首页| 福利在线免费视频| 高清久久精品亚洲日韩Av| 色欲色欲久久综合网| 青青草91视频| 亚洲视频免费播放| 欧美成人一区午夜福利在线| 成人综合网址| 国产性爱网站| 国产真实自在自线免费精品| 国产第三区| 国产青榴视频在线观看网站| 不卡无码h在线观看| 中文字幕 91| 国产打屁股免费区网站| 欧美日韩综合网| 国产精品无码一二三视频| 欧美区一区| 欧美一级大片在线观看| 亚洲欧洲日产国产无码AV| 91小视频在线播放| 亚洲久悠悠色悠在线播放| 丁香六月激情综合| 欧美成人免费午夜全| 小说 亚洲 无码 精品| 精品国产免费观看一区| 国产精品免费福利久久播放| 欧美日韩激情| 香蕉网久久| 久久国产高潮流白浆免费观看| 成人一区在线| 在线播放国产99re| 91久久国产综合精品女同我| 久久精品国产999大香线焦| 国产精品白浆在线播放| 欧美不卡视频在线观看| 亚洲精品大秀视频| 香蕉色综合| 日韩av无码精品专区| 久久人人妻人人爽人人卡片av| 亚洲天堂在线免费| 国产精品深爱在线| 亚洲国产成熟视频在线多多| 国产91特黄特色A级毛片| 亚洲一区二区三区中文字幕5566| 久久这里只有精品国产99| 一级爆乳无码av| 国产国语一级毛片在线视频| 一区二区三区高清视频国产女人| 在线va视频| AV不卡无码免费一区二区三区| 成人在线观看不卡| a色毛片免费视频| 丰满人妻久久中文字幕| 天堂网亚洲系列亚洲系列| 亚洲欧美天堂网| 99久久精品国产精品亚洲| 人妻夜夜爽天天爽| 伊人色综合久久天天| 国产一区二区人大臿蕉香蕉| 亚洲最新在线| 538国产在线| a毛片免费看|