999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The multiplicity and concentration of positive solutions for the Kirchhoff-Choquard equation with magnetic fields

2022-08-25 08:52:40LiWANG王莉

Li WANG(王莉)

College of Science,East China Jiaotong University,Nanchang 330013,China E-mail : wangli.4230163.com

Kun CHENG(程琨)

Department of Information Engineering,Jingdezhen Ceramic Institute,Jingdezhen 333403,China E-mail : chengkun0010@126.com.

Jixiu WANG(汪繼秀)+

School of Mathematics and Statistics,Hubei University of Arts and Science,,Xiangyang 441053,China E-mail : wangjiaxiu12r@aligun.com

1 Introduction and Main Results

d’Avenia et al. [14] studied the existence, regularity and asymptotic behavior of solutions to(1.4)for when f(u)=upand V(x)≡const. Foe when V(x)=1 and f satisfies Berestycki-Lions type assumptions, the existence of ground state solutions for a fractional Choquard equation was established in [29]. Recently, the author of [6] studied the multiplicity and concentration of positive solutions for (1.4) under local conditions on the potential V(x).

around the local minimum of V as ε →0. We must note that, in [25], the assumptions on the decay of V and the range for p ≥2 are optimal. In [9], the authors considered the ground state solutions of the Choquard equation (1.6) in R2. By variational methods, they proved the existence and concentration of ground states to(1.6)involving critical exponential growth in the sense of the Pohozˇaev-Trudinger-Moser inequality. Alves et al. [10] investigated the existence and concentration of solutions to equation (1.6) under the local potential well condition (V1)–(V2).

Remark 1.2 Our conclusion is still new even in the case that s=1 or that A=0.

The outline of this paper is as follows: in Section 2 we give the notations and recall some useful lemmas for the fractional magnetic Sobolev spaces. In Section 3, some preliminaries of problem (1.1) are given. In Section 4, we study the autonomous problem of (1.1). In the last section, we provide a multiplicity result for (1.1)via the Ljusternik-Schnirelmann category theory, and we study the concentration of the maximum points.

Throughout this paper, we will use the following notations: Br(0)={x ∈R3:|x|<r} is a ball in R3of radius r >0 at the origin;on(1)is a generic infinitesimal value. We always denote positive constants as C for convenience.

2 Variational Framework for Problem (1.1)

In this section, we outline the variational framework for problem (1.1) and give some preliminary lemmas. It is easy to see that, just performing the change of variables u(x)→u(εx),the problem (1.1) can be rewritten in the form

3 Preliminaries

which implies that there exists a τ0>0 (independent of u) such that τu≥τ0. Next, we show that the second conclusion holds. Assume, by contradiction, that there exist sequences

4 The Autonomous Problem

Hence, by using Ekeland’s variational principle [18], we can find vn∈Sλsuch that {vn} is a(PS)cV0sequence of Rλon Sλand that ‖vn‖λ→‖v‖λ. By Lemma 3.1,we have that{Rλ(vn)}is a (PS)cV0sequence of Iλ. It follows from Lemma 4.2 that there exists v ∈Sλsuch that Rλ(vn)→Rλ(v) in Hsλ. Taking this together with Lemma 4.1 and‖vn‖λ→‖v‖λ, we conclude that vn→v in Hsλ. □

5 The Proof of Theorem 1.1

主站蜘蛛池模板: 综合网久久| 毛片三级在线观看| 永久成人无码激情视频免费| 在线观看热码亚洲av每日更新| 亚洲国产AV无码综合原创| 国产va在线观看免费| 久久久久国产精品熟女影院| 伊人久久综在合线亚洲91| 在线一级毛片| 手机看片1024久久精品你懂的| 国产真实二区一区在线亚洲 | 亚洲天堂网在线视频| 午夜福利在线观看成人| 日韩色图在线观看| 在线免费亚洲无码视频| 国产成人免费手机在线观看视频| 亚洲欧洲日韩久久狠狠爱| 黄色a一级视频| 国产精品亚洲一区二区三区z | 在线观看免费国产| 亚洲无线一二三四区男男| 欧美a在线视频| 成人午夜久久| 国产亚洲高清在线精品99| 亚洲综合色婷婷| 91丝袜乱伦| 永久成人无码激情视频免费| 国产精品午夜福利麻豆| 亚洲综合精品第一页| 欧美一级视频免费| 91美女视频在线观看| 免费毛片在线| 中文纯内无码H| 五月天丁香婷婷综合久久| 久久综合伊人77777| 久久情精品国产品免费| 精品无码人妻一区二区| 国产在线无码av完整版在线观看| 国产视频你懂得| 无码中文字幕精品推荐| 亚洲欧洲日韩久久狠狠爱| 国产成人91精品| 99精品在线看| 成人福利在线看| 欧美激情综合| 亚洲天堂区| 五月婷婷导航| 亚洲天堂首页| 青青草原偷拍视频| 国产高潮流白浆视频| 高清码无在线看| 手机在线看片不卡中文字幕| 日本午夜精品一本在线观看| 国产精品成人观看视频国产 | 欧美va亚洲va香蕉在线| 日本草草视频在线观看| 日本精品αv中文字幕| 国产白浆视频| 九九香蕉视频| 亚洲综合国产一区二区三区| 天天综合网色| 国产极品美女在线观看| 97国产在线播放| 日本不卡视频在线| 国产精品亚洲精品爽爽| 国产99视频在线| 天堂va亚洲va欧美va国产| 麻豆AV网站免费进入| 成年午夜精品久久精品| 婷五月综合| 亚洲欧美成aⅴ人在线观看| 久久综合一个色综合网| 亚洲伦理一区二区| 四虎永久免费网站| a天堂视频| 91极品美女高潮叫床在线观看| 97视频免费在线观看| 99视频在线观看免费| 色综合久久无码网| 麻豆国产在线观看一区二区| 国产成年无码AⅤ片在线| 国内精品视频区在线2021|