陳 暢,羅婉君,段飛鵬,王寓平,胥雄飛,楊萌楚,姜金鑄,謝永艷,黃錦偉*,黃麗萍*
·綜述·
基于應激顆粒的中藥神經保護研究設想
陳 暢1, 2, 3,羅婉君2,段飛鵬1,王寓平2,胥雄飛2,楊萌楚2,姜金鑄3,謝永艷1,黃錦偉2*,黃麗萍1*
1. 江西中醫藥大學藥學院,江西 南昌 330004 2. 澳門科技大學中藥質量研究國家重點實驗室,中國 澳門 999078 3. 中國中醫科學院中藥研究所,北京 100700
應激顆粒是存在于胞質的一種無膜致密顆粒,通過包裹mRNA、轉錄起始因子、RNA結合蛋白等翻譯起始階段的重要元件,使細胞在遭受不利刺激時出現短暫的蛋白翻譯阻滯,從而起到細胞保護作用。研究發現,應激顆粒廣泛分布于海馬和皮層的神經元細胞、星形膠質細胞、小膠質細胞和浦肯野細胞等神經細胞中,生物過程涉及蛋白異常聚集、突觸的成熟和可塑性、免疫調節、抗氧化應激反應、抑制細胞凋亡等,在急性缺血性腦卒中和神經退行性疾病的發生發展中發揮著重要作用。尤其是其多樣化的物質組成和廣泛參與的生物過程,為中醫證候生物學及“同病異治”“整體調節”等中醫藥傳統理論和治法的研究提供了嶄新的思路和視野。對應激顆粒的基本特征、神經保護及研究方法等進行系統的梳理,同時以急性缺血性腦卒中為范例,嘗試將應激顆粒這一現代生物學現象納入到中醫藥現代研究中,提出研究設想和思路,以期用科學的語言闡釋傳統中醫藥相關理論與治法,也為行業同仁的相關研究提供參考。
應激顆粒;腦缺血;RNA結合蛋白;Ras-GTPase活化蛋白SH3結構域結合蛋白1;神經保護
當細胞受到不利環境(如紫外線照射、病毒感染、亞砷酸鹽刺激、熱休克、缺氧、饑餓)脅迫時,可出現短暫的蛋白質翻譯阻滯,形成由翻譯起始階段mRNA等組成的一種致密性顆粒狀聚集體。當脅迫消失后,該聚集體可解聚并釋放包裹的mRNA及相關蛋白,使細胞能夠繼續正常的蛋白質翻譯過程。這種致密的顆粒狀聚集體即為應激顆粒。應激顆粒的形成是細胞應對不利刺激時的一種自我保護機制,提高了細胞在不利環境下生存的能力。近年來,研究發現應激顆粒參與了細胞的翻譯調控、蛋白質錯誤折疊等生物學過程,尤其是其動態而快速的形成和解聚、調節蛋白異常聚集的特性,為急性缺血性腦卒中及神經退行性疾病的治療提供了一種創新的思路。
應激顆粒的形成分為經典和非經典2種途徑[1]。經典途徑是應激顆粒形成的主要方式,依賴于真核翻譯起始因子2α(eukaryotic initiation factor 2α,eIF2α)的磷酸化,非經典途徑與破壞eIF4F復合物有關[2]。在哺乳動物細胞中,目前已知至少有5種激酶[3],包括蛋白激酶R(protein kinase R,PKR)、PKR樣內質網激酶(PKR-like endoplasmic reticulum kinase,PERK)、一般性控制非抑制性蛋白2(general control non-derepressible 2,GCN2)、血紅素調節抑制劑激酶(heme-regulated inhibitor kinase,HRI)和Z-DNA激酶[4],可在細胞受到不同的刺激時激活,促進eIF2α的磷酸化,進而抑制eIF2與三磷酸鳥苷(guanosine triphosphate,GTP)結合,影響eIF2-GTP-tRNAMet復合物的形成,導致蛋白翻譯的暫時阻滯。在這一階段,翻譯起始階段的mRNA、翻譯起始因子、40S核糖體亞基和RNA結合蛋白等通過微管運輸的方式[5],以“核優先”方式或“液-液相分離優先”方式進行裝配[6],逐漸聚集并最終形成成熟的應激顆粒。在組成應激顆粒的組分中,超過50%為RNA結合蛋白[7],雖然目前還未完全闡明這些蛋白各自的功能,但其中的Ras-GTPase活化蛋白SH3結構域結合蛋白1(GTPase-activating protein SH3 domain binding protein 1,G3BP1)及T細胞胞質內抗原1(T-cell intracellular antigen 1,TIA1)對應激顆粒的聚集起關鍵作用[8]。研究表明,缺乏G3BP1將不能形成應激顆粒[9-11],即便在沒有應激的情況下,G3BP1也能誘導應激顆粒的形成[8]。因此G3BP1也是被廣泛用于應激顆粒形成的關鍵標志性蛋白[12]。
顯微觀察發現,盡管應激顆粒是一個胞質的無膜結構,但其也有1個相對密集的“核”及1個具有潛在流動性的“殼”,并呈現出液體一樣,組分快速交換的特點[7,13]。當細胞所處的不利環境因素消失或減弱時,細胞中大部分的應激顆粒可在數分鐘內同時解聚并消失,其解聚的過程表現為溶解而非分解為碎片[14-15]。應激顆粒解聚后,一方面,釋放的mRNA及與翻譯相關的主要元件回到核糖體,重新啟動正常的蛋白翻譯過程;另一方面,應激顆粒的組分還可與胞質中的另一種核糖核蛋白體,即P小體進行物質交換,mRNA進入P小體發生降解或參與其他生物過程,RNA結合蛋白等則通過自噬的途徑予以清除[16-17]。
一些蛋白的磷酸化、甲基化修飾均能影響應激顆粒的形成和解聚[18]。如G3BP1的磷酸化破壞了它形成多聚體的能力,而去磷酸化[8]和去甲基化[19]則有利于促進應激顆粒的組裝。其他如生長因子受體結合蛋白7和雙特異性酪氨酸磷酸化調節激酶3的磷酸化,也可促進應激顆粒的解聚。另外,三磷酸腺苷(adenosine triphosphate,ATP)可驅動部分蛋白質組分的交換,ATP酶可通過影響微管運輸的細胞轉運,以及分子伴侶和RNA解螺旋酶的交互作用[5],參與到應激顆粒的運動中,暗示ATP可能參與驅動應激顆粒的形成[7],在應激顆粒的形成和解聚中扮演著重要的角色。此外,肌動蛋白調節蛋白[20]、熱休克蛋白70等分子伴侶[21]及調節微管功能的相關蛋白如驅動蛋白、動力蛋白、組蛋白脫乙酰基酶6、RhoA/ROCK1,也參與了應激顆粒的形成和解聚過程[15,22-24]。
應激顆粒的形成,一方面促進了某些組分的“聚集”,增強了細胞的天然免疫應答等生物過程[25-27];另一方面也可通過“隔離”相關信號分子,抑制細胞信號通路的轉導[28-29]。盡管目前對應激顆粒的功能并不完全清楚,但已有證據表明,其可調節以下細胞生物學過程。
G3BP1及其綁定的配體泛素特異性蛋白酶10(ubiquitin-specific protease 10,USP10)在應激顆粒的抗氧化作用中發揮著重要作用。研究表明,單獨的USP10并不具有抵抗過氧化氫導致的氧化損傷作用,而是在形成應激顆粒后才能發揮此項功能[30]。在非應激狀態下,USP10表達受到G3BP1的抑制,當應激顆粒形成后,G3BP1對USP10的抑制減弱,進而發揮抗氧化功能。
應激顆粒的抗凋亡作用一方面與其抗氧化作用有關[30],同時也可通過“隔離”誘導細胞凋亡的關鍵信號分子予以實現。研究表明,應激顆粒除可通過抑制雷帕霉素復合物1通路的細胞凋亡外[31],還可通過招募并“隔離”活化的蛋白激酶C1受體等關鍵信號分子,使其不能與其他因子相結合,進而抑制了p38和c-Jun氨基末端激酶的激活,降低了細胞凋亡的發生[32]。此外,過表達的Fas活化絲氨酸/蘇氨酸激酶可與應激顆粒中的重要RNA結合蛋白TIA1相互作用,降低TIA1對某些抗凋亡蛋白mRNA的抑制,從而促進這些抗凋亡蛋白的表達[33]。
cGAS/string天然免疫信號通路可識別由于衰老或損傷等所產生的胞質DNA碎片,啟動I型干擾素表達,幫助細胞進行免疫防御。研究顯示,G3BP1可通過幫助cGAS聚集發生相分離,增強其對DNA的敏感性和結合能力,進而促進cGAS的激活[34]。G3BP1缺失將導致cGAS不能有效結合DNA,從而抑制cGAS介導的I型干擾素的產生[35]。除此之外,應激顆粒的聚集可抑制腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)介導的核因子-κB通路的活化[36];組成蛋白CUGBP2及HuR可調控前炎癥刺激物環氧合酶-2的表達等[37-38]。
急性缺血性腦卒中后損傷部位蛋白翻譯的暫時阻滯與應激顆粒的聚集關系密切[39],在腦缺血動物模型的大腦皮層和海馬均可觀察到大量應激顆粒的產生。研究表明[40],大腦皮層應激顆粒的形成在腦缺血再灌注后6 h達到峰值,在再灌注后24 h下降,而細胞凋亡水平和腦梗死體積在再灌注后6 h最低,24 h最高。提示應激顆粒的形成與凋亡水平呈負相關趨勢,再灌注24 h是研究應激顆粒形成與細胞凋亡水平相關性的最佳觀測時間點,同時也表明應激顆粒具有動態結構和抗凋亡作用。體外細胞實驗也證明,通過促進糖氧剝奪/復氧的PC細胞應激顆粒的生成,可明顯抑制細胞的凋亡水平[41-43]。除此之外,腦缺血可導致海馬CA3區、hilar區、齒狀回等神經元eIF2α迅速磷酸化,應激顆粒明顯增加[44]。然而海馬CA1區相對難以形成應激顆粒[45-46],因此當血流恢復灌注后,除CA1區外其他腦區的蛋白合成大多可逐步恢復[47-48],這也可以解釋為何有的研究表明CA1區比CA3區對缺血更為敏感[49-50]。腦缺血后應激顆粒的形成也可通過不依賴于eIF2α磷酸化的途徑產生,該過程與eIF4F復合物有關[51]。
神經退行性疾病的發生除與應激顆粒關鍵蛋白G3BP1關系密切外[52],還與一些蛋白的異常聚集有關。如β淀粉樣蛋白、tau蛋白、α突觸核蛋白(α-synuclein)、TAR DNA結合蛋白-43(TAR DNA binding protein-43,TDP-43)及FUS的異常聚集被認為是阿爾茨海默病、帕金森癥、肌萎縮性脊髓側索硬化癥等神經退行性疾病的重要病理標志。這在形態學上與應激顆粒形成過程中,RNA結合蛋白高度聚集形成致密顆粒非常相似,這一病理過程已被證明與應激顆粒形成有關[53]。研究表明,內質網內未正確折疊蛋白的積累,可激活位于內質網的激酶PERK,引起eIF2α磷酸化,進而促進應激顆粒形成[54]。報道顯示,用siRNA敲減TDP-43后[55],應激顆粒形成減少,提示TDP-43參與了應激顆粒的生成[56-58]。與神經退行性疾病相關的許多蛋白,如tau[59]、FUS[60]、ataxin-2[61]、運動神經元生存蛋白[62]、血管穩定蛋白[63]等,在應激發生時,也可被招募到應激顆粒中參與應激顆粒的形成[64]。
在連接應激顆粒與神經退行性疾病的RNA結合蛋白中,TDP-43的研究相對更為深入。TDB-43是一種DNA和RNA結合蛋白,病理性TDP-43被認為是額顳葉變性和肌萎縮側索硬化癥的主要病理標志物,后來也發現其參與了阿爾茨海默病、帕金森癥及亨廷頓病等神經退行性疾病的病理過程[65-66]。正常情況下,應激發生后,位于細胞核的TDP-43迅速轉移到胞質中,參與應激顆粒的形成并起細胞保護作用[57,67]。然而病理狀態下,目前已知最少有4種情況可導致TDP-43的異常聚集,進而表現出TDP-43蛋白病的特征。①RNA結合功能缺陷的TDP-43因不能被募集到應激顆粒中,而在胞質中形成磷酸化和P62陽性TDP-43顆粒[68]。②當應激消失后,病理性的TDP-43聚集物并不隨著應激顆粒的解體而解聚[69]。③應激顆粒異常解體時,TDP-43從應激顆粒釋放至胞質,并發生磷酸化,進而發生液-液相分離形成病理性聚集體[70-71]。④TDP-43突變導致胞質TDP-43永久性聚集,進而增加了應激顆粒的穩定性,阻礙了應激顆粒本身的動態物質交換過程[72]。
深入研究發現,富含甘氨酸、天冬酰胺、谷氨酰胺和酪氨酸的朊蛋白樣結構域[73-74],重點調節了TDP-43的剪接活性及與應激顆粒等的相互作用。
G3BP1和TIA1是形成應激顆粒的關鍵RNA結合蛋白,基因敲除或其功能異常均會影響應激顆粒的正常聚集。G3BP1高表達于大腦海馬、額葉皮層、小腦浦肯野細胞等部位[75]。基因敲除后,小鼠腦組織海馬區鈣離子穩態失衡,神經突觸傳遞功能障礙,皮層及內囊神經元大量細胞凋亡,小腦浦肯野細胞數量明顯減少,可出現記憶力減退及運動功能障礙等癥狀[75-78]。G3BP1復合物還可在小鼠腦組織中參與到內含子保留的轉錄調控中,并進一步調節谷氨酸神經元的相關功能,影響神經突觸可塑性[78]。另外,TIA1的降低或敲除可促進小膠質細胞的增殖、活化與吞噬,白細胞介素-1β及TNF-α釋放增多,氧化應激水平提高,神經突觸丟失增加,加重了tau蛋白疾病發展[79]。富甘氨酸序列的冷誘導RNA結合蛋白也可參與應激顆粒的形成[80]。研究表明,在原代大鼠海馬神經元細胞模型中,亞低溫處理可通過上調冷誘導RNA結合蛋白的表達,抑制細胞內氧自由基的生成,從而直接或間接地抑制了氧自由基誘導的神經元細胞凋亡,進而起到海馬神經元的保護作用[81]。
對應激顆粒標簽蛋白如G3BP1或TIA1的檢測,是當前表征應激顆粒的主要手段[82]。在細胞水平,采用熒光顯微鏡或激光共聚焦顯微鏡觀測技術,以免疫熒光法檢測TIA1或G3BP1,已被用于觀察毒胡蘿卜素誘導海馬神經元HT22細胞[83]及缺氧誘導的人小膠質HMC3細胞[84]應激顆粒的形成。若采用G3BP1與微管關聯蛋白等神經細胞標記蛋白共同觀察,還可考察應激顆粒的細胞定位[75]。為增加對應激顆粒檢測的準確性,有研究同時采用了G3BP1及TIA1 2種標簽蛋白,對缺氧/復氧的原代皮層神經元細胞或神經細胞PC12中的應激顆粒進行表征[43]。除此之外,以紅色熒光蛋白、綠色熒光蛋白分別對G3BP1、TIA1進行標記,還可動態觀察細胞受亞砷酸鹽刺激后應激顆粒的形成過程[46,84]。在組織水平,除可采用免疫組化法對TIA1等標簽蛋白進行定量的方法外[40],也可用免疫熒光法,以G3BP1或TIA1為標記,對大鼠腦缺血后缺血組織的應激顆粒進行形態學表征[41]。
盡管G3BP1和TIA1均可作為應激顆粒的標簽蛋白,但在非應激狀態下,TIA1主要位于細胞核內,應激發生后部分遷移到胞質中[85]。而G3BP1主要分散于細胞質中,熒光標記的G3BP1在應激發生后更容易觀察到特異性的點狀熒光[82,86]。因此有學者認為與TIA相比,G3BP1更適合作為應激顆粒的標志物[12]。
由于應激顆粒是一種無膜的亞細胞結構,且存在動態而迅速的物質交換過程,因此對其內部組成的研究還存在許多技術瓶頸[87]。目前相關的研究手段包括熒光漂白恢復技術[88]、高分辨顯微技術[7]、蛋白組學分析[7]、差速離心及免疫純化[24]、體外模擬[89]及數學建模[90]等。
結構決定功能是當前生物學研究的基本認識。研究應激顆粒的組分構成對其功能的研究意義重大。報道顯示,細胞受到不同的壓力刺激時,所產生的應激顆粒組分不同[3]。如在釀酒的酵母中,eIF3在熱應激誘導的應激顆粒中被發現,而葡萄糖缺乏誘導的應激顆粒中卻無eIF3[91-93]。功能上看,同一類型細胞所產生的應激顆粒,也可能產生完全相反的生物效應。如在腫瘤細胞中,應激顆粒一方面可通過絲裂原活化蛋白激酶途徑抑制腫瘤細胞凋亡[32];也可通過包裹住缺氧誘導因子-1α mRNA,使血管內皮細胞生長因子無法被激活,進而提高腫瘤的治療效果[94]。
應激顆粒組成成分和功能的深入研究,為藥物開發提供了一個全新的領域。在中藥神經保護領域,盡管當前只有少數研究報道了中藥(成分)可通過促進應激顆粒生成發揮腦保護作用[40,95],但應激顆粒介導的中藥神經保護策略,已展示出創新的研究思路和廣闊的研發前景,尤其是應激顆粒動態的物質組成與功能特征,更是與中醫藥的一些治療理念不謀而合。首先,細胞受不同刺激導致的損傷,與傳統中醫認為的機體由于不同證候導致的疾病有諸多相似之處。如中醫認為“中風”的基本病因有氣虛、血瘀、痰濕、熱毒等,這些中醫學上的不同病因與細胞受到的不同環境刺激在損傷原理上非常相似。其次,應激顆粒受到不同刺激從而有不同的物質組成這一特性,一方面可為闡釋中醫的證候生物學提供科學載體和物質條件;同時采用不同的治法如補氣、活血、化痰、清熱等對應激顆粒不同的物質組成進行“糾偏”,也可為研究“同病異治”這一傳統中醫治法提供創新的思路和方法。另外,應激顆粒的形成,包裹和隔離了諸多細胞信號傳遞因子,對細胞的生物過程如凋亡、氧化應激、免疫調節等產生重大影響。盡管尚不清楚應激顆粒在不同情況下其確切的物質組成,但其對細胞生物過程的多方位調控,也為研究中藥多成分如何調節機體的多個生物學效應,開創了一個全新的研究方向。以缺血性腦卒中為例,應激顆粒介導的中醫證候生物學、“同病異治”及“整體調節”研究設想可簡要概括為圖1的研究思路和框架。

圖1 基于應激顆粒的中醫藥現代研究設想(以缺血性腦卒中為例)
當前對應激顆粒的研究和認識還不全面,相信隨著現代生物學的進步,應激顆粒的物質組成和功能將逐漸被揭示,這為基于應激顆粒的創新藥物研究開啟了嶄新的一頁。尤其是當不利刺激發生時胞質成分快速聚集,刺激消失后迅速解聚的特性,為急性缺血性腦卒中等急性腦損傷的研究提供了良好的載體;其調控RNA蛋白的錯誤折疊和異常聚集,也為神經退行性疾病的研究開拓了新的思路和方法。
利益沖突 所有作者均聲明不存在利益沖突
[1] Advani V M, Ivanov P. Stress Granule subtypes: An emerging link to neurodegeneration [J]., 2020, 77(23): 4827-4845.
[2] le Sage V, Cinti A, Amorim R,. Adapting the stress response: Viral subversion of the mTOR signaling pathway [J]., 2016, 8(6): 152.
[3] 陳新穎, 華子春, 殷武. 應激顆粒的形成與生物學意義 [J]. 中國細胞生物學學報, 2012, 34(8): 837-844.
[4] Chiang D C, Li Y, Ng S K. The role of the-DNA binding domain in innate immunity and stress granules [J]., 2021, 11: 625504.
[5] Nadezhdina E S, Lomakin A J, Shpilman A A,. Microtubules govern stress granule mobility and dynamics [J]., 2010, 1803(3): 361-371.
[6] Protter D S W, Parker R. Principles and properties of stress granules [J]., 2016, 26(9): 668-679.
[7] Jain S, Wheeler J R, Walters R W,. ATPase-modulated stress granules contain a diverse proteome and substructure [J]., 2016, 164(3): 487-498.
[8] Tourrière H, Chebli K, Zekri L,. The RasGAP-associated endoribonuclease G3BP assembles stress granules [J]., 2003, 160(6): 823-831.
[9] Wang I, Hennig J, Jagtap P K A,. Structure, dynamics and RNA binding of the multi-domain splicing factor TIA-1 [J]., 2014, 42(9): 5949-5966.
[10] Bittencourt L F F, Negreiros-Lima G L, Sousa L P,. G3BP1 knockdown sensitizes U87 glioblastoma cell line to Bortezomib by inhibiting stress granules assembly and potentializing apoptosis [J]., 2019, 144(3): 463-473.
[11] Aulas A, Caron G, Gkogkas C G,. G3BP1 promotes stress-induced RNA granule interactions to preserve polyadenylated mRNA [J]., 2015, 209(1): 73-84.
[12] 邵琪, 屈陽, 朱子晨, 等. 應用G3BP1穩轉細胞系監測應激狀態下的應激顆粒形成 [J]. 畜牧獸醫學報, 2020, 51(9): 2275-2283.
[13] Souquere S, Mollet S, Kress M,. Unravelling the ultrastructure of stress granules and associated P-bodies in human cells [J]., 2009, 122(Pt 20): 3619-3626.
[14] Anderson P, Kedersha N. Stress granules: The Tao of RNA triage [J]., 2008, 33(3): 141-150.
[15] Kolobova E, Efimov A, Kaverina I,. Microtubule-dependent association of AKAP350A and CCAR1 with RNA stress granules [J]., 2009, 315(3): 542-555.
[16] Kedersha N, Chen S, Gilks N,. Evidence that ternary complex (eIF2-GTP-tRNAiMet)-deficient preinitiation complexes are core constituents of mammalian stress granules [J]., 2002, 13(1): 195-210.
[17] Kedersha N, Anderson P. Stress granules: Sites of mRNA triage that regulate mRNA stability and translatability [J]., 2002, 30(Pt 6): 963-969.
[18] Hofmann S, Kedersha N, Anderson P,. Molecular mechanisms of stress granule assembly and disassembly [J]., 2021, 1868(1): 118876.
[19] Tsai W C, Gayatri S, Reineke L C,. Arginine demethylation of G3BP1 promotes stress granule assembly [J]., 2016, 291(43): 22671-22685.
[20] Figley M D, Bieri G, Kolaitis R M,. Profilin 1 associates with stress granules and ALS-linked mutations alter stress granule dynamics [J]., 2014, 34(24): 8083-8097.
[21] Walters R W, Muhlrad D, Garcia J,. Differential effects of Ydj1 and Sis1 on Hsp70-mediated clearance of stress granules in[J]., 2015, 21(9): 1660-1671.
[22] Li C H, Ohn T, Ivanov P,. eIF5A promotes translation elongation, polysome disassembly and stress granule assembly [J]., 2010, 5(4): e9942.
[23] Bartoli K M, Bishop D L, Saunders W S. The role of molecular microtubule motors and the microtubule cytoskeleton in stress granule dynamics [J]., 2011, 2011: 939848.
[24] Kwon S, Zhang Y, Matthias P. The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response [J]., 2007, 21(24): 3381-3394.
[25] Reineke L C, Lloyd R E. Diversion of stress granules and P-bodies during viral infection [J]., 2013, 436(2): 255-267.
[26] Reineke L C, Kedersha N, Langereis M A,. Stress granules regulate double-stranded RNA-dependent protein kinase activation through a complex containing G3BP1 and Caprin1 [J]., 2015, 6(2): e02486.
[27] Reineke L C, Lloyd R E. The stress granule protein G3BP1 recruits protein kinase R to promote multiple innate immune antiviral responses [J]., 2015, 89(5): 2575-2589.
[28] Wippich F, Bodenmiller B, Trajkovska M G,. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling [J]., 2013, 152(4): 791-805.
[29] Leung A K L, Vyas S, Rood J E,. Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm [J]., 2011, 42(4): 489-499.
[30] Takahashi M, Higuchi M, Matsuki H,. Stress granules inhibit apoptosis by reducing reactive oxygen species production [J]., 2013, 33(4): 815-829.
[31] Thedieck K, Holzwarth B, Prentzell M T,. Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells [J]., 2013, 154(4): 859-874.
[32] Arimoto K, Fukuda H, Imajoh-Ohmi S,. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways [J]., 2008, 10(11): 1324-1332.
[33] Tian Q, Taupin J, Elledge S,. Fas-activated serine/threonine kinase (FAST) phosphorylates TIA-1 during Fas-mediated apoptosis [J]., 1995, 182(3): 865-874.
[34] 薛文. G3BP1促進胞質DNA感受器cGAS介導的抗病毒免疫[D]. 北京: 軍事醫學科學院, 2020.
[35] Liu Z S, Cai H, Xue W,. G3BP1 promotes DNA binding and activation of cGAS [J]., 2019, 20(1): 18-28.
[36] Kim W J, Back S H, Kim V,. Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions [J]., 2005, 25(6): 2450-2462.
[37] Moraes K C M, Monteiro C J, Pacheco-Soares C. A novel function for CUGBP2 in controlling the pro-inflammatory stimulus in H9c2 cells: Subcellular trafficking of messenger molecules [J]., 2013, 37(10): 1129-1138.
[38] Feng S, Chen W, Cao D,. Involvement of Na+, K+-ATPase and its inhibitors in HuR-mediated cytokine mRNA stabilization in lung epithelial cells [J]., 2011, 68(1): 109-124.
[39] Monique L. Mechanisms of translation arrest following focal brain ischemia [D]. Detroit: Wayne State University, 2011.
[40] 司文文. 左旋樟腦通過表觀調控應激顆粒生成抗中風損傷研究 [D]. 廣州: 廣州中醫藥大學, 2019.
[41] Si W W, Li Y, Ye S Y,. Methyltransferase 3 mediated miRNA m6A methylation promotes stress granule formation in the early stage of acute ischemic stroke [J]., 2020, 13: 103.
[42] Si W W, Ye S Y, Ren Z X,. miR?335 promotes stress granule formation to inhibit apoptosis by targeting ROCK2 in acute ischemic stroke [J]., 2019, 43(3): 1452-1466.
[43] Si W W, Li Z, Huang Z F,. RNA binding protein motif 3 inhibits oxygen-glucose deprivation/reoxygenation-induced apoptosis through promoting stress granules formation in PC12 cells and rat primary cortical neurons [J]., 2020, 14: 559384.
[44] Jamison J T, Kayali F, Rudolph J,. Persistent redistribution of poly-adenylated mRNAs correlates with translation arrest and cell death following global brain ischemia and reperfusion [J]., 2008, 154(2): 504-520.
[45] Kayali F, Montie H L, Rafols J A,. Prolonged translation arrest in reperfused hippocampal cornu ammonis 1 is mediated by stress granules [J]., 2005, 134(4): 1223-1245.
[46] Ohshima D, Arimoto-Matsuzaki K, Tomida T,. Spatio-temporal dynamics and mechanisms of stress granule assembly [J]., 2015, 11(6): e1004326.
[47] Thilmann R, Xie Y, Kleihues P,. Persistent inhibition of protein synthesis precedes delayed neuronal death in postischemic gerbil hippocampus [J]., 1986, 71(1/2): 88-93.
[48] Araki T, Kato H, Inoue T,. Regional impairment of protein synthesis following brief cerebral ischemia in the gerbil [J]., 1990, 79(5): 501-505.
[49] Crepel V, Epsztein J, Ben-Ari Y. Ischemia induces short- and long-term remodeling of synaptic activity in the hippocampus [J]., 2003, 7(4): 401-407.
[50] Lehotsky J, Burda J, Danielisová V,. Ischemic tolerance: The mechanisms of neuroprotective strategy [J]., 2009, 292(12): 2002-2012.
[51] Ayuso M I, Martínez-Alonso E, Regidor I,. Stress Granule induction after brain ischemia is independent of eukaryotic translation initiation factor (eIF)2α phosphorylation and is correlated with a decrease in eIF4B and eIF4E proteins [J]., 2016, 291(53): 27252-27264.
[52] Sidibé H, Dubinski A, Vande Velde C. The multi-functional RNA-binding protein G3BP1 and its potential implication in neurodegenerative disease [J]., 2021, 157(4): 944-962.
[53] Wolozin B, Ivanov P. Stress granules and neurodegeneration [J]., 2019, 20(11): 649-666.
[54] Walsh D, Mohr I. Viral subversion of the host protein synthesis machinery [J]., 2011, 9(12): 860-875.
[55] McDonald K K, Aulas A, Destroismaisons L,. TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1 [J]., 2011, 20(7): 1400-1410.
[56] Castellani R J, Gupta Y, Sheng B Y,. A novel origin for granulovacuolar degeneration in aging and Alzheimer’s disease: Parallels to stress granules [J]., 2011, 91(12): 1777-1786.
[57] Dormann D, Rodde R, Edbauer D,. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import [J]., 2010, 29(16): 2841-2857.
[58] Liu-Yesucevitz L, Bilgutay A, Zhang Y J,. Tar DNA binding protein-43 (TDP-43) associates with stress granules: Analysis of cultured cells and pathological brain tissue [J]., 2010, 5(10): e13250.
[59] Vanderweyde T, Yu H, Varnum M,. Contrasting pathology of the stress granule proteins TIA-1 and G3BP in tauopathies [J]., 2012, 32(24): 8270-8283.
[60] Vance C, Rogelj B, Hortobágyi T,. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6 [J]., 2009, 323(5918): 1208-1211.
[61] Nonhoff U, Ralser M, Welzel F,. Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules [J]., 2007, 18(4): 1385-1396.
[62] Zou T, Yang X M, Pan D M,. SMN deficiency reduces cellular ability to form stress granules, sensitizing cells to stress [J]., 2011, 31(4): 541-550.
[63] Thiyagarajan N, Ferguson R, Subramanian V,. Structural and molecular insights into the mechanism of action of human angiogenin-ALS variants in neurons [J]., 2012, 3: 1121.
[64] Wolozin B. Regulated protein aggregation: Stress granules and neurodegeneration [J]., 2012, 7: 56.
[65] Warraich S T, Yang S, Nicholson G A,. TDP-43: A DNA and RNA binding protein with roles in neurodegenerative diseases [J]., 2010, 42(10): 1606-1609.
[66] 鄧燕芬, 劉運海, 田田. 結合蛋白TDP-43與神經變性疾病 [J]. 中華神經科雜志, 2014, 47(3): 196-198.
[67] Ayala Y M, Zago P, D'Ambrogio A,. Structural determinants of the cellular localization and shuttling of TDP-43 [J]., 2008, 121(Pt 22): 3778-3785.
[68] Mann J R, Gleixner A M, Mauna J C,. RNA binding antagonizes neurotoxic phase transitions of TDP-43 [J]., 2019, 102(2): 321-338.
[69] Parker S J, Meyerowitz J, James J L,. Endogenous TDP-43 localized to stress granules can subsequently form protein aggregates [J]., 2012, 60(4): 415-424.
[70] Gasset-Rosa F, Lu S, Yu H Y,. Cytoplasmic TDP-43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death [J]., 2019, 102(2): 339-357.
[71] McGurk L, Gomes E, Guo L,. Poly (ADP-ribose) prevents pathological phase separation of TDP-43 by promoting liquid demixing and stress granule localization [J]., 2018, 71(5): 703-717.
[72] Li Y R, King O D, Shorter J,. Stress granules as crucibles of ALS pathogenesis [J]., 2013, 201(3): 361-372.
[73] Romano M, Buratti E, Romano G,. Evolutionarily conserved heterogeneous nuclear ribonucleoprotein (hnRNP) A/B proteins functionally interact with human andTAR DNA-binding protein 43 (TDP-43) [J]., 2014, 289(10): 7121-7130.
[74] 趙郴, 杜海寧. RNA結合蛋白與神經退行性疾病 [J]. 生命的化學, 2015, 35(2): 193-199.
[75] Martin S, Zekri L, Metz A,. Deficiency of G3BP1, the stress granules assembly factor, results in abnormal synaptic plasticity and calcium homeostasis in neurons [J]., 2013, 125(2): 175-184.
[76] Martin S, Tazi J. Visualization of G3BP stress granules dynamics in live primary cells [J]., 2014(87): 51197.
[77] Zekri L, Chebli K, Tourrière H,. Control of fetal growth and neonatal survival by the RasGAP-associated endoribonuclease G3BP [J]., 2005, 25(19): 8703-8716.
[78] Martin S, Bellora N, González-Vallinas J,. Preferential binding of a stable G3BP ribonucleoprotein complex to intron-retaining transcripts in mouse brain and modulation of their expression in the cerebellum [J]., 2016, 139(3): 349-368.
[79] LeBlang C J, Medalla M, Nicoletti N W,. Reduction of the RNA binding protein TIA1 exacerbates neuroinflammation in tauopathy [J]., 2020, 14: 285.
[80] de Leeuw F, Zhang T, Wauquier C,. The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor [J]., 2007, 313(20): 4130-4144.
[81] 李靜輝, 張雪, 孟宇, 等. 亞低溫狀態下冷誘導RNA結合蛋白調節氧化還原系統對海馬神經元的保護作用 [J]. 生理學報, 2015, 67(4): 386-392.
[82] Guillén-Boixet J, Kopach A, Holehouse A S,. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation [J]., 2020, 181(2): 346-361.e17.
[83] Arimoto-Matsuzaki K, Saito H, Takekawa M. TIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress-induced apoptosis [J]., 2016, 7: 10252.
[84] Voelz C, Habib P, K?berlein S,. Alteration of miRNA biogenesis regulating proteins in the human microglial cell line HMC-3 after ischemic stress [J]., 2021, 58(4): 1535-1549.
[85] Kedersha N L, Gupta M, Li W,. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules [J]., 1999, 147(7): 1431-1442.
[86] Sun Y J, Dong L N, Yu S Q,. Newcastle disease virus induces stable formation of bona fide stress granules to facilitate viral replication through manipulating host protein translation [J]., 2017, 31(4): 1337-1353.
[87] 潘昕祺, 王爽, 崔亞寧, 等. 應激顆粒研究進展及相關技術 [J]. 電子顯微學報, 2019, 38(4): 420-428.
[88] Buchan J R, Parker R. Eukaryotic stress granules: The ins and outs of translation [J]., 2009, 36(6): 932-941.
[89] Elbaum-Garfinkle S, Kim Y, Szczepaniak K,. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics [J]., 2015, 112(23): 7189-7194.
[90] Kato M, Han T W, Xie S H,. Cell-free formation of RNA granules: Low complexity sequence domains form dynamic fibers within hydrogels [J]., 2012, 149(4): 753-767.
[91] Buchan J R, Muhlrad D, Parker R. P bodies promote stress granule assembly in[J]., 2008, 183(3): 441-455.
[92] Grousl T, Ivanov P, Frydlová I,. Robust heat shock induces eIF2alpha-phosphorylation-independent assembly of stress granules containing eIF3 and 40ribosomal subunits in budding yeast,[J]., 2009, 122(Pt 12): 2078-2088.
[93] Hoyle N P, Castelli L M, Campbell S G,. Stress-dependent relocalization of translationally primed mRNPs to cytoplasmic granules that are kinetically and spatially distinct from P-bodies [J]., 2007, 179(1): 65-74.
[94] Moeller B J, Cao Y T, Li C Y,. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: Role of reoxygenation, free radicals, and stress granules [J]., 2004, 5(5): 429-441.
[95] 任振興. 左旋樟腦通過miR-140-HnrnpA1軸促進急性腦缺血應激顆粒形成的機制機制研究 [D]. 廣州: 廣州中醫藥大學, 2018.
Inspiration of neuroprotection of traditional Chinese medicine (TCM) based on stress granules
CHEN Chang1, 2, 3, Betty Yuen Kwan Law2, DUAN Fei-peng1, WANG Yu-ping2, XU Xiong-fei2, YANG Meng-chu2, JIANG Jing-zhu3, XIE Yong-yan1, Vincent Kam Wai Wong2, HUANG Li-ping1
1. School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China 2. State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China 3. Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
Stress granules (SG) are membrane-free dense granules present in the cytoplasm that act as cytoprotective agents by wrapping mRNA, transcription initiation factors, and RNA-binding proteins and other important components of the translation initiation phase, resulting in a transient protein translation block when cells are subjected to adverse stimuli. This cellular process is a self-protection mechanism for cells. It was found that SG were widely distributed in neurons, astrocytes, microglia, purkinje cell in the hippocampus and cortex, and the biological processes involve abnormal protein aggregation, synaptic maturation and plasticity, immune regulation, antioxidant stress response, and inhibition of apoptosis. For instance, SG participate the misfolding and abnormal accumulation of the essential protein, synaptic maturation and plasticity, it also exhibits immunoregulation, anti-oxidation and prevention of cell apoptosis in neuronal cells, so as to contribute to the neuronal function recovery. Accordingly, SG are considered as an alternative approach for treatment of stroke and neurodegenerative disease. In particular, its diversified substance composition and widely involved biological process provide a new vision for the study of TCM syndrome biology and the traditional treatments of TCM such as “different treatment of the same disease” and “holistic regulation”. Here, the principal character, neuroprotective functions and related research methods are systematically reviewed. At the same time, taking acute ischemic stroke as an example, the modern biological phenomenon of SG is tried to incorporate into the modern research of TCM, and research inspiration and ideas are put forward in order to explain the relevant theories and treatments of TCM in a scientific way and provide reference for other researchers.
stress granules; cerebral ischemia; RNA-binding proteins; G3BP1; neuroprotection
R285
A
0253 - 2670(2022)16 - 5185 - 08
10.7501/j.issn.0253-2670.2022.16.028
2022-02-18
國家自然科學基金資助項目(82060759);國家自然科學基金資助項目(81660713);澳門科技發展基金資助項目(0048/2018/A2);中國中醫科學院科技創新工程項目(CI2021A00916,CI2021A04404,CI2021A04405);江西中醫藥大學研究生境外訪學基金資助項目
陳 暢,副研究員,碩士生導師,研究方向為中藥神經藥理學。E-mail: cchen@icmm.ac.cn
黃麗萍,教授,博士生導師,研究方向為中藥神經藥理學。E-mail:jxnchlp@163.com
黃錦偉,教授,博士生導師,研究方向為中藥藥理學。E-mail: kawwong@must.edu.mo
[責任編輯 崔艷麗]