高慧明



【命題規律】
(1)高考對空間點、線、面位置關系的考查主要有兩種形式:一是對命題真假的判斷,通常以選擇題、填空題的形式考查,難度不大;二是在解答題中考查平行、垂直關系的證明、常以柱體、錐體為載體,難度中檔偏難.該部分的命題主要在三個點展開. 第一點是圍繞空間點、直線、平面的位置關系展開,設計位置關系的判斷、簡單的角與距離計算等問題,目的是考查對該部分基礎知識的掌握情況及空間想象能力;第二點是圍繞空間平行關系和垂直關系的證明,設計通過具體的空間幾何體證明其中的平行關系、垂直關系的問題,目的是考查運用空間位置關系的相關定理、推理論證的能力及空間想象能力;第三個點是圍繞空間角與距離展開(特別是圍繞空間角),設計求解空間角的大小、根據空間角的大小求解其他幾何元素等問題,目的是綜合考查利用空間線面位置關系的知識綜合解決問題的能力.
(2)求解立體幾何問題是高考的必考內容,每套試卷必有立體幾何解答題,一般設2問,前一問較簡單,最后一問難度較大,而選用向量法可以降低解題難度. 該部分的命題非常單純,就是圍繞用空間向量解決立體幾何問題設計試題,考查空間向量在證明空間位置關系、求解空間角和距離問題中的應用,考查空間向量在解決探索性問題中的應用,其目的是考查對立體幾何中的向量方法的掌握程度,考查運算求解能力……