999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

未來,我們吃的藥可能會是“AI造”

2022-05-30 10:48:04陳曦
科學導報 2022年64期

陳曦

一個新藥的誕生,通常需投入10億甚至數十億美元,研發周期一般超過10年。而由于AI技術的加入,如今的藥物研發成本明顯減少,同時也大大縮短了研發時間。例如,AI將臨床前候選化合物的時間從平均4年半縮短至約13.7個月,縮短了近75%。

近日,據媒體報道,美國華盛頓大學戴維·貝克教授團隊在《細胞》雜志上發表論文,利用人工智能(AI)技術平臺精準地從頭設計出能夠穿過細胞膜的大環多肽分子,開辟了設計全新口服藥物的新途徑。

近年來,AI加速助力新藥研發,幾乎參與了從藥物靶點發現到臨床試驗的全流程。在新冠肺炎疫情期間,多款藥物問世背后也都有AI的身影,全球AI制藥產業實現加速跑。

AI融入藥物研發各個環節

“AI一詞是約翰·麥卡錫在1956年達特茅斯會議上提出的,用來描述‘制造智能機器的科學和工程。AI差不多也是在這個時候被引入到藥物研發領域的。”南開大學藥學院教授林建平介紹,1964年,定量構效關系建模領域的建立成為AI開始用于藥物研發的標志。

如今,AI在藥物研發中發揮著越來越重要的作用,并與藥物研發的各個環節緊密結合。

一款藥物從無到有,要歷經漫長且坎坷的過程。其中主要包括4個研發階段,即靶標選擇和驗證、化合物篩選和先導優化、臨床前研究以及臨床試驗。而每一個階段又涉及到許多具體環節。

林建平舉例說,比如在靶標選擇和驗證階段,需要確定疾病相關的靶標。根據傳統實驗去確定靶標,既費時成本又高,而使用AI技術并結合已有的組學大數據,根據已知的以及新產生的實驗數據,就可以快速分析出潛在候選靶標,節約時間和成本;或在已知先導化合物的功效,但是缺少明確靶標而導致具體作用機制和副作用不明確時,AI可以大范圍預測靶標,縮小候選靶標的范圍,最后結合實驗手段快速定位真正的靶標。“AI幫助藥物研發者快速找到靶標,加快先導化合物向藥物轉化的進程。”林建平介紹。

對于已有的藥物,AI同樣可以通過靶標預測,發現新的靶標,從而發現新的藥物適應癥,這也是一個非常熱門的領域——藥物重定位。

在最重要的臨床試驗階段,AI的應用也起到了事半功倍的效果。“在這一階段,需要在患者身上評價藥物的安全性和有效性,AI可以參與到患者的招募、臨床試驗設計以及試驗結果數據分析等。”林建平舉例,比如可以通過AI技術從過去的臨床患者中,提取患者的個人特征、癥狀、治療效果等數據,找到最匹配當前試驗的患者;試驗設計上,AI可以預測合適的藥物劑量、治療方案等;而試驗數據上,可以采用AI技術跟蹤和管理患者的實時情況,預測患者預后情況等。

AI大大縮減藥物研發成本

一個新藥的誕生,通常需投入10億甚至數10億美元,研發周期一般超過10年,成功率卻低于10%。而由于AI的加入,如今的藥物研發成本減少了上億美元,同時也大大縮短了研發時間,一般來說可以縮短一半以上。例如,AI將臨床前候選化合物的研發時間從平均4年半縮短至約13.7個月,縮短了近75%。

此外,AI還提高了藥物研發的成功率。“通俗講,藥物研發實際上是一個試錯的過程,AI可以幫助我們排除大量錯誤,最后留給我們的就是更大的成功機會。”林建平說。

正是由于AI制藥具有對傳統制藥碾壓式的優勢,使得AI制藥產業在全球發展壯大。目前,AI制藥產業發展可概括為三大階段:第一個階段,AI制藥公司初步形成,主要針對某個階段的藥物研發提供AI技術服務;第二個階段,AI制藥公司開發了成熟的研發管線,并且開發的藥物進入臨床驗證,這一階段將吸引大量資本和初創企業加入;而第三階段,則進入到關鍵的臨床Ⅱ期藥效性實驗,真正證明AI研發藥物的有效性。

“目前全球AI制藥產業已步入第三個發展階段。”林建平說。

我國AI制藥起步較晚,尚處于第二個階段。“但是國內的AI制藥產業發展速度非常快,各大互聯網巨頭以及一些大型藥企均開始布局AI制藥賽道,當然還包括一些初創公司。”林建平表示。

據統計,目前國內已有超過60家AI制藥公司,去年我國AI制藥融資規模達12.36億美元,同比增長163.54%。

AI制藥存在諸多挑戰

可以說,AI已經滲透到藥物研發領域的各個環節,促進了醫藥產業的升級,在未來極有可能帶來制藥產業的變革。隨著目前AI制藥產業的發展,在不久的將來,我們可能很快會迎來第一款AI技術研發的創新藥物。在期盼之余,很多人也對AI研發的藥物是否具有風險心存疑慮。

“目前來說,我們利用AI研發的藥物的風險與傳統的藥物研發風險是一樣的,包括藥物的副作用、毒性、耐受性等。”林建平解釋說,由于目前AI在藥物研發中大多起著輔助作用,最后仍舊需要經過真實的試驗去驗證其安全性和有效性,需要專家去做評定,所以在風險性上與傳統研發藥物相同。但是這樣做也帶來了另一個問題,制藥行業仍以專家經驗為基礎,成為制約AI制藥發展的最大阻礙。“之所以出現這種現象,主要是由于對AI技術助力制藥的不信任。”林建平認為,隨著接下來幾年AI藥物的成功上市,這個問題必將得到解決;另一方面,目前AI在藥物研發全流程中,仍然扮演著輔助工具的角色,沒有占據主導地位,這也就決定了AI制藥產業難以獲得飛躍式發展。

而且,AI技術仍在發展中,數據、算法、算力上的突破也需要一定的時間。如數據量不足、數據質量參差不齊,算法精度不高、算法無法滿足需求等,都為AI在藥物研發和應用上帶來了困難。

此外,AI制藥還面臨許多其他挑戰。比如生命領域的基礎理論研究還有很多沒有解決的問題;再比如復合型人才的缺少,“懂計算的不懂制藥,懂制藥的不懂計算”,如何更好地把生物問題轉化為計算問題,然后用數字手段去解決,這需要大量復合型人才的參與,而這一類人才的培養也是極其耗時的。

超算驅動現代藥物研發產業發展

隨著AI技術的不斷發展,AI藥物研發的進程也在“提速”。

此外,超級計算平臺在現代藥物研發中也發揮著日益強勁的驅動作用,特別是伴隨著“天河”等新一代超級計算機的研制成功,百億級虛擬藥物篩選、大規模全原子分子動力學模擬、大規模AI預訓練模型等計算和智能技術為現代藥物研發創新帶來新機遇、新發展。

目前天河超級計算平臺支撐了數十家機構、上百個研發團隊開展高性能計算支撐的虛擬藥物研發工作,取得了良好的成效。國家超級計算天津中心高性能計算部部長康波表示,超算團隊將基于天河新一代超級計算機,研發物理生化模型與人工智能結合的藥物設計新方法,構建計算機輔助藥物設計研發核心鏈條聚合機制,探索算數融合、藥工結合、研用協同的信創數字數值裝置模式,研制面向創新藥物發現的虛擬實驗室,實現超算驅動現代藥物創新發展的綜合支撐能力。

主站蜘蛛池模板: 亚洲国产亚综合在线区| 精品视频一区在线观看| 国产最新无码专区在线| 国产成人凹凸视频在线| 无码AV高清毛片中国一级毛片| 久久天天躁夜夜躁狠狠| AV在线天堂进入| 欧洲欧美人成免费全部视频| 夜精品a一区二区三区| 亚洲人成网18禁| 99这里精品| 久久a级片| 一级片免费网站| 国产一级毛片yw| 国产激情第一页| 国产高清无码麻豆精品| 国产99视频精品免费观看9e| 国产成人福利在线视老湿机| 成人福利在线看| 国产香蕉国产精品偷在线观看| 亚洲美女一区二区三区| 色综合天天操| 精久久久久无码区中文字幕| 日韩在线观看网站| 久久鸭综合久久国产| 国产精品自拍合集| 国产成人综合亚洲网址| 在线欧美a| 97视频在线精品国自产拍| 99er精品视频| 国产麻豆va精品视频| 日韩毛片在线视频| 91青青在线视频| 国产中文一区二区苍井空| 欧洲高清无码在线| 91精品伊人久久大香线蕉| 熟妇人妻无乱码中文字幕真矢织江| 成人福利在线观看| 中国毛片网| 午夜福利在线观看成人| 欧美午夜精品| 日本免费福利视频| 曰韩免费无码AV一区二区| 欧美精品啪啪| 91丝袜美腿高跟国产极品老师| 欧美国产精品拍自| 精品少妇三级亚洲| 国产精品熟女亚洲AV麻豆| 国产JIZzJIzz视频全部免费| 嫩草在线视频| 欧美日韩一区二区三区在线视频| 99久久国产综合精品女同| 99九九成人免费视频精品| 国产男女免费完整版视频| 国产精品久久久久久久久| 亚洲天堂免费观看| 91在线国内在线播放老师| 国产精品专区第1页| 欧美精品亚洲精品日韩专区| 青青草综合网| 九一九色国产| 日韩精品一区二区三区中文无码| 亚洲精品无码成人片在线观看| 国内熟女少妇一线天| 成人国产精品网站在线看| 国产毛片久久国产| 玖玖免费视频在线观看| 四虎AV麻豆| 亚洲人成亚洲精品| 亚洲中文在线看视频一区| 精品亚洲国产成人AV| 欧美日韩北条麻妃一区二区| 露脸一二三区国语对白| 国产杨幂丝袜av在线播放| 四虎精品黑人视频| 欧美笫一页| 天天综合网色| 亚洲国产系列| 五月婷婷精品| 国产在线91在线电影| 免费女人18毛片a级毛片视频| 午夜综合网|