999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

亞油酸乙醇胺誘導(dǎo)番茄對灰葡萄孢抗性的作用及機(jī)制

2022-05-17 02:13:46邵淑君胡璋健師愷
中國農(nóng)業(yè)科學(xué) 2022年9期

邵淑君,胡璋健,師愷

亞油酸乙醇胺誘導(dǎo)番茄對灰葡萄孢抗性的作用及機(jī)制

邵淑君,胡璋健,師愷

浙江大學(xué)農(nóng)業(yè)與生物技術(shù)學(xué)院,杭州 310058

灰葡萄孢()引起的灰霉病是危害番茄()的重要病害之一,防治不及時(shí)可造成30%—40%減產(chǎn)。目前生產(chǎn)上多以化學(xué)防治為主,但存在農(nóng)產(chǎn)品安全及環(huán)境污染的風(fēng)險(xiǎn)。-酰基乙醇胺(NAE)是植物體內(nèi)天然存在的一類脂質(zhì)生物活性化合物,其在哺乳動(dòng)物中具有多種免疫功能,但其在植物免疫中的作用和機(jī)制尚不清楚。【】探討-酰基乙醇胺在誘導(dǎo)番茄對灰葡萄孢防御中的作用,為研發(fā)番茄灰霉病綠色防控技術(shù)提供依據(jù)。將灰葡萄孢分別接種在含有硬脂酰乙醇胺(NAE 18:0)、亞油酸乙醇胺(NAE 18:2)、廿二碳五烯酸乙醇胺(NAE 22:5)的培養(yǎng)基上,觀察灰葡萄孢的生長情況。在此基礎(chǔ)上,以番茄‘Moneymaker’植株為材料,硬脂酰乙醇胺、亞油酸乙醇胺、廿二碳五烯酸乙醇胺外源處理番茄葉片后接種灰葡萄孢,統(tǒng)計(jì)病情指數(shù),測定熒光參數(shù)。采用qRT-PCR技術(shù)明確亞油酸乙酰胺處理后番茄葉片灰葡萄孢的相對表達(dá)量,進(jìn)一步測定番茄葉片中主要抗病基因、-、、、等的相對表達(dá)量及茉莉酸(jasmonic acid,JA)、水楊酸(salicylic acid,SA)、乙烯(ethylene,ETH)、脫落酸(abscisic acid,ABA)、生長素(indoleacetic acid,IAA)含量。并以乙烯信號轉(zhuǎn)導(dǎo)突變體植株()及對照植株P(guān)earson(PB)為材料,在外源亞油酸乙酰胺處理后接種灰葡萄孢,測定番茄葉片葉綠素?zé)晒鈪?shù)和灰葡萄孢的相對表達(dá)量。體外培養(yǎng)試驗(yàn)結(jié)果表明灰葡萄孢生長并不受外源-酰基乙醇胺的影響,外源施用-酰基乙醇胺能顯著提高番茄植株對灰霉病的抗性,緩解由灰葡萄孢侵染導(dǎo)致的番茄葉片光系統(tǒng)II實(shí)際光化學(xué)效率(ΦPSII)的下降。3種-酰基乙醇胺中,亞油酸乙醇胺施用后番茄葉片灰霉病病情指數(shù)下降最為明顯,灰葡萄孢的相對表達(dá)量下調(diào)60%,其誘導(dǎo)灰霉病抗性效果最佳。番茄植株接種灰葡萄孢后抗性基因、-、、的表達(dá)水平均有不同程度上調(diào)。外源亞油酸乙醇胺處理使得番茄響應(yīng)灰葡萄孢接種后、、的表達(dá)進(jìn)一步增強(qiáng),其中乙烯合成基因的表達(dá)水平最高。番茄植株接種灰葡萄孢后葉片水楊酸、茉莉酸、生長素和乙烯含量增加,但外源亞油酸乙醇胺處理并接種灰葡萄孢后只有乙烯含量顯著增加。進(jìn)一步研究發(fā)現(xiàn),番茄乙烯突變體植株中,外源亞油酸乙醇胺對灰葡萄孢的抗性誘導(dǎo)作用顯著受到抑制。外源施用亞油酸乙醇胺能夠提高番茄內(nèi)源光合效率和抗病基因的表達(dá)及內(nèi)源激素乙烯的含量,增強(qiáng)番茄植株對灰霉病的抗性,推測其誘導(dǎo)抗性作用可能與乙烯信號路徑相關(guān)。

番茄;-酰基乙醇胺;亞油酸乙醇胺;灰霉病;灰葡萄孢;乙烯

0 引言

【研究意義】番茄()是世界性栽培蔬菜,作為模式作物,被廣泛用于生長發(fā)育、果實(shí)品質(zhì)、逆境響應(yīng)等研究[1]。番茄產(chǎn)量和品質(zhì)很大程度上受栽培期間病蟲害的影響[2]。其中由灰葡萄孢()引起的灰霉病是番茄生產(chǎn)中的重要病害,在我國各番茄種植地均有發(fā)生,感病后的番茄產(chǎn)量會(huì)降低30%—40%。-酰基乙醇胺(NAE)作為一種天然的活性物質(zhì),深入研究其在誘導(dǎo)番茄對灰霉病抗性中的作用及內(nèi)在機(jī)制,對于植物源生物農(nóng)藥的開發(fā)具有重要意義。【前人研究進(jìn)展】20世紀(jì)50年代,人們最早在大豆卵磷脂和花生粕的成分中發(fā)現(xiàn)了-酰基乙醇胺[3],后續(xù)在其他植物中也發(fā)現(xiàn)-酰基乙醇胺的存在[4]。-酰基乙醇胺是一類功能多樣的脂類信號物質(zhì),由一個(gè)酰胺鍵連接到乙醇胺的脂肪酸組成,根據(jù)其酰基鏈的碳數(shù)(C12—C18)和不飽和雙鍵數(shù)目(0—3)進(jìn)行分類[5-6]。-酰基乙醇胺普遍存在于植物中,其種類及含量因植株器官、植物種類和生理?xiàng)l件而異,長鏈-酰基乙醇胺(C16—C18)是植物中主要的-酰基乙醇胺類型,主要由亞油酰乙醇胺(NAE 18:2)、NAE 18:1和NAE 16:0組成。其中亞油酰乙醇胺含量最多,在植株的生長發(fā)育中發(fā)揮著重要作用[5,7-8]。-酰基乙醇胺不僅參與種子萌發(fā)[9-11]、幼苗生長[12]、花器官衰老[13],也可能參與植物細(xì)胞防御信號轉(zhuǎn)導(dǎo)系統(tǒng)[8]。1998年,研究人員發(fā)現(xiàn)用真菌誘導(dǎo)子木聚糖處理,會(huì)引起煙草懸浮細(xì)胞培養(yǎng)液中-酰基乙醇胺含量積累[14]。之后-酰基乙醇胺研究中的一個(gè)重大突破是成功在擬南芥植株中克隆到一種-酰基乙醇胺的水解酶——脂肪酸酰胺水解酶(FAAH),過表達(dá)擬南芥植株中的病害防御基因、激素合成及信號轉(zhuǎn)導(dǎo)基因的表達(dá)量均低于野生型植株,降低了對細(xì)菌性病原體的抗性[15]。-酰基高絲氨酸內(nèi)酯(AHL)是革蘭氏陰性菌群信號感應(yīng)家族中的一員,是-酰基乙醇胺類似物。研究發(fā)現(xiàn)AHL能夠增強(qiáng)植株對生物與非生物逆境的抗性[16],其中-癸酰基高絲氨酸內(nèi)酯(DHL)作為AHL的一員,能夠誘導(dǎo)番茄植株的免疫系統(tǒng)來保護(hù)植物免受灰葡萄孢的侵染[17]。【本研究切入點(diǎn)】越來越多的研究證明環(huán)境友好型物質(zhì)-酰基乙醇胺在植株生長發(fā)育及抗病性中發(fā)揮著重要作用,但外源施用-酰基乙醇胺是否能夠有效提高番茄植株對灰霉病的抗性及機(jī)制尚不清楚。【擬解決的關(guān)鍵問題】通過對灰葡萄孢接種植株表型及光合特性的測定,探究-酰基乙醇胺對番茄灰霉病抗性的影響。進(jìn)一步利用qRT-PCR以及HPLC技術(shù)分析外源施用亞油酰乙醇胺對番茄植株內(nèi)源抗病基因表達(dá)、激素含量的影響,并結(jié)合激素突變體植株外源施用亞油酰乙醇胺對其灰霉病抗性的影響,探討亞油酰乙醇胺提高灰霉病抗性的內(nèi)在機(jī)制,為番茄作物病害綠色防控提供參考。

1 材料與方法

試驗(yàn)于2018—2020年在浙江大學(xué)蔬菜研究所植物生長室及實(shí)驗(yàn)室完成。

1.1 試驗(yàn)材料及N-酰基乙醇胺處理

1.1.1 試驗(yàn)材料 供試番茄材料為野生型植株Moneymaker、乙烯信號轉(zhuǎn)導(dǎo)突變體植株()及野生型植株P(guān)earson(PB)。利用這3種番茄材料分別開展兩組試驗(yàn):第1組利用不同-酰基乙醇胺處理野生型植株Moneymaker后接種灰葡萄孢;第2組用亞油酰乙醇胺處理和PB植株后接種灰葡萄孢。以上3種番茄材料均在種子溫湯浸種后,播種在含有基質(zhì)(草炭、蛭石和珍珠巖比例為6﹕3﹕1)的栽培缽中,并置于浙江大學(xué)蔬菜研究所植物生長室中生長,其生長條件為晝夜溫度24℃/21℃,相對濕度70%—80%,光周期12 h/12 h,平均光強(qiáng)600 μmol·m-2·s-1。

1.1.2-酰基乙醇胺處理 硬脂酰乙醇胺(NAE 18:0)、亞油酰乙醇胺(NAE 18:2)、廿二碳五烯酸乙醇胺(NAE 22:5)均購自SIGMA公司,原藥在配置過程中直接用ddH2O稀釋至80 μmol·L-1。待番茄長至五葉一心時(shí),選取大小、長勢一致的植株進(jìn)行-酰基乙醇胺全株噴施處理。處理組分別用上述3種-酰基乙醇胺(80 μmol·L-1)噴施兩次,間隔24 h,對照組用ddH2O處理。不同-酰基乙醇胺、ddH2O處理48 h后接種濃度為2×105孢子/mL灰葡萄孢,接種采用噴施法。

1.2 試驗(yàn)方法

1.2.1 灰葡萄孢孢子培養(yǎng)及接種 灰葡萄孢培養(yǎng)用V8培養(yǎng)基(36% V8果汁(Campbell Soup Co.,Camden,NJ,USA),0.2 g·L-1CaCO3,15 g·L-1瓊脂)、PDA培養(yǎng)基(4 g·L-1馬鈴薯淀粉,20 g·L-1葡萄糖,15 g·L-1瓊脂)和對照培養(yǎng)基(ddH2O,15 g·L-1瓊脂)在25℃避光條件下培養(yǎng)15 d左右。待培養(yǎng)皿內(nèi)長滿菌絲后,將菌絲塊放入重懸液(2%胰蛋白胨,4%麥芽糖)分離過濾得到孢子,并稀釋濃度至2×105孢子/mL[18]。將孢子懸浮液均勻噴施在整株葉片上,以噴施重懸液作為空白對照。接種后的番茄植株置于相對濕度100%、光周期12 h/12 h、光強(qiáng)600 μmol·m-2s-1、溫度25℃的環(huán)境下3—4 d后觀察發(fā)病情況。

1.2.2 番茄植株病情調(diào)查方法 番茄葉片接種灰葡萄孢3 d后,觀察不同處理下番茄植株灰霉病的病情,病害分級標(biāo)準(zhǔn)參照蔡銀杰等[19]的方法,根據(jù)病斑面積占葉面積百分比分為5級。0級:0;1級:0.1%—10%;2級:10.1%—30%;3級:30.1%—70%;4級:>70%。病情指數(shù)計(jì)算公式:病情指數(shù)=[∑(各級葉數(shù)×該級指數(shù))/(調(diào)查總?cè)~數(shù)×最高級別數(shù))]×100。

1.2.3 葉綠素?zé)晒獬上穹治?葉綠素?zé)晒馐褂肐maging-PAM調(diào)制熒光成像系統(tǒng)(IMAG-MAXI;Heinz Walz,Germany)進(jìn)行測定。植株暗適應(yīng)20 min后,光化光強(qiáng)度和飽和光強(qiáng)度分別設(shè)為280和4 000 μmol·m-2·s-1,光系統(tǒng)Ⅱ?qū)嶋H光化學(xué)效率計(jì)算公式為ΦPSII=(Fm’-F)/ Fm’[20]。

1.2.4 植物葉片總RNA提取和qRT-PCR檢測 使用RNA提取試劑盒(Tiangen,China)提取接種灰葡萄孢后24 h的葉片總RNA,使用Fermentas RevertAidTMfirst Strand cDNA Synthesis kit合成cDNA第一鏈。使用iCycler iQ Multicolor實(shí)時(shí)定量PCR檢測系統(tǒng)儀器(LightCycler 480 II,SwissConfederation)完成qRT-PCR,參照說明書進(jìn)行操作。

PCR反應(yīng)體系:10 μL iQTMSYBR Green Supermix,2 μL cDNA,0.4 μL前、后引物(10 μmol·L-1),7.2 μL ddH2O。PCR反應(yīng)程序:95℃預(yù)變性5 min;95℃變性15 s,58℃退火45 s,40個(gè)循環(huán)。使用Primer 5.0根據(jù)SGN上的番茄基因序列設(shè)計(jì)引物(表1),數(shù)據(jù)采用2-??CT法進(jìn)行分析[21]。

1.2.5 植物內(nèi)源激素含量測定 茉莉酸(jasmonic acid,JA)、水楊酸(salicylic acid,SA)、脫落酸(abscisic acid,ABA)和生長素(indoleacetic acid,IAA)定量測定參照WU等[22]的方法,采用液相色譜質(zhì)譜串聯(lián)系統(tǒng)進(jìn)行分析(Agilent 6460,Agilent Technologies,USA)。在葉片提取過程中,樣品加入D5-JA、D4-SA、D6-ABA和 D6-IAA(OlChemlm,Czechia)作為內(nèi)參。

乙烯(ethylene,ETH)含量測定方法:每個(gè)處理取4棵長勢一致植株的葉片密封在1 L橡膠平頂燒瓶中,室溫放置1 h后用注射器從每個(gè)燒瓶中抽取出1 mL頂部氣體,使用配備1.5 m×4 mm的氧化鋁玻璃柱的氣相色譜儀(Philips,UNICAM pro. GC)測定。進(jìn)樣器、檢測器和過柱溫度分別設(shè)定為130、130和200℃。

表1 qRT-PCR特異性引物

1.3 數(shù)據(jù)統(tǒng)計(jì)與分析

試驗(yàn)結(jié)果均為3次重復(fù)的平均值,利用Microsoft Excel 2016整理數(shù)據(jù);運(yùn)用SAS 9.1 Tukey法進(jìn)行差異顯著性分析;運(yùn)用Origin 2018進(jìn)行圖形繪制。

2 結(jié)果

2.1 N-酰基乙醇胺對體外培養(yǎng)灰葡萄孢菌絲生長的影響

將相同大小的灰葡萄孢菌絲塊分別接種在含有80 μmol·L-1硬脂酰乙醇胺(NAE 18:0)、亞油酰乙醇胺(NAE 18:2)、廿二碳五烯酸乙醇胺(NAE 22:5)的V8培養(yǎng)基、PDA培養(yǎng)基以及對照培養(yǎng)基上,于25℃避光培養(yǎng)15 d。結(jié)果表明,在避光條件下培養(yǎng)9 d,添加3種-酰基乙醇胺并未對V8培養(yǎng)基和PDA培養(yǎng)基上的灰葡萄孢生長有明顯的影響。在V8培養(yǎng)基上培養(yǎng)的菌落緊致均一,而在PDA培養(yǎng)基上培養(yǎng)的菌落整體表現(xiàn)疏松,分塊不均一(圖1)。因此,-酰基乙醇胺本身并不影響灰葡萄孢的生長,且V8培養(yǎng)基最適宜灰葡萄孢生長。

2.2 外源施用N-酰基乙醇胺對番茄灰霉病抗性的影響

為了探究-酰基乙醇胺在誘導(dǎo)番茄對灰霉病抗性中的作用,進(jìn)行了-酰基乙醇胺預(yù)處理番茄植株葉片后接種病原菌試驗(yàn)。一般情況下,植株遭到病原菌侵染會(huì)對其光合系統(tǒng)造成不可逆的損害,因此通過測定葉片ФPSII來評估病害的嚴(yán)重程度[23]。由圖2可以看出,接種灰葡萄孢的葉片ΦPSII值降低,而外源施用-酰基乙醇胺能夠明顯緩解因病原菌侵染導(dǎo)致的ΦPSII下降,這與灰葡萄孢的相對表達(dá)量一致。同時(shí)外源施用-酰基乙醇胺后,植株病情指數(shù)降低至1.2—3。因此,在硬脂酰乙醇胺(NAE 18:0)、亞油酰乙醇胺(NAE 18:2)、廿二碳五烯酸乙醇胺(NAE 22:5)處理下,番茄植株對灰霉病的抗性增強(qiáng),尤以亞油酰乙醇胺處理對番茄灰霉病的抗性最強(qiáng)。

圖1 外源N-酰基乙醇胺處理對體外培養(yǎng)中灰葡萄孢菌絲生長的影響

A:番茄葉片光系統(tǒng)II實(shí)際光化學(xué)效率Photosystem II photochemical efficiency (ΦPSII);B:番茄葉片灰葡萄孢Actin表達(dá)量B. cinerea Actin relative expression of tomato leaves;C:病情指數(shù)Disease index;D:ΦPSII成像圖Imaging of ΦPSII

2.3 外源施用亞油酰乙醇胺對番茄葉片中抗性相關(guān)基因表達(dá)及激素含量的影響

為了探究亞油酰乙醇胺誘導(dǎo)的抗病性是否與內(nèi)源激素信號路徑有關(guān),檢測了接種灰葡萄孢24 h后番茄植株中主要抗病信號路徑茉莉酸信號相關(guān)基因、水楊酸信號相關(guān)基因-和、脫落酸信號路徑相關(guān)基因信號路徑相關(guān)基因和的表達(dá)量。結(jié)果表明,植株接種灰葡萄孢24 h后、-、、、相對表達(dá)量表現(xiàn)不同程度上調(diào),但在外源亞油酰乙醇胺處理后接種灰葡萄孢的番茄植株中-、的表達(dá)量與對照組相比無顯著差異,而、和的表達(dá)量則有所增強(qiáng),尤以乙烯合成基因的表達(dá)量增幅最大(圖3-A)。

接種灰葡萄孢36 h后番茄植株葉片中激素含量測定結(jié)果表明,茉莉酸、水楊酸和生長素的含量均顯著上升,但在亞油酰乙醇胺處理下茉莉酸、水楊酸、生長素的含量反而受到不同程度的抑制,脫落酸含量無顯著變化,乙烯含量顯著增加(圖 3-B、3-C)。

2.4 亞油酸乙醇胺對乙烯信號轉(zhuǎn)導(dǎo)突變體番茄灰霉病抗性的影響

鑒于亞油酸乙醇胺能提高乙烯途徑基因的轉(zhuǎn)錄表達(dá)和乙烯含量,進(jìn)一步利用亞油酸乙醇胺預(yù)處理乙烯信號轉(zhuǎn)導(dǎo)突變株及野生型植株P(guān)B后接種灰葡萄孢,接種24 h后對其表型進(jìn)行分析。結(jié)果表明,野生型植株P(guān)B葉片的發(fā)病情況得到了有效緩解,ΦPSII值顯著提高,灰葡萄孢的相對表達(dá)量降低了60%。而突變體植株葉片的發(fā)病情況與對照無明顯差異,ΦPSII值及灰葡萄孢的相對表達(dá)量均無明顯變化(圖4),表明亞油酸乙醇胺誘導(dǎo)的抗病性依賴于乙烯信號通路。

圖3 外源施用亞油酸乙醇胺對番茄葉片中抗病基因表達(dá)(A)和內(nèi)源激素含量(B、C)的影響

3 討論

3.1 N-酰基乙醇胺對植株的抗性誘導(dǎo)作用

-酰基乙醇胺的功能以及代謝在動(dòng)物中已有大量的研究,研究最為廣泛的-花生四烯乙醇胺(NAE 20:4)能夠與受體結(jié)合,觸發(fā)一系列信號轉(zhuǎn)導(dǎo)事件,從而調(diào)節(jié)動(dòng)物的痛覺、能量平衡、恐懼、食欲、記憶等多種生理和行為過程[24]。進(jìn)一步研究發(fā)現(xiàn),這些脂肪酸酰胺也是植物體的內(nèi)源成分,其積累和代謝在植株生長發(fā)育及免疫等方面發(fā)揮著重要的作用。例如,當(dāng)煙草葉片受到真菌激發(fā)子刺激時(shí),-酰基乙醇胺的水平上升10—50倍,暗示其可能在植株免疫中發(fā)揮一定的調(diào)控作用[15]。植物中-酰基乙醇胺能夠參與種子萌發(fā)、葉綠體發(fā)育等生長發(fā)育調(diào)控[25-26],但對病原菌的響應(yīng)及調(diào)控機(jī)制尚不清楚。本研究發(fā)現(xiàn),3種-酰基乙醇胺均能提高番茄植株對灰霉病的抗性,其中亞油酸乙醇胺的抗性誘導(dǎo)效果最好,亞油酸乙醇胺處理下的番茄接種灰葡萄孢后,其灰葡萄孢的生長量與對照組ddH2O處理相比下降了60%(圖2)。目前生產(chǎn)上防治灰霉病主要依靠化學(xué)藥劑,已陸續(xù)檢測到番茄灰霉病對腐霉利等藥劑產(chǎn)生不同程度的抗藥性,防治效果顯著下降[27]。因此,尋找化學(xué)合成農(nóng)藥的新替代品已經(jīng)成為科學(xué)研究的一個(gè)重要方向。本研究發(fā)現(xiàn)亞油酸乙醇胺對番茄灰霉病誘導(dǎo)抗性效果最佳,其類似物DHL已被證實(shí)能夠誘導(dǎo)番茄植株的系統(tǒng)抗性來保護(hù)植物免受灰葡萄孢的侵染[17]。這些活性物質(zhì)的發(fā)現(xiàn)以及未來的開發(fā)應(yīng)用將有助于病害的綠色防控。

A:番茄葉片光系統(tǒng)II實(shí)際光化學(xué)效率Photosystem II photochemical efficiency (ΦPSII);B:番茄葉片灰葡萄孢Actin表達(dá)量B. cinerea Actin relative expression of tomato leaves;C:番茄葉片ΦPSII成像圖 Imaging of ΦPSII

3.2 N-酰基乙醇胺誘導(dǎo)植株抗性與激素途徑的關(guān)系

植物免疫調(diào)控離不開植物激素,灰葡萄孢的侵染提高了植物體內(nèi)乙烯、茉莉酸、水楊酸、脫落酸含量,保持激素調(diào)控網(wǎng)絡(luò)的內(nèi)在平衡是植株免疫的關(guān)鍵[28]。本研究中,番茄植株受灰葡萄孢侵染后,其乙烯、茉莉酸、水楊酸含量均有一定程度提高,與前人研究結(jié)果一致。但在亞油酸乙醇胺處理下,番茄葉片中乙烯含量顯著升高,茉莉酸、水楊酸、生長素的含量反而受到了不同程度的抑制,而脫落酸含量無顯著差異(圖3)。有研究報(bào)道,植株提高對死體營養(yǎng)型病原菌抗性主要依賴于茉莉酸和乙烯信號路徑[29-30],水楊酸和脫落酸在植物對灰霉病的抗性中作用復(fù)雜,其可能和植物的種類、灰葡萄孢侵染的階段、受侵染的組織等相關(guān)[31]。大量研究已證明,乙烯合成途徑關(guān)鍵酶ACO基因表達(dá)量提高是乙烯產(chǎn)生增加的重要指標(biāo)[32-33],植株遭受病原菌侵染后,乙烯合成途徑被激活,產(chǎn)生大量乙烯[34-35],隨著乙烯水平的上升,下游抗性相關(guān)基因的表達(dá)也增強(qiáng)[36-37]。本研究中番茄植株在外源施用亞油酸乙醇胺并接種病原菌后,乙烯信號路徑相關(guān)基因大量表達(dá)(圖 3-A),與已經(jīng)報(bào)道的免疫反應(yīng)模式一致。已有研究表明擬南芥乙烯不敏感(、)和乙烯受體()突變體因改變了乙烯信號而導(dǎo)致其對灰葡萄孢的敏感性,過表達(dá)則增強(qiáng)了擬南芥植株對灰葡萄孢的抗性[38],番茄蛋白激酶TPK1b介導(dǎo)了乙烯信號路徑參與的防御作用[39],這些結(jié)果均表明,乙烯信號通路在植株對灰霉病的防御中發(fā)揮著重要作用。本研究發(fā)現(xiàn),在番茄乙烯信號轉(zhuǎn)導(dǎo)突變體植株上外源施用亞油酸乙醇胺后再接種病原菌,削弱了亞油酸乙醇胺對灰葡萄孢的抗性作用(圖4),推測亞油酸乙醇胺誘導(dǎo)的抗病性依賴于乙烯信號通路。

研究表明,乙烯和茉莉酸信號通路在灰霉病抗性中具有協(xié)同作用,乙烯和茉莉酸信號通路是相互關(guān)聯(lián)的,茉莉酸甲酯(MeJA)能夠誘導(dǎo)的表達(dá),導(dǎo)致乙烯生成增加[28]。本試驗(yàn)中番茄植株在外源施用亞油酸乙醇胺后接種灰葡萄孢,葉片中乙烯含量顯著增加,茉莉酸含量反而受到了一定程度的抑制,但較未接種灰葡萄孢的對照組相比,乙烯、茉莉酸含量均顯著升高,且茉莉酸信號通路基因的轉(zhuǎn)錄表達(dá)上調(diào)(圖3),可能也是乙烯/茉莉酸協(xié)同防御的一種表現(xiàn)。因此,在未來的研究中,還需要對茉莉酸信號通路及兩者的調(diào)控網(wǎng)絡(luò)展開進(jìn)一步研究。

4 結(jié)論

外源施用亞油酸乙醇胺能夠顯著提高番茄光合作用和抗病基因的表達(dá)及內(nèi)源激素乙烯的含量,有效誘導(dǎo)番茄植株對灰霉病的抗性。

[1] PANTHEE D R, CHEN F. Genomics of fungal disease resistance in tomato. Current Genomics, 2010, 11(1): 30-39.

[2] SINGH V K, SINGH A K, KUMAR A. Disease management of tomato through PGPB: current trends and future perspective. 3 Biotech, 2017, 7: 255.

[3] KUEHL F, JACOB T, GANLEY O, ORMOND R, MEISINGER M. The identification of-(2-hydroxyethyl)-palmitamide as a naturally occurring anti-inflammatory agent. Journal of the American Chemical Society, 1957, 79(20): 5577-5578.

[4] CHAPMAN K D, VENABLES B, MARKOVIC R, BLAIR R W, BETTINGER C.-acylethanolamines in seeds. Quantification of molecular species and their degradation upon imbibition. Plant Physiology, 1999, 120(4): 1157-1164.

[5] VENABLES B J, WAGGONER C A, CHAPMAN K D.- acylethanolamines in seeds of selected legumes. Phytochemistry, 2005, 66(16): 1913-1918.

[6] BLANCAFLOR E B, CHAPMAN K D. Similarities between endocannabinoid signaling in animal systems and-acylethanolamine metabolism in plants//BALUSKA F, MANCUSO S, VOLKMANN D. Communication in Plants: neuronal aspects of plant life. Florence, Italy: Springer, 2006: 205-219.

[7] CHAPMAN K D. Occurrence, metabolism, and prospective functions of-acylethanolamines in plants. Progress in Lipid Research, 2004, 43(4): 302-327.

[8] TRIPATHY S, VENABLES B, CHAPMAN K D.-acylethanolamines in signal transduction of elicitor perception. Attenuation of alkalinization response and activation of defense gene expression. Plant Physiology, 1999, 121(4): 1299-1308.

[9] BLANCAFLOR E B, HOU G, CHAPMAN K D. Elevated levels of-lauroylethanolamine, an endogenous constituent of desiccated seeds, disrupt normal root development inseedlings. Planta, 2003,217(2): 206-217.

[10] MOTES C M, PECHTER P, YOO C M, WANG Y S, CHAPMAN K D, BLANCAFLOR E B. Differential effects of two phospholipase D inhibitors, 1-butanol and-acylethanolamine, oncytoskeletal organization andseedling growth. Protoplasma, 2005,226(3/4): 109-123.

[11] TEASTER N D, MOTES C M, TANG Y H, WIANT W C, COTTER M Q, WANG Y S, KILARU A, VENABLES B J, HASENSTEIN K H, GONZALEZ G, BLANCAFLOR E B, CHAPMAN K D.- acylethanolamine metabolism interacts with abscisic acid signaling inseedlings.ThePlant Cell, 2007, 19(8): 2454-2469.

[12] KIM S C, KANG L, NAGARAJ S, BLANCAFLOR E B, MYSORE K S, CHAPMAN K D. Mutations infatty acid amide hydrolase reveal that catalytic activity influences growth but not sensitivity to abscisic acid or pathogens. The Journal of Biological Chemistry, 2009, 284(49): 34065-34074.

[13] ZHANG Y, GUO W M, CHEN S M, HAN L, LI Z M. The role of-lauroylethanolamine in the regulation of senescence of cut carnations (). Journal of Plant Physiology, 2007, 164(8): 993-1001.

[14] CHAPMAN K D, TRIPATHY S, VENABLES B, DESOUZA A D.-acylethanolamines: formation and molecular composition of a new class of plant lipids. Plant Physiology,1998, 116(3): 1163-1168.

[15] KANG L, WANG Y S, UPPALAPATI S R, WANG K, TANG Y, VADAPALLI V, VENABLES B J, CHAPMAN K D, BLANCAFLOR E B, MYSORE K S. Overexpression of a fatty acid amide hydrolase compromises innate immunity in. The Plant Journal, 2008, 56(2): 336-349.

[16] SHRESTHA A, SCHIKORA A. AHL-priming for enhanced resistance as a tool in sustainable agriculture. FEMS Microbiology Ecology, 2020, 96(12): fiaa226.

[17] HU Z J, SHAO S J, ZHENG C F, SUN Z H, SHI J Y, YU J Q, QI Z Y, SHI K. Induction of systemic resistance in tomato againstbydecanoyl-homoserine lactone via jasmonic acid signaling. Planta, 2018, 247(5): 1217-1227.

[18] EL OIRDI M, ABD EL RAHMAN T, RIGANO L, EL HADRAMI A, RODRIGUEZ M C, DAAYF F, VOJNOV A, BOUARAB K.manipulates the antagonistic effects between immune pathways to promote disease development in tomato. The Plant Cell, 2011, 23(6): 2405-2421.

[19] 蔡銀杰, 周小林, 楊獻(xiàn)娟, 曹均堯, 冒錦富. 大棚番茄灰霉病發(fā)生的影響因子初步研究. 中國植保導(dǎo)刊, 2007, 27(10): 21-23.

CAI Y J, ZHOU X L, YANG X J, CAO J Y, MAO J F. A preliminary analysis on the factors affectingin green house. China Plant Protection, 2007, 27(10): 21-23. (in Chinese)

[20] SUN Y J, GENG Q W, DU Y P, YANG X H, ZHAI H. Induction of cyclic electron flow around photosystem I during heat stress in grape leaves. Plant Science, 2017, 256: 65-71.

[21] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Methods, 2001, 25(4): 402-408.

[22] WU J Q, HETTENHAUSEN C, MELDAU S, BALDWIN I T. Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of. The Plant Cell, 2007, 19(3): 1096-1122.

[23] ZHANG S, LI X, SUN Z H, SHAO S J, HU L F, YE M, ZHOU Y H, XIA X J, YU J Q, SHI K. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Journal of Experimental Botany, 2015, 66(7): 1951-1963.

[24] ALGER B E. Endocannabinoids: getting the message across. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(23): 8512-8513.

[25] KILARU A, TAMURA P, ISAAC G, WELTI R, VENABLES B J, SEIER E. CHAPMAN K D. Lipidomic analysis of- acylphosphatidylethanolamine molecular species insuggests feedback regulation by-acylethanolamines. Planta, 2012, 236(3): 809-824.

[26] KEEREETAWEEP J, BLANCAFLOR E B, HORNUNG E, FEUSSNER I, CHAPMAN K D. Ethanolamide oxylipins of linolenic acid negatively regulatesseedling development. The Plant Cell, 2013, 25(10): 3824-3840.

[27] 杜穎, 付丹妮, 鄒益澤, 白雪松, 姜震, 程攻, 紀(jì)明山, 祁之秋. 2017年遼寧省番茄灰霉菌對腐霉利的抗藥性現(xiàn)狀及機(jī)制研究. 中國蔬菜, 2018(1): 58-65.

DU Y, FU D N, ZOU Y Z, BAI X S, JIANG Z, CHENG G, JI M S, QI Z Q. Studies on drug resistance of tomatoto procymidone at Liaoning Province in 2017. China Vegetables, 2018(1): 58-65. (in Chinese)

[28] ABUQAMAR S, MOUSTAFA K, TRAN L S. Mechanisms and strategies of plant defense against. Critical Reviews in Biotechnology, 2017, 37(2): 262-274.

[29] BROOKS D M, BENDER C L, KUNKEL B N. Thephytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in. Molecular Plant Pathology, 2005, 6(6): 629-639.

[30] GRANT M, LAMB C. Systemic immunity. Current Opinion in Plant Biology, 2006, 9(4): 414-420.

[31] 張燕, 夏更壽, 賴志兵. 植物抗灰霉病分子機(jī)制的研究進(jìn)展. 生物技術(shù)通報(bào), 2018, 34(2): 10-24.

ZHANG Y, XIA G S, LAI Z B. Rencent advances in molecular mechanisms of plant responses against. Biotechnology Bulletin, 2018, 34(2): 10-24. (in Chinese)

[32] KENDE H. Ethylene biosynthesis. Annual review of plant physiology and plant molecular biology, 1993, 44: 283-307.

[33] YANG S F, HOFFMAN N E. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology, 1984, 35: 155-189.

[34] BROEKAERT W F, DELAURE S L, DE BOLLE M F C, CAMMUE B P A. The role of ethylene in host-pathogen interactions. Annual Review of Phytopathology, 2006, 44: 393-416.

[35] TSUCHISAKA A, YU G X, JIN H L, ALONSO J M, ECKER J R, ZHANG X M, GAO S, THEOLOGIS A. A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in. Genetics, 2009, 183(3): 979-1003.

[36] PENNINCKX I A, THOMMA B P, BUCHALA A, METRAUX J P, BROEKAERT W F. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in., 1998, 10(12): 2103-2113.

[37] COHN J R, MARTIN G B.pv.type III effectors AvrPto and AvrPtoB promote ethylene-dependent cell death in tomato., 2005, 44(1): 139-154.

[38]

[39]

The role and mechanism of Linoleyl ethanolamide in Plant resistance againstin tomato

SHAO Shujun, HU Zhangjian, SHI Kai

College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058

【】Gray mold caused byis one of the important diseases of tomato and causes significant yield losses up to 30%-40%. Nowadays, chemical pesticide is usually used in tomato production, which is effective but increases the risk of food safety and results in environmental pollution.-acylethanolamines (NAEs) are a kind of naturally lipid bioactive compounds in plants, which have been identified to have a variety of immune functions in mammals, however, its function and the underlying mechanism in plant immunity are still unclear.】The objective of this study is to investigate the effects of NAEs on tomato plant defense againstinfection, and to provide a basis for the development of green control technology of tomato gray mold.】Thewas cultured in medium containing NAE 18:0, NAE 18:2, NAE 22:5, respectively, to evaluate their effects ongrowth. Tomato ‘Moneymaker’ plants were infected bywith or without exogenous NAE 18:0, NAE 18:2, NAE 22:5, and disease index and fluorescence parameters of tomato leaves were measured. qRT-PCR was used to analyze the relative gene expression ofin tomato leaves that infected bywith or without NAE 18:2 treatment. Transcript abundance of defense-related genes (e.g.,-,,,,), and contents of plant hormones (e.g.JA, SA, ETH, ABA, IAA) were measured. Fluorescence parameters of tomato leaves and the relative gene expression ofwere analyzed in ethylene-insensitive mutant infected bywith NAE 18:2.【】The growth ofwas not affected by exogenous NAEs treatment duringculture. Exogenous application of NAEs could significantly improve the resistance of tomato plants to, and alleviate the decrease of photosystem II photochemical efficiency (ΦPSII) caused byinfection. NAE 18:2 had the best effect on tomato plant defense againstamong the NAEs, which obviously reduced the disease index and thetranscript level ofby 60%. The expression levels of,-,,andcould be induced byinfection but not by NAE 18:2 treament. The expression levels of,andwere up-regulated when plants were pre-treated by NAE 18:2 beforeinfection, and the expression level ofwas the highest. Compared to the control, the contents of SA , JA, IAA and ETH in the leaves were increased significantly afterinfection, while only the contents of ETH were further increased when pre-treated by NAE 18:2. Moreover, exogenous NAE 18:2 pre-treatment could not improve the defense againstin the ETH-insensitive.【】Exogenous NAE18:2 treatment can increase leaf photosynthesis, transcript abundance of defense-related genes, and the content of plant hormone ETH. It induce the resistance of tomato plants to gray mold, which may depend on the ETH signaling pathway.

tomato;-acylethanolamines (NAE); linoleyl ethanolamide (NAE 18:2);gray mold;; ethylene (ETH)

10.3864/j.issn.0578-1752.2022.09.007

2021-11-06;

2021-12-10

國家自然科學(xué)基金(32172650)、浙江省重點(diǎn)研發(fā)計(jì)劃(2021C02040)

邵淑君,E-mail:ssjun@zju.edu.cn。通信作者師愷,E-mail:kaishi@zju.edu.cn

(責(zé)任編輯 岳梅)

主站蜘蛛池模板: 国产黑丝一区| 久久99国产精品成人欧美| 国产精品私拍99pans大尺度| 日本三级黄在线观看| 国产不卡网| 国产欧美一区二区三区视频在线观看| 国产女人18毛片水真多1| 精品伊人久久久久7777人| 国产精品免费露脸视频| 久久a级片| 中文字幕亚洲精品2页| 亚洲中文字幕国产av| 手机精品视频在线观看免费| 欧美激情伊人| 国产电话自拍伊人| jizz在线观看| 欧美激情视频一区| 国产精品吹潮在线观看中文| 欧美日在线观看| 2022精品国偷自产免费观看| 18禁色诱爆乳网站| 国产尤物视频在线| 伊人色婷婷| 婷婷午夜天| 国产精品亚洲专区一区| 亚洲天堂网在线视频| 久久综合九色综合97婷婷| 国产成人高清在线精品| 98超碰在线观看| 午夜精品久久久久久久无码软件| 日韩精品一区二区三区免费| 欧美色99| 亚洲午夜福利在线| 亚洲日韩精品欧美中文字幕| 国产精品成人久久| 国产亚洲欧美在线视频| 亚洲欧洲自拍拍偷午夜色无码| 免费观看成人久久网免费观看| 国产精品专区第1页| 一本色道久久88| 欧美激情伊人| 欧美日韩午夜视频在线观看| 亚洲综合色婷婷| jijzzizz老师出水喷水喷出| 国产麻豆va精品视频| 国产原创演绎剧情有字幕的| 免费a在线观看播放| 福利姬国产精品一区在线| 在线a网站| 一区二区三区国产精品视频| 国产成人久久综合777777麻豆| 国产aaaaa一级毛片| 波多野结衣一区二区三区四区| 欧美精品另类| 先锋资源久久| 国产精品精品视频| 日本三级黄在线观看| 华人在线亚洲欧美精品| 国产夜色视频| 色哟哟精品无码网站在线播放视频| 欧美日韩久久综合| 午夜啪啪网| 91伊人国产| 91精品视频在线播放| 欧美成人区| 成人夜夜嗨| 欧美亚洲日韩不卡在线在线观看| 亚洲天天更新| 91网址在线播放| 亚洲欧美在线看片AI| 国产美女精品一区二区| 亚洲av无码专区久久蜜芽| 成人综合久久综合| 亚洲永久免费网站| 日本一本在线视频| 亚洲欧美日本国产综合在线| 国产特级毛片| 国产高清色视频免费看的网址| 久久久久88色偷偷| 99在线视频免费观看| 97国产在线视频| 九九视频免费在线观看|