999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于深度學習的公交到站時間預測研究

2022-03-24 22:37:39張軍芳杜鵬房月華張利民趙鑫
時代汽車 2022年5期

張軍芳 杜鵬 房月華 張利民 趙鑫

摘 要:大數據背景下傳統(tǒng)的公交到站時間預測方法在預測精度和訓練速度方面已經不能滿足人們的期望。文章以衡水市公交運行實際數據為例,運用深度學習中的長短時記憶網絡(LSTM)和人工神經網絡(ANN)混合模型,綜合考慮運行時段、天氣狀況、道路基礎設施、是否交叉路口、是否高峰路段等因素,對公交車的到站時間進行預測研究,結果顯示混合模型在預測公交車在前一個站點的停靠時間和站間的行使時間方面均具有較高準確性。

關鍵詞:長短時記憶網絡 人工神經網絡 預測 準確性

Research on Bus Arrival Time Prediction based on Deep Learning

Zhang Junfang, Du Peng, Fang Yuehua, Zhang Limin, Zhao Xin

Abstract:Under the background of big data, the traditional bus arrival time prediction method cannot meet people's expectations in terms of prediction accuracy and training speed. Taking the actual bus operation data of Hengshui City as an example, this paper uses the hybrid model of long-term and short-term memory network(LSTM)and artificial neural network(ANN)in deep learning to predict the bus arrival time by comprehensively considering the factors such as operation time, weather conditions, road infrastructure, whether there is an intersection and whether there is a peak section. The results show that the hybrid model has high accuracy in predicting the bus stop time at the previous stop and the travel time between stops.

Key words:long-term and short-term memory network, artificial neural network, prediction, accuracy

1 引言

公交到站時間預測是智能公共交通信息服務系統(tǒng)的重要組成部分,精確的到站時間能有效緩解站臺等車乘客的焦慮情緒,讓出行者合理安排出行計劃。調查結果表明,公交乘客根據預測信息合理選擇乘車的時間,能使乘客節(jié)約63%的等待時間;而對于管理者而言,準確的到站時間信息是實現靈活調度、科學管理的前提[1]。目前城市公交公司已經將到站預測運用于公交公司的運營調度中,然而車輛的到站時間受實時的天氣、交通狀況、交通需求等諸多因素的影響,所以實時準確的公交到站時間預測既是智能公共交通服務系統(tǒng)的重點,又是公交運行管理的難點。

目前,國內的公交車輛普遍安裝了車載GPS裝置。國內上海、南京、廣州等一些大城市,在市區(qū)內的一些特殊線路候車站點上都安裝了電子停車標志,以告知乘客車輛的預計到達時間。一些互聯網公司也通過開發(fā)手機軟件來發(fā)布實時公共交通信息,比較美國的谷歌地圖,國內的高德地圖,百度地圖等,基本上都配置了公交線路實時信息查詢的功能,用戶可以登錄手機應用程序查看市區(qū)內的公交線路,公交站點與站點的地圖,以獲得車輛的到達時間[1]。

根據衡水市公交運行數據,結合公交運行與調度情況,綜合考慮衡水市公交運行時段、天氣狀況、道路基礎設施、是否交叉路口、是否高峰路段等因素,建立混合模型,預測公交運行的準時性。

2 方法介紹

研究發(fā)現,人工神經網絡(ANN)只能記憶短時期的信息,信息隨著學習量的增多或者學習周期的增長將會導致梯度消失或者梯度爆炸現的發(fā)生象[2,3]。長短時記憶網絡 (LSTM)是一種特殊的RNN網絡模型,由 Hochreiter等人[4]于1997年提出,后期被 Alex Graves進行了改進和應用[3,5],該模型可以記憶長時期的規(guī)律,并且有效避免梯度消失現象[3,4]。相對于RNN網絡模型,LSTM模型中增加了輸入門、輸出門、忘記門用于控制記憶的序列信息,如圖1所示。記憶塊中有記憶線和輸入輸出線主線,其中,記憶線時刻完成的運算為其前一時刻的記憶狀態(tài)經過忘記門狀態(tài)和輸入門狀態(tài)處理后得到該時刻記憶線輸出;輸入輸出線的運算為在時刻輸入一組新的變量值,并與前一時刻隱層輸出狀態(tài)共同通過輸出門狀態(tài)的運算后,再參考記憶線在該時刻的輸出,得到隱層的輸出結果。流程如圖2所示[3]。

3 數據處理

3.1 數據來源

本文使用的數據來自衡水市公交公司2020年9月1日至9月20日的數據,共包含5804條數據。數據結構如表1所示。

3.2 數據預處理

一般地,時間切片的最優(yōu)值為5min,所以將一天劃分為190個時間切片。在實際行車過程中,車輛可能會遇到突發(fā)事件,因此在統(tǒng)計的數據中存在一些異常數據,將時間窗的上限設置300s,下限設置為25s,從而過濾異常數據以減少噪聲干擾[6]。

3.3 公交車到站時間預測

一般地,公交車到站時間可通過下式進行預測:

式中為k第輛公交車到達目標站點的預測時間;為第k輛公交車到達前一個站點的實際時間;為第k輛公交車在前一個站點處的預測停靠時間;為第k輛公交車在前一個站點到目標站點間的預測行使時間。

公交到站時間預測可以轉化為:預測公交車在前一個站點的停靠時間和在站間的行使時間。

以衡水市實際公交數據為例,運用深度學習中的長短時記憶網絡LSTM和人工神經網絡ANN混合模型對公交車運行時段、天氣狀況、道路基礎設施、是否交叉路口、是否路段因素對公交在前一個站點的停靠時間和公交在站間的行使時間進行預測[7],結果顯示預測具有較高的精確性,結果如圖3。

4 結論

作為智能公共交通系統(tǒng)的重要組成部分,公交到站時間預測為提供實時準確的公交到站時間可以實現如下經濟社會效益:

(1)對于出行者而言,出行者可以合理的規(guī)劃出行,節(jié)省在站點的等車時間,緩解出行者等車期間的焦慮情緒;(2)對于公交企業(yè)而言,提供實時準確的公交到站時間一方面可以優(yōu)化公交調度,另一方面有利于多模式交通方式間的協調;(3)對于政府而言,可以提高公交吸引率,緩解城市交通擁堵,提升城市形象;(4)從社會效益方面而言,公交到站時間預測研究會降低公交車到站時間的預測誤差,推動公交服務類軟件的進一步應用。

基金項目:

衡水學院2020年度校級自然科學類課題(2020ZR01):基于多源公交數據和LSTM的公交到站時間預測研究。

衡水學院2020年度校級自然科學類課題(2020ZR08):高效薄膜硅-晶體硅異質結電池器件結構模擬及產業(yè)化工藝研究。

河北省教育廳資助青年基金項目自然科學類(QN2020529):基于大數據和人工智能的網絡輿情挖掘及預測研究。

參考文獻:

[1]葉之放.基于多源公交數據和LSTM的公交到站時間預測研究[D].華南理工大學,2019.

[2]FUR,ZHANG Z,LI L.Using LSTM and GRU Neural Network Methods for Traffic Flow Prediction [C]//2016 31st Youth Academic Annual Conference of Chinese Association of Automation(YAC).Wuhan:IEEE,2016:324-328.

[3]李高盛,彭玲等.基于LSTM的城市公交車站短時客流量預測研究[J].公路交通科技,2019,36(2):128-132.

[4]HOCHREITERS,SCHMIDHUBERJ.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.

[5] Graves A.Supervised sequence labeling with recurrent neural networks[M]. Berlin: Springer-Verlag,2012.

[6]張欣環(huán),劉宏杰等.基于時空特征向量的長短期記憶人工神經網絡的城市公交旅行時間預測[J]. 計算機應用, 2021.3 (41):875-880.

[7]張瑜.基于城市公交軌跡數據的車輛到站時間預測算法研究[D].大連海事大學,2020年.

主站蜘蛛池模板: 97av视频在线观看| 免费看美女毛片| 久久精品人人做人人爽| 在线观看免费AV网| 国产a v无码专区亚洲av| 亚洲精品免费网站| 日本日韩欧美| 毛片国产精品完整版| 国产精品视频观看裸模| 成人免费午夜视频| av在线5g无码天天| 国产精品自在在线午夜| 国产呦视频免费视频在线观看| 日韩国产一区二区三区无码| 亚洲一区网站| 99久久精品久久久久久婷婷| 丁香亚洲综合五月天婷婷| av在线手机播放| 91视频免费观看网站| 欧美爱爱网| 欧美福利在线观看| 九九这里只有精品视频| 色婷婷色丁香| 91精品免费久久久| 国外欧美一区另类中文字幕| 国产午夜精品一区二区三| 国产福利影院在线观看| 国产在线精品美女观看| 国产精品第一区在线观看| 亚洲AⅤ波多系列中文字幕| 久操中文在线| 国产91久久久久久| 乱色熟女综合一区二区| 国产av无码日韩av无码网站| 欧美中文字幕在线视频| 久久久久久尹人网香蕉 | 青青青视频91在线 | 亚洲女人在线| 97在线观看视频免费| 日韩AV无码免费一二三区| 国产精品偷伦视频免费观看国产| 日韩在线欧美在线| 国产人成乱码视频免费观看| 久久亚洲黄色视频| 成人va亚洲va欧美天堂| 国产乱人伦AV在线A| 婷婷六月综合| 久久亚洲黄色视频| 野花国产精品入口| 91精品综合| 国产丝袜精品| 中文字幕永久视频| 国产乱子伦精品视频| 亚洲中文字幕av无码区| a级毛片网| 97久久免费视频| 亚洲精品自产拍在线观看APP| 日韩精品毛片| 四虎国产精品永久一区| 国产精品不卡片视频免费观看| 狠狠ⅴ日韩v欧美v天堂| 久久情精品国产品免费| 天天躁日日躁狠狠躁中文字幕| 国产在线91在线电影| 久久精品一品道久久精品| 亚洲无码四虎黄色网站| 在线视频精品一区| 国产精品七七在线播放| 国产福利小视频高清在线观看| 国产精品香蕉在线观看不卡| 国产自在线拍| 天天躁狠狠躁| 久久国产精品77777| 久久亚洲国产视频| 国内精品一区二区在线观看| 亚洲小视频网站| 亚洲色成人www在线观看| 女人一级毛片| 亚洲精品天堂自在久久77| 亚洲人人视频| 久久黄色小视频| 国产一级小视频|