崔 建,沈貴紅,商 琳,2,3,孫彥春,龔麗榮,安 熠
(1.中國石油冀東油田分公司,河北 唐山 063000;2.中國石油冀東油田分公司博士后科研工作站,河北 唐山 063000;3.中國石油勘探開發研究院博士后流動站,北京 100083)
相對滲透率曲線是油田開發工程中十分重要的基礎數據[1]。目前,關于非穩態法測定油水相對滲透率的計算方法主要分為2種:一種是顯式方法,包括JBN方法[2]或Jones圖解法[3];另一種是隱式方法,利用數值模擬技術模擬室內水驅油實驗過程,進而反演出更符合水驅油實際情況的相滲曲線[4]。目前,對于低滲透巖心油水相對滲透率的計算,已有不少學者在JBN方法的基礎上進行了改進。宋付權等[5]在滲流速度方程中引入了油相和水相擬啟動壓力梯度,在注入能力比中考慮了擬啟動壓力,推導了油相、水相相對滲透率公式,擴展了JBN算法。鄧英爾等[6]分別針對水濕和油濕巖心,建立了同時考慮擬啟動壓力梯度、毛管力及重力的滲流公式,進而推導出同時考慮3種因素下的油相、水相相對滲透率計算公式及飽和度的計算公式。
然而,利用上述方法處理低滲透巖心非穩態恒壓驅替實驗數據,求得的相滲曲線還有幾點不足:①低滲透巖心的孔隙體積比較小,飽和油量有限,驅替相突破以后,被驅替相幾乎不再產出[7]。因此,利用顯式方法計算出的相滲曲線可能只有少數幾個分布密集的點,并不能較好地描述油水滲流關系。②中高滲巖心恒速非穩態驅替只需要記錄每一時刻的壓力值,而低滲透巖心恒壓非穩態驅替時的注入速度需要借助函數擬合或者采用求差商的方法獲得。但是對于同一組確定的實驗數據,利用不同的方法求得的注入速度不一定完全相同,有的誤差甚至很大[8]。③低滲透巖心在較高壓差驅替時,啟動壓力梯度相對可以忽略不計,但毛管壓力和驅替壓力不可忽略,JBN方法和Jones方法將毛管力效應處理為巖心出口端含水飽和度下的毛管力[9],并不能全部反映巖心中毛管力對相滲曲線的影響。因此,通過建立最優目標函數,并結合油藏數值模擬,計算得到的相對滲透率曲線能在一定程度上體現巖心實際油水滲流規律,對低滲透油藏油水滲流規律研究具有一定意義。
對于一維巖心油水兩相滲流,作如下基本假設:①流體不互溶且非混相流動;②不考慮巖心和流體的壓縮性;③不考慮重力的影響;④毛管力是含水飽和度的函數。
油水質量守恒方程分別為:
(1)
(2)
式中:ρo、ρw分別為油相、水相密度,g/cm3;Vo、Vw分別為油相、水相滲流速度,cm/s;So、Sw分別為含油飽和度、含水飽和度;φ為孔隙度;x為步長;t為時間,s。
考慮毛管力,油水相運動方程為:
(3)
(4)
式中:K為巖心絕對滲透率,mD;Kro、Krw為油、水相對滲透率;po為油相壓力,MPa;pw為水相壓力,MPa;μo為油相黏度,mPa·s;μw為水相黏度,mPa·s。
室內的相對滲透率實驗通常采用洗油之后呈水濕的巖心,其毛管力pc為:
pc=po-pw
(5)
由式(3)和式(4)可以得到:
(6)
由式(6)可以得到:
(7)
(8)
(9)
λ=λo+λw
(10)
(11)
式中:pc為毛管力,MPa;Vt為總滲流速度,cm/s;λ為流度,D/(mPa·s);λw為水相流度,D/(mPa·s);λo為油相流度,D/(mPa·s);fw為含水率,%。
將式(7)代入式(2)得:

(12)
式(12)采用空間上中心差分、時間顯式差分的方法進行求解得到差分方程[9]:

(13)

(14)
式中:n為本步時間;N為時間步數;Δx為網格步長;i為第i個網格。
初始條件:
|Sw(x,t)|t=0=Swc
(15)
邊界條件:
|pw(x,t)|x=0=p1
(16)
|pw(x,t)|x=L=p2
(17)
式中:Swc為束縛水飽和度,%;p1為巖心左端注水壓力,MPa;p2為巖心右端產液壓力,MPa;L為巖心長度,cm。
巖心水驅累計產油量Qocal:
(18)
式中:Qocal為巖心水驅累計產油量,mL;A為巖心橫截面積,cm2。
在計算相對滲透率曲線時,實時流量的精確計量十分重要,但恒壓驅替實驗中難以直接得到實時流量。如果計量方法不當,一個較小的誤差可導致求得的油水相對滲透率出現異常值。假設油水的流動是不可壓縮的非混相流動,可以根據實時的累計產液量以及累計時間來計算注入流體的流量。選擇多項式函數作為累計產液量與累計時間的擬合函數:
QL=a+bT+cT2+dT3
(19)
式中:T為時間,s;QL為累計產液量,m3;a、b、c、d為常數。
多項式函數只要階數足夠高,就能獲得高的擬合精度。但高階多項式函數的曲線拐點多,導致擬合精度高的情況下處理出來的結果也并不一定理想。因此可選擇三階多項式函數。
對式(19)求一階導數,得到滲流速度Vt的表達式為:
Vt=b+2cT+3dT2
(20)
相對滲透率模型采用Willhite模型[10]。該模型的最大特點是設定了束縛水端油相相對滲透率和殘余油端水相相對滲透率,而兩者是可以通過實驗測定的。
油相相對滲透率:
Kro=Kroswc(1-Swn)no
(21)
水相相對滲透率:
(22)
(23)
式中:Kroswc為束縛水飽和度下的油相相對滲透率;Krwsor為殘余油飽和度下的水相相對滲透率;no為油相相滲曲線待定指數;nw為水相相滲曲線待定指數;Swn為歸一化的含水飽和度。
已知[no,nw]是相滲模型中的待定參數,其大小影響著巖心內部網格的壓力和含水飽和度分布,進而影響計算的產油量。因此,以每一時刻的產油量模擬值Qocal和實驗值Qo的差值的平方和構建目標函數:
(24)
式中:F為目標函數;Qocal(u)為第u個時刻的產油量計算值;Qo(u)為第u個時刻的產油量實驗值;m為實驗值記錄總數。
通過梯度下降法[11]求出一組適當的[no,nw],使得目標函數F達到最小值。梯度下降法的計算過程就是沿梯度下降的方向求解極小值(也可以沿梯度上升方向求解極大值)。一般情況下,梯度向量為0說明到達極值點,此時梯度的降幅也為0。而采用梯度下降算法進行最優化求解時,算法迭代的終止條件是梯度向量接近0即可,即設置一個非常小的常數閾值。具體步驟為:首先選定初始解no、nw,并給定相應的精度要求;其次計算目標函數F的梯度值,如果梯度值小于精度的要求,則停止,否則在初始解處沿梯度下降方向線性搜索下一個解,重新計算目標函數F的梯度值進行精度判斷。
為了計算低滲透油藏油水相對滲透率,探究啟動壓力梯度和毛管力對于相滲曲線的具體影響,通過冀東油田南堡4號構造東營組二段儲層巖心實驗獲取了計算相對滲透率的基礎參數。巖心的基本物性參數如表1所示(D為巖心直徑,cm;Kg為空氣滲透率,mD)。油藏條件下,實驗用油黏度為4.330 mPa·s,水相黏度為0.831 mPa·s。使用非穩態方法(驅替壓差為25 MPa)測試巖心相對滲透率,實驗數據見表2。實驗結束后,對巖心洗油烘干,

表1 巖心物性參數

表2 非穩態實驗數據
再利用高壓壓汞實驗測定巖心毛管力曲線,并轉換成油藏條件下油水的毛管力曲線,如圖1所示。

圖1 油水毛管力曲線
對于上述實驗參數分別采用JBN方法和Jones圖解法進行數據處理。
非穩態相滲實驗測定中,當水相到達巖心末端時,由于孔道的連續性突然消失,油水兩相的彎液面發生反轉,阻礙了水相流出,導致出口端含水飽和度偏高,稱為“末端效應”。傳統JBN方法忽略了毛管力,許多學者在低滲透巖心的相對滲透率實驗中,證實了這對相滲曲線的形態產生不可忽視的影響。針對JBN和Jones方法,在考慮毛管力作用時,對實驗數據采用了末端效應校正公式[13]來消除末端效應對相對滲透率曲線形態的影響。
自動歷史擬合方法的基本原理是通過數值模擬技術不斷修正相滲曲線,使得最終模擬計算結果與實際實驗結果之間的差距達到最小,從而確定合適的相滲曲線[12]。利用自動歷史擬合方法對上述實驗數據進行處理。在進行自動歷史擬合計算時,Kroswc和Krwsor可由實驗確定;另外,毛管力pc數據已知,可以直接將有關數據代入式(13)計算,從而達到考慮毛管力效應計算相對滲透率曲線的目的。
圖2為不同相對滲透率計算方法的計算結果。圖3為JBN、Jones方法毛管效應校正情況。圖4為自動歷史擬合計算結果。

圖2 不同相對滲透率計算方法結果

圖3 JBN、Jones方法毛管效應校正

圖4 自動歷史擬合計算結果
(1) JBN、Jones方法和自動歷史擬合方法的計算結果相近。JBN方法計算出的油相相對滲透率最大,Jones方法最??;這2種方法計算出的油相相對滲透率曲線曲折不平滑,而自動歷史擬合方法計算得出的曲線更加平滑,計算結果介于兩者之間。
(2) 在含水飽和度較高時,JBN方法計算的水相相對滲透率比自動歷史擬合方法和Jones方法的計算結果略高,自動歷史擬合方法計算出的水相相滲曲線在前期的變化趨勢和JBN方法接近。說明JBN方法相較于Jones方法在計算水相相對滲透率方面更具優勢。
(3) 考慮毛管力時,JBN、Jones方法和自動歷史擬合方法得到的變化規律一致,即油相相對滲透率增加,但水相相對滲透率不變。這個規律與實際情況相符,許多相對滲透率實驗表明:濕相的吸吮相對滲透率曲線和驅替相對滲透率曲線幾乎完全一致[13-15]。自動歷史擬合方法計算出考慮毛管力作用的曲線在整個可動流體飽和度范圍內變化規律更加明顯、均勻。相反,JBN和Jones方法在考慮毛管力作用時,曲線變化很不規則。這是因為JBN和Jones方法只能考慮巖心出口端含水飽和度下的毛管力對相滲曲線的影響。圖5為利用自動歷史擬合方法得到的無因次累計產油量擬合結果。由圖5可知,利用該方法的計算值與實驗值非常吻合,說明了該方法具有很好的適用性。

圖5 累計產油量擬合
(1) 低滲透巖心相滲實驗數據的處理結果表明,JBN和Jones方法所得到的相滲曲線曲折不平滑,考慮毛管力作用時,曲線的變化也不均勻,原因是這2種方法只能考慮巖心出口端含水飽和度下的毛管力對相滲曲線的影響。
(2) 建立了基于最優目標函數的低滲透油藏油水相對滲透率自動歷史擬合方法。自動歷史擬合方法相比于JBN和Jones方法,能夠反映整個非穩態水驅油過程中不同時刻巖心中不同位置的毛管力變化,計算結果具有曲線光滑、規律明顯的優勢,能夠得到更為準確的低滲透油藏相對滲透率曲線,為后續的數值模擬研究及油藏方案設計提供重要參數。
(3) 3種相滲數據處理方法在考慮毛管壓力時,都呈現出油相相對滲透率升高、水相相對滲透率基本不變的特點。這是由于在親水油藏水驅油過程中,毛管力作為水驅油的動力,促進油相的流動,提高了油相滲透率,而對水相相對滲透率基本無影響。