李丹,劉洪軍,,李亞敏
材料與成形性能
石墨烯/陶瓷復合材料制備工藝研究進展
李丹a,劉洪軍a,b,李亞敏b
(蘭州理工大學 a. 省部共建有色金屬先進加工與再利用國家重點實驗室;b. 材料科學與工程學院,蘭州 730050)
制備工藝是調控石墨烯/陶瓷復合材料結構、優化其力學和熱電等性能的關鍵。重點綜述了石墨烯/陶瓷復合材料的粉末壓坯燒結工藝和3D打印工藝及其研究進展。粉末壓坯燒結工藝包括無壓燒結、熱壓燒結、放電等離子燒結、微波燒結和高頻感應加熱燒結等,具有工藝簡單、材料性能好、制備參數易控制等優點,是石墨烯/陶瓷復合材料的主要制備工藝,用于制備致密的塊體復合材料;主要3D打印工藝有直寫成形、激光選區燒結、噴墨打印和立體光固化等,具有結構和形狀可控的特點,是目前石墨烯/陶瓷復合材料的研究熱點,用于成形復雜形狀和特定性能的復合材料器件。另外,還簡要介紹了原位生成法、碳熱還原法等利用特定物理化學反應制備石墨烯/陶瓷復合材料的制備工藝,并綜述了石墨烯在復合材料中的分散工藝。
石墨烯;陶瓷基復合材料;制備工藝;分散工藝
陶瓷材料具有強度硬度高、抗壓耐磨、耐高溫以及耐腐蝕等優異性能,又具有韌性差、電學性能和熱學性能不佳等不足之處。將石墨烯添加到陶瓷材料中制備石墨烯/陶瓷復合材料,既可以保持陶瓷基體的優異性能,又可以改善其韌性、電學和熱學性能,實現材料的結構-功能一體化[1-2]。在SiC中添加體積分數為20%的石墨烯,復合材料的電導率增加了3個數量級,達到4380 S/m[3]。Si3N4中石墨烯的質量分數為2%時,復合材料的斷裂韌性和彎曲強度增加了30.3%和147%,分別達到2.88 MPa·m1/2和270 MPa[4]。添加石墨烯質量分數為3%的石墨烯/Si3N4復合材料,磨損率比Si3N4材料降低60%[5]。石墨烯/Al2O3復合材料的斷裂韌性和電導率分別比Al2O3提高了53%和13個數量級[6]。
隨著石墨烯/陶瓷復合材料研究和應用的逐漸深入,其制備工藝也在不斷進步與發展。粉末壓坯燒結工藝是最早也是最主要的石墨烯/陶瓷復合材料制備工藝,燒結技術對復合材料的制備非常關鍵,從傳統的無壓燒結、熱壓燒結,發展到放電等離子燒結、微波燒結、高頻感應加熱燒結等技術。雖然粉末壓坯燒結工藝制備石墨烯/陶瓷復合材料快速簡便,但一般只能制備塊體材料,復合材料器件往往要通過后期加工制造,限制了其應用范圍。3D打印工藝可以制備空間形狀復雜的零件,用于石墨烯/陶瓷復合材料的制備,可以直接成形特定結構和性能的復合材料器件,目前主要有直寫成形、激光選區燒結、噴墨打印、立體光固化等工藝。除了以上2大類制備工藝外,還有原位生成法、碳熱還原法等其他制備工藝。采用這些工藝制備石墨烯/陶瓷復合材料,石墨烯在復合材料中的良好分散是前提。文中首先介紹了石墨烯在復合材料中的分散工藝,然后從粉末壓坯燒結工藝、3D打印工藝和其他工藝3個方面對石墨烯/陶瓷復合材料的制備工藝進行了綜述。
石墨烯片極易相互吸引,導致復合材料中石墨烯堆疊團聚,大大降低了復合材料的性能和制備效果。因此,石墨烯的良好分散是制備石墨烯/陶瓷復合材料的前提和關鍵,目前主要采用以下2種工藝路線進行石墨烯的分散。
將石墨烯分散在分散介質中,形成石墨烯分散液,再直接將陶瓷粉體加入到石墨烯分散液中,兩者混合至均勻。常用的分散介質主要有去離子水、無水乙醇和異丙醇等,在分散介質中根據需要往往還要加入分散劑,如N-甲基吡咯烷酮(NMP)、二甲基甲酰胺(DMF)、聚乙二醇(PEG)、十六烷基三甲基溴化銨(CTAB)、聚乙烯吡咯烷酮(PVP)、十二烷基苯磺酸鈉(SDS)等。
黎盛忠等[7]以無水乙醇為分散介質,加入石墨烯納米片(GNPs)超聲分散30 min,形成GNPs分散液,再加入SiC與燒結劑的復合微粉,經球磨混合和干燥過篩,得到GNPs/SiC復合粉體用于熱壓燒結,所制備的復合材料如圖1所示,可見GNPs在復合材料中分散非常均勻。張秋雨等[8]以去離子水為分散介質,分別以NMP,DMF,CTAB為分散劑,超聲處理2 h制備石墨烯分散液,然后將Al2O3粉末加入其中,球磨混合24 h,過濾干燥后得到石墨烯/Al2O3復合粉體用于微波燒結,研究表明NMP對石墨烯的分散效果最好。SUN Qing-lei等[9]將氧化石墨烯(GO)在去離子水中超聲處理90 min得到懸濁液,再把GO懸濁液加入到由質量分數為23.83%的SiO2、10.25%的NaO2和去離子水組成的硅酸鈉水溶液中磁力攪拌30 min,得到GO分散液,最后把高嶺土粉末加入到GO分散液中,繼續磁力攪拌3 h至混合均勻,實現GO在復合材料中的良好分散。

圖1 石墨烯納米片在GNPs/SiC復合材料中的分散情況[7]
將石墨烯和陶瓷粉體分別在分散介質中進行分散,形成石墨烯分散液和陶瓷分散液,然后將2種分散液再混合至均勻。與在石墨烯分散液中直接加入陶瓷粉末混合的工藝路線相比,雖然工序增多,但是石墨烯分散效果更好。石墨烯的分散體系與第1種工藝路線相同,而陶瓷粉末的分散體系要根據材料種類和特性選擇適合的分散體系,陶瓷粉末的分散體系要和石墨烯的分散體系匹配,最好采用相同的分散介質。
孟祥龍等[10]以乙醇為分散介質、PVP為分散劑,加入石墨烯后超聲分散、攪拌1 h,得到石墨烯分散液,石墨烯分散效果如圖2所示,可見石墨烯在乙醇中仍保持團聚狀態,在乙醇和PVP混合液中分散效果良好;以乙醇為分散介質、PEG為分散劑,加入Al2O3后球磨得到Al2O3分散液;將石墨烯分散液加入到Al2O3分散液中,球磨混合均勻,干燥過篩制得復合粉體,用于熱壓燒結。張玉兵等[11]以異丙醇為分散介質、PVP為分散劑,加入石墨烯后超聲分散并機械攪拌40 min,得到石墨烯分散液;以同樣的分散體系和分散工藝,制備得到Si3N4分散液;將Al2O3,Y2O3,MgO分批加入到異丙醇和PVP的混合溶液中,超聲分散并機械攪拌50 min,得到燒結劑分散液;先將Si3N4分散液和燒結劑分散液進行球磨混合,再將石墨烯分散液加入到Si3N4和燒結劑混合液中繼續球磨混合,干燥過篩得到石墨烯均勻分散的石墨烯/Si3N4復合粉體,用真空熱壓燒結。

圖2 石墨烯在分散介質中的分散效果[10]
粉末壓坯燒結工藝是先制備出石墨烯/陶瓷復合粉體,經壓坯后燒結成形,制備得到塊體石墨烯/陶瓷復合材料,具有工藝簡單、材料性能好、制備參數易控制等優點,目前大部分的石墨烯/陶瓷復合材料均采用這類工藝進行制備。其工藝流程為:將石墨烯和陶瓷粉體均勻混合得到復合粉體,然后將復合粉體在模具中預壓成素坯,再將素坯燒結成塊體復合材料。在這個流程中,燒結工藝對復合材料的微觀結構和性能影響很大,燒結工藝不同,燒結反應和結構性能也有所區別。
無壓燒結(Pressureless sintering)亦稱常壓燒結,復合粉體在常壓下按照一定的燒結制度實現坯體的致密化,是最簡單的石墨烯/陶瓷復合材料燒結方法[12-13]。這種方法設備簡單、易于實現,能夠制備復雜形狀的產品,但缺點在于燒結溫度高,保溫時間長,石墨烯和陶瓷材料容易發生反應,很難獲得致密性高、陶瓷晶粒細小的復合材料,因此較少用于石墨烯/陶瓷復合材料的制備。徐彬桓等[14]在SiC粉體中添加質量分數為1%~5%的石墨烯,在2190 ℃保溫1 h制備得到石墨烯/SiC復合材料,研究表明石墨烯的質量分數為3%時復合材料的綜合力學性能最好,抗彎強度為395 MPa、硬度為89HRA、斷裂韌度為6.0 MPa·m1/2。LI Qi-song等[15]在氬氣氣氛下2130 ℃保溫1 h制備得到石墨烯/SiC復合材料,發現復合材料的熱導率隨著石墨烯含量的增加而提高,但石墨烯的質量分數超過2%時,由于孔隙迅速增加使熱導率顯著降低。López-Pernía等[16]在1350~1450 ℃的氬氣氣氛下無壓燒結制備GNPs/3YTZP復合材料,即使未完全致密化,復合材料的電導率也可以與SPS燒結的致密復合材料相當,表明無壓燒結可以作為石墨烯/氧化鋯復合材料的一種便捷制備技術。
熱壓燒結(Hot press sintering)是將復合粉體充填入模具中,從單軸方向加壓的同時加熱,使成形和燒結同時完成的一種塊體石墨烯/陶瓷復合材料燒結方法[17-20]。熱壓燒結具有成形壓力小、燒結溫度低、復合材料致密性高、晶粒細化等優點,材料的力學性能和電學性能良好,是目前的主要燒結方法。但這種方法不易制備復雜形狀產品,也具有升溫時間較長、生產率較低以及可能引發燒結過程副反應等缺點。許森等[21]在2100 ℃和30 MPa壓力下制備了還原氧化石墨烯(rGO)/B4C復合材料,加入質量分數為1.5%的石墨烯復合材料,彎曲強度和斷裂韌性分別為535 MPa和5.2 MPa·m1/2,分別比B4C陶瓷提高了72.6%和136%。Zhang Cheng等[22]制備了3Y-ZrO2/GO復合材料,與3Y-ZrO2相比,復合材料的彎曲強度和斷裂韌性分別提高了200%和41%,摩擦因數和磨損率由于自潤滑作用也得到了降低。Sun Jia-lin等[23]開發了兩步法熱壓燒結工藝,制備了SiC晶須(SiCw)和多層石墨烯(MLG)混雜增強TiB2納米復合材料,在40 MPa的壓力下,首先1800 ℃保溫5 min,然后在1700 ℃保溫45 min,添加質量分數為2.0%的SiCw和0.4%的MLG的復合材料性能優異,硬度為21.2 GPa,彎曲強度為1006.3 MPa,斷裂韌性為8.8 MPa·mm1/2。
放電等離子燒結(Spark plasma sintering,SPS)是在加壓復合粉體中直接通入脈沖電流,由火花放電瞬間產生的等離子體加熱粉體,進而使顆粒表面活化實現超快速致密化燒結的一種石墨烯/陶瓷復合材料制備方法[24-27]。SPS方法燒結溫度低、加熱速率快,用于石墨烯/陶瓷復合材料的燒結,能在短時間內實現快速致密化,避免燒結期間陶瓷晶粒的粗化并保持石墨烯的完整性,而且能實現燒結過程中石墨烯的原位還原。Nguyen等[28]在1900 ℃下制備了GNPs和SiCw加入ZrB2的復合材料,相對密度可以達到100%,研究表明燒結過程沒有發生反應,石墨烯還有利于消除燒結過程中的氧化物夾雜物和材料中的孔隙缺陷;該研究團隊在40 MPa、10 min和1900 ℃的條件下制備了加入GNP和AlN的TiC基復合材料[29],同時加入GNPs和AlN可使TiC的相對密度提高4%以上,獲得完全致密的復合材料。Stolyarov等[30]在1550 ℃的溫度下制備石墨烯/Al2O3復合材料,拉曼光譜表明石墨烯在燒結過程中沒有降解,石墨烯的質量分數由為1%增加到2%,復合材料的孔隙率下降了一半以上。
微波燒結(Microwave sintering)是利用微波電磁場中材料的介質損耗使材料整體加熱至燒結溫度而實現石墨烯/陶瓷復合材料燒結和致密化[31-32]。這種方法具有燒結溫度低、加熱速度快、高效節能、材料整體受熱均勻、致密性好等優點,材料的傳質過程快速,能獲得細晶粒材料,有利于制備出高密度、高強度、高韌性的石墨烯/陶瓷復合材料。但是微波燒結設備和燒結工藝復雜,不同介質吸收微波的能力及微波耦合不同,對微波吸收能力較好的材料更適合于微波燒結。Zou Hong-rong等[33]制備了石墨烯/ZrO2復合材料,含有石墨烯體積分數為1.02%的復合材料,硬度和斷裂韌性分別為13.52 GPa和8.62 MPa·m1/2,比純ZrO2分別高出26.1%和42%。Ai Yun-long等[34]在1500 ℃下保溫30 min制備了石墨烯/Al2O3復合材料,石墨烯體積分數為0.4%時復合材料的力學性能最好,相對密度為98.8%,斷裂韌性和抗彎強度分別為6.19 MPa·m1/2和365.10 MPa,比Al2O3陶瓷提高了約79%和12%。趙宇航等[35]在1500 ℃下制備了石墨烯/氧化鋯復合材料,研究結果表明石墨烯能阻礙晶粒的聚晶長大,提高致密性,從而提高復合材料的斷裂韌性及強度。
高頻感應加熱燒結(High-frequency induction heat sintering,HFIHS)將粉末原料放入石墨模具內,模具外繞有銅感應線圈,通過高頻電源對線圈施加高頻交流電配合以單軸向壓力來實現石墨烯/陶瓷復合材料的高溫快速燒結[36-37]。HFHIS工藝可以向松散的復合粉末快速提供適量的熱量,使它們在壓力下獲得最大可能的致密化,同時對復合材料成分的損傷最小。這種燒結工藝可在1 min內有效燒結石墨烯/陶瓷復合材料[38],與SPS工藝、微波燒結法相比,能夠有效抑制陶瓷材料晶粒長大,主要適合于制備對陶瓷及其復合材料晶粒尺寸要求高的復合材料[39]。Hassan等[40]燒結了羥基磷灰石還原氧化石墨烯(HA-rGO)納米粉末,研究表明所制備的HA-rGO復合材料具有更高的相對密度。Ahmad等[41]制備了石墨烯/Al2O3復合材料,與Al2O3相比,晶粒尺寸細化了46%,斷裂韌性提高了72%,硬度提高了7%,如圖3所示。Shon[42]在1600 ℃下加熱2 min制備得到石墨烯/AlN復合材料,在AlN中加入體積分數為5%的石墨烯,可以使維氏硬度和斷裂韌性分別提高270 kg/mm2和1.5 MPa·m1/2。

圖3 石墨烯含量對HFIHS燒結石墨烯/Al2O3復合材料性能的影響[42]
粉末壓坯燒結工藝一般只能制備高密度的塊體石墨烯/陶瓷復合材料,很難直接制備出三維框架和內部空腔等復雜結構的零件。3D打印技術采用逐層疊加材料的方式成形零件,可以實現零件的結構可控、形狀多樣化。將3D打印用于制備陶瓷和陶瓷基復合材料,為低密度框架、特定幾何形狀和結構的材料制備提供了可行性,有望解決傳統壓坯燒結工藝制備復雜形狀零件加工困難、時間長和成本高的問題。近年來,石墨烯/陶瓷復合材料的3D打印制備工藝進展很快,各種新工藝和新的材料體系不斷涌現,成為制備工藝的研究熱點。
直寫成形(Direct ink writing,DIW)工藝的流程如下:將石墨烯/陶瓷復合粉體配制成具有剪切變稀特征的復合漿料,在壓力下從噴嘴處擠出成絲,沿預先設定的打印路徑掃描并逐層堆積,制備出具有特定結構的石墨烯/陶瓷復合材料[43-46]。DIW工藝非常適合于制備具有周期性特征的多孔結構,但是制備復雜結構器件需要支撐材料。由于漿料中固相含量的體積分數一般很難超過50%,脫脂后孔隙率較高,而且結構復雜,很難在燒結過程中施加較高的壓力,因此復合材料本身致密度和力學性能不高,大多用于功能復合材料或者超輕結構的制備。Azuajt等[47]用直徑為410 μm的擠出絲制備了三維周期性框架結構的GO-Al2O3復合材料(見圖4),GO的質量分數為5%,在還原氣氛1500 ℃下燒結,然后用Hummers法處理得到GO-Al2O3結構型催化劑,這種復合材料將石墨烯的優異催化性、陶瓷載體的化學穩定性與3D打印技術的形狀可控性和多功能性相結合,實現了良好的催化性能。SUN Qing-lei等[9]用直徑約為280 μm的擠出絲成功打印了框架結構石墨烯/高嶺土復合材料,表明了DIW制備具有細微亞毫米細節部件的可行性。Motealleh等[48]制備了GO增強的13-93生物玻璃支架,在650 ℃下通過無壓SPS燒結成形,添加體積分數為2%的GO可以使支架的韌性和抗壓強度分別提高894%和26%,同時仍保留支架的大孔隙率和骨組織再生特性。

圖4 DIW工藝制備的三維網絡結構GO-Al2O3復合材料[47]
激光選區燒結(Seletive laser sintering,SLS)工藝的流程如下:混合均勻的石墨烯/陶瓷復合粉體鋪在工作粉床面上,用激光束選擇性地掃描照射,復合粉體在激光束提供的高能量作用下燒結連接,逐層鋪粉燒結制備得到特定形狀的石墨烯/陶瓷復合材料零件[49-50]。SLS工藝無需支撐材料,可以直接制備復雜形狀的復合材料構件,成形速度快、材料利用率高。但是復合粉體中一般要包覆或者混入聚合物以實現素坯的燒結,還要求球形度高、流動性好而且對激光熱量有較好的吸收效果,另外,后期脫脂和燒結過程的控制也很嚴格,因此石墨烯/陶瓷復合材料的SLS制備工藝難度較高,研究和應用不多。ShuaiCi-jun等[51]制備了GNPs增強的透輝石(Di)三維支架,研究表明用含GNPs質量分數為1%的復合粉體制備的支架性能最好,抗壓強度和斷裂韌性分別提高了102%和34%。該課題組[52]還制備了石墨烯和氮化硼納米管聯合增強的陶瓷骨支架,抗壓強度和斷裂韌性分別提高了207%和33%,還具有良好的生物相容性和生物活性。
噴墨打印(Ink jet printing,IJP)工藝是以陶瓷、石墨烯粉末和各種有機溶劑配制而成的混合懸浮液為成形材料,通過電場誘導或壓力脈沖將混合懸浮液由噴嘴噴出,逐滴逐層沉積到襯底平臺上形成二維或三維石墨烯/陶瓷復合材料[53-55]。IJP工藝原理簡單、工藝操作容易,制備成本較低,但其懸浮液中固相含量較低,打印件致密性不高,而且打印頭易發生堵塞,打印點的最大高度受限,很難制備具有不同高度的三維結構,因此這種工藝比較適合制備結構簡單、體積較小的功能性復合材料構件。Sun Qing-lei等[56]在鍍銅陶瓷基板(3DPC)上打印出高導熱率的質量分數為23.81%的高嶺土/石墨烯(KGS)三維腔體,與玻璃板、藍色LED芯片、陶瓷基板等組裝成3DPC-KGS- LED結構,連續干燥7 d后所得到的復合材料可以大大改善大功率LED的散熱性能,與傳統的LED相比,在650 mA的電流下表面溫度降低了約20 ℃。黃哲觀[57]用熱發泡噴墨3D打印技術制備出了高致密氧化鋁基板和rGO/氧化鋁電路板,氧化鋁最大相對密度達到95.2%,電路板的導電率為5.34×102S/m,rGO與氧化鋁之間的粘附強度為7.5 N/m。WuTien-Chun等[58]采用rGO/α-Fe2O3復合材料墨水制備出CMOS器件,在不同的環境濕度條件下精確量化NO2濃度,實現了97.3%的整體識別精度。
立體光固化(Stereolithography appearance,SLA)工藝用紫外激光照射石墨烯/陶瓷/光敏樹脂復合漿料,經后處理去除光敏樹脂后獲得石墨烯/陶瓷復合材料[59-60]。SLA工藝要求原料必須是一種陶瓷顆粒在液態光敏樹脂中分布均勻的懸浮液,具有良好的流變性能和良好的穩定性能。這種工藝適用于對紫外線吸收較好的復合材料,適合制備光潔、精度高、形狀復雜的復合材料,但是原材料要求嚴格、設備投入高、制備成本高,后期脫脂和燒結工藝比較復雜。Zhang Cheng等[61]制備了固相物體積分數為60.2%的3Y-ZrO2和GO/3Y-ZrO2這2種漿料,采用SLA技術制備出蜂窩結構零件,工藝流程見圖5,其中圖5a為成形設備,圖5b為2種漿料,圖5c為構件的CAD模型,圖5d和5e分別為固化的單層陶瓷及其固化過程示意圖。

圖5 3Y-ZrO2和GO/3Y-ZrO2零件的SLA制備工藝過程[37]
除了粉末壓坯燒結和3D打印2大類制備工藝外,石墨烯/陶瓷復合材料還可以采用原位生成法、碳熱還原法、3D網絡石墨烯支架滲透法等進行制備。
原位生成法源于一種石墨烯的制備方法——外延生長法。在特定的溫度條件下,6H-SiC陶瓷在燒結的過程中,高溫使Si脫離SiC表面,在其單晶面上剩余的C原子發生重構自發生長出片狀石墨烯。這種方法僅限于制備石墨烯/SiC復合材料。Lebedev等[62]在半絕緣的6H-SiC襯底上通過SiC的熱分解生長出石墨烯薄膜,進一步用激光在石墨烯薄膜上加工形成傳感器結構。
碳熱還原法是指以GO和硅粉為原料,在高溫下硅粉氣化并與GO中的碳原子或氧官能團結合,形成一氧化碳和氣態一氧化硅,中間產物氣態一氧化硅或原料硅蒸氣將與碳蒸氣反應形成碳化硅,GO被還原為石墨烯,形成石墨烯/SiC復合材料。這種方法也僅限于制備石墨烯/SiC復合材料。Li Xiao-peng等[63]在1400 ℃的反應溫度下制備了石墨烯/SiC復合材料,具有良好的電磁吸收性能。
在DIW工藝制備的多孔結構石墨烯支架中,滲入液相或者氣相的陶瓷前驅體,在一定的溫度下激活陶瓷轉化,形成石墨烯/陶瓷復合材料。石墨烯支架具有較高的比表面積、較大的孔隙率和相互連接的導電網絡,提供了一種導電性優于傳統陶瓷材料的復合材料。Román-Manso等[64]用液體有機聚硅氮烷(Si,C,H,N的化合物)浸滲到石墨烯支架內,在800~ 1000 ℃溫度下激活陶瓷轉化,制備了石墨烯、SiN和SiC的復合材料。YouXiao等[65]用化學氣相滲透法在石墨烯支架中引入陶瓷材料前驅體,以前驅體裂解的方式原位生成SiC,制備得到石墨烯/SiC復合材料(見圖6),分析表明SiC均勻地分布在石墨烯片層間,復合材料的最大抗壓強度達到(193±15.7)MPa,比直接混合產品高394%。

圖6 DIW和CVI結合制備石墨烯/SiC復合材料的工藝示意[65]
石墨烯在陶瓷材料中的均勻分散是制備石墨烯/陶瓷復合材料的前提,可以采用在石墨烯分散液中加入陶瓷粉末,也可以采用石墨烯分散液和陶瓷分散液混合的方式。粉末壓坯燒結工藝主要用于制備致密的塊體石墨烯/陶瓷復合材料,燒結技術的進步和發展不斷提高了復合材料的性能和制備質量,未來將朝著快速、易操作、對石墨烯損傷最小的方向發展。石墨烯/陶瓷復合材料的3D打印工藝可以突破傳統陶瓷加工工藝對形狀的限制,直接制備復雜形狀和特殊功能的復合材料器件,在3D形狀成形性和器件多功能化等方面具有明顯的優勢,未來會有越來越多的3D打印技術用于石墨烯/陶瓷復合材料的制備,而且還將結合石墨烯/陶瓷的特性和3D打印的結構可控性制備出具有特定功能化的復合材料。在結合特定物理化學反應的基礎上,石墨烯/陶瓷復合材料將繼續發展一些創新性制備工藝,更好體現出所制備材料體系自身特點和優勢。
[1] PINARGOTE N W S, SMIRNOV A, NIKITA P, et al. Direct Ink Writing Technology (3D Printing) of Graphene-Based Ceramic Nanocomposites: A Review[J]. Nanomaterials, 2020, 10(7): 1300.
[2] ?ELIC Y, ?ELIC A, FLAHAUT E, et al. Anisotropic Mechanical and Functional Properties of Graphene- Based Alumina Matrix Nanocomposites[J]. Journal of the European Ceramic Society, 2016, 36(8): 2075-2086.
[3] ROMáN-MANSO Y, CHEVILLOTTE Y, PSENDI M S, et al. Thermal Conductivity of Silicon Carbide Composites with Highly Oriented Graphene Nanoplatelets[J]. Journal of the European Ceramic Society, 2016, 36(16): 3987-3993.
[4] YANG Ya-ping, LI Bin, ZHANG Chang-rui, et al. Fabrication and Properties of Graphene Reinforced Silicon Nitride Composite Materials[J]. Materials Science & Engineering A, 2015, 644(17): 90-95.
[5] HVIZDO? P, DUSZA J, BALáZSI C. Tribological Properties of Si3N4-Graphene Nanocomposites[J]. Journal of the European Ceramic Society, 2013, 33(12): 2359- 2364.
[6] WANG Kai, WANG Yong-fang, FAN Zhuang-jun, et al. Preparation of Graphene Nanosheet/Alumina Composites by Spark Plasma Sintering[J]. Materials Research Bulletin, 2011, 46(2): 315-318.
[7] 黎盛忠. 石墨烯納米片復合碳化硅陶瓷的制備及性能研究[D]. 西安: 長安大學, 2019: 13-26.
LI Sheng-zhong. Preparation and Properties of Graphene Nanosheets Composite Silicon Carbide Ceramics[D]. Xi'an: Changan University, 2019: 13-26.
[8] 張秋雨. 微波燒結石墨烯增韌Al2O3基復合陶瓷材料的研究[D]. 南昌: 南昌航空大學, 2016: 21-29.
ZHANG Qiu-yu. Graphene Toughening Alumina Matrix Composite Ceramic Material by Microwave Sintering [D]. Nanchang: Nanchang Hangkong University, 2016: 21-29.
[9] SUN Qing-lei, LIU Jing-long, CHENG Hao, et al. Fabrication of 3D Structures via Direct Ink Writing of Kaolin/Graphene Oxide Composite Suspensions at Ambient Temperature[J]. Ceramics International, 2019, 45(15): 18155-19582.
[10] 孟祥龍. 石墨烯增韌Al2O3基納米復合陶瓷刀具研制及其切削性能研究[D]. 濟南: 齊魯工業大學, 2016: 16-24.
MENG Xiang-long. Study on the Fabrication of Graphene Toughened Alumina-Based Nanocomposites Ceramic Cutting Tool Material and Its Cutting Performance[D]. Jinan: Qilu University of Technology, 2016: 16-24.
[11] 張玉兵. 石墨烯/氮化硅基復合陶瓷刀具材料及其摩擦磨損特性研究[D]. 濟南: 齊魯工業大學, 2017: 11-18.
ZHANG Yu-bing. Study on the Graphene/Silicon Nitride Based Composite Ceramic Tools and Their Friction and Wear Properties[D]. Jinan: Qilu University of Technology, 2017: 11-18.
[12] TONG Zong-wei, JI Hui-ming, LI Xiao-lei, et al. Microstructure Control and Optimization of Low Temperature Pressureless Sintered Silicon Nitride?Barium Aluminosilicate Composites[J]. Journal of the European Ceramic Society, 2020, 40: 4177-4183.
[13] LI Qi-song, ZHANG Yu-jun, GONG Hong-yu, et al. Enhanced Fracture Toughness of Pressureless-Sintered SiC Ceramics by Addition of Graphene[J]. Journal of Materials Science & Technology, 2016, 32(7): 633-638.
[14] 徐彬桓, 林文松, 傅肅嘉, 等. 石墨烯添加量對無壓燒結石墨烯/碳化硅陶瓷復合材料性能的影響[J]. 機械工程材料, 2018, 42(8): 29-32.
XU Bin-huan, LIN Wen-song, FU Su-jia, et al. Effect of Graphene Addition Amount on Properties of Pressureless Sintered Graphene/Silicon Carbide Ceramic Composite[J]. Materials for Mechanical Engineering, 2018, 42(8): 29-32.
[15] LI Qi-song, ZHANG Yu-jun, GONG Hong-yu, et al. Effects of Graphene on the Thermal Conductivity of Pressureless-Sintered SiC Ceramics[J]. Ceramics International, 2015, 41(10): 13547-13552.
[16] LóPEZ-PERNíA C, GALLARDO-LóPEZ á, MORALES-RODRíGUEZ A, et al. Graphene Nanoplatelets for Electrically Conductive 3YTZP Composites Densified by Pressureless Sintering[J]. Journal of the European Ceramic Society, 2019, 39: 4435-4439.
[17] YUN Chuang, FENG Yong-bao, QIU Tai, et al. Mechanical, Electrical, and Thermal Properties of Graphene Nanosheet/Aluminum Nitride Composites[J]. Ceramics International, 2015, 41(7): 8643-8649.
[18] 余健, 張善偉, 林文松, 等. 熱壓燒結石墨烯/B4C復合材料的制備與性能研究[J]. 硅酸鹽通報, 2019, 38(12): 4042-4046.
YU Jian, ZHANG Shan-wei, LIN Wen-song, et al. Preparation and Characterization of Graphene/B4C Composites by Hot-Pressing Sintering[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12): 4042-4046.
[19] ALEXANDE R, MURTHY T, RAVIKANTH K V, et al. Effect of Graphene Nano-Platelet Reinforcement on the Mechanical Properties of Hot Pressed Boron Carbide Based Composite[J]. Ceramics International, 2018, 44(8): 9830-9838.
[20] HANZEL O, LEN?é? Z, KIM Y W, et al. Highly Electrically and Thermally Conductive Silicon Carbide-Graphene Composites with Yttria and Scandia Additives[J]. Journal of the European Ceramic Society, 2020, 40(2): 241-250.
[21] 許森, 方寧象, 張善偉, 等. 還原氧化石墨烯增強碳化硼陶瓷的制備與表征[J]. 人工晶體學報, 2021, 50(3): 572-577.
XU Sen, FANG Ning-xiang, ZHANG Shan-wei, et al. Preparation and Characterization of Boron Carbide Ceramics Enhanced By Reduced GO[J]. Journal of Synthetic Crystals, 2021, 50(3): 572-577.
[22] ZHANG Cheng, WANG Fei-long, JIANG Zhao-liang, et al. Effect of Graphene Oxide on the Mechanical, Tribological, and Biological Properties of Sintered 3Y-ZrO2/ GO Composite Ceramics for Dental Implants[J]. Ceramics International, 2021, 47(5): 6940-6946.
[23] SUN Jia-lin, ZHAO Jun, HUANG Zhi-fu, et al. Hybrid Multilayer Graphene and SiC Whisker Reinforced TiB2Basednano-Composites by Two-Step Sintering[J]. Journal of Alloys and Compounds, 2021, 856: 157283.
[24] AKIN I, KAYA O. Microstructures and Properties of Silicon Carbide and Graphene Nanoplatelet-Reinforced Titanium Diboride Composites[J]. Journal of Alloys and Compounds, 2017, 729: 949-959.
[25] 王松, 謝明, 張吉明, 等. 放電等離子燒結技術進展[J]. 貴金屬, 2012, 33(3): 73-77.
WANG Song, XIE Ming, ZHANG Ji-ming, et al. Development of Spark Plasma Sintering Technology[J]. Precious Metals, 2012, 33(3): 73-77.
[26] 王明輝, 方海亮, 劉霞, 等. Graphene/ZrO2復合陶瓷材料的熱導性能研究[J]. 人工晶體學報, 2017, 46(4): 646-650.
WANG Ming-hui, FANG Hai-liang, LIU Xia, et al. Thermal Conductivity of Graphene/ZrO2Composite Ceramic Materials[J]. Journal of Synthetic Crystals, 2017, 46(4): 646-650.
[27] 宋明, 李雙, 謝志鵬. 放電等離子燒結石墨烯/3Y-TZP復合陶瓷結構及性能[J]. 材料熱處理學報, 2015, 36(12): 1-6.
SONG Ming, LI Shuang, XIE Zhi-peng. Microstructure and Properties of Graphene Nanoplate/3Y-TZP Composite Prepared by Spark Plasma Sintering[J]. Transactions of Materials and Heat Treatment, 2015, 36(12): 1-6.
[28] NGUYEN V H, DELBARI S A, ALS M S, et al. Combined Role of SiC Whiskers and Graphene Nano-Platelets on the Microstructure of Spark Plasma Sintered ZrB2Ceramics[J]. Ceramics International, 2021, 47(9): 12459-12466.
[29] NGUYEN V H, ALS M S, LE Q V, et al. Microstructural Evolution during Spark Plasma Sintering of TiC-AlN- Graphene Ceramics[J]. International Journal of Refractory Metals and Hard Materials, 2021, 96: 105496.
[30] STOLYAROV V V, FROLOVA A V, SUDZHANSKAYA I V. Dielectric Properties of Nanocomposite Ceramics Al2O3/Graphene Processed by Spark Plasma[J]. Ceramics International, 2020, 46(5): 6920-6925.
[31] LIU Ying, AI Yun-long, HE Wen, et al.Grain Growth Kinetics in Microwave Sintered Graphene Platelets Reinforced ZrO2/Al2O3Composites[J]. Ceramics International, 2018, 44(14): 16421-16427.
[32] 韓京京. 微波燒結制備石墨烯/羥基磷灰石復合材料及力學、生物學性能研究[D]. 南昌: 南昌航空大學, 2016: 9-12.
HAN Jing-jing. Mechanical and Biocompatible Properties of Graphene/Hydroxyapatite Ceramic Composites by Microwave Sintering[D]. Nanchang: Nanchang Hangkong University, 2016: 9-12.
[33] ZOU Hong-rong, ZHANG Ya-ping, LIU Li-qi, et al. The Toughening Mechanism and Mechanical Properties of Graphene-Reinforced Zirconia Ceramics by Microwave Sintering[J]. Advances in Applied Ceramics, 2018, 117(7): 420-426.
[34] AI Yun-long, LIU Ying, ZHANG Qiu-yu, et al. Microwave Sintering of Graphene-Nanoplatelet-Reinforced Al2O3-Based Composites[J]. Journal of the Korean Ceramic Society, 2018, 55(6): 556-561.
[35] 趙宇航, 周根樹, 王利斌, 等. 石墨烯增強增韌氧化鋯陶瓷的機制[J]. 材料熱處理學報, 2019(9): 8-13.
ZHAO Yu-hang, ZHOU Gen-shu, WANG Li-bin, et al. Mechanism of Graphene Reinforced and Toughened Zirconia Ceramics[J]. Transactions of Materials and Heat Treatment, 2019(9): 8-13.
[36] KWON S M, LEE S J, SHON I J. Enhanced Properties of Nanostructured ZrO2-Graphene Composites Rapidly Sintered via High-Frequency Induction Heating[J]. Ceramics International, 2015, 41: 835-842.
[37] KANG B R, SHON I J. Properties and Rapid Consolidation of Nanostructured 4Cr-3ZrO2Composite by Pulsed Current Activated Sintering[J]. Korean Journal Metals and Materials, 2015, 53: 320-325.
[38] KIM W O H, SHON I J. The Effect of Graphene Reinforcement on the Mechanical Properties of Al2O3Ceramics Rapidly Sintered by High-Frequency Induction Heating[J]. International Journal of Refractory Metals and Hard Materials, 2015, 48: 376-381.
[39] HUANG Kai-jin, TAN Chao-dong. Synthesis of Al2O3/AlB12/Al Composite Ceramic Powders by High Frequency Induction Heating Method and a Study of Their Mechanical Properties[J]. Advanced Materials Research, 2010, 1037: 63-66.
[40] HASSAN N, RASOUL S M, HOSSEIN K M, et al. Characterization of Hydroxyapatite-Reduced Graphene Oxide Nanocomposites Consolidated via High Frequency Induction Heat Sintering Method[J]. Journal of Asian Ceramic Societies, 2020, 8(4): 1296-1309.
[41] AHMAD I, ISLAM M, ABDO H S, et al. Toughening Mechanisms and Mechanical Properties of Graphene Nanosheet-Reinforced Alumina[J]. Materials & Design, 2015, 88(25): 1234-1243.
[42] SHON I J. Enhanced Mechanical Properties of the Nanostructured AlN-Graphene Composites Rapidly Sintered by High-Frequency Induction Heating[J]. Ceramics International, 2016, 42(14): 228-232.
[43] 楊金山, 黃凱, 游瀟, 等. 3D打印三維石墨烯及其高性能陶瓷基復合材料[J]. 中國材料進展, 2018, 37(8): 590-596.
YANG Jin-shan, HUANG Kai, YOU Xiao, et al. Three-Dimensional Graphene by 3D Printing and Related Advanced Ceramic Matrix Composites[J]. Materials China, 2018, 37(8): 590-596.
[44] GUO Haichang, LYU R, BAI Shu-lin. Recent Advances on 3D Printing Graphene-Based Composites[J]. Nano Materials Science, 2019, 1: 101-115.
[45] 南博, 張海波, 賀躍輝. 適用于直寫式 3D 打印陶瓷漿料的流變學性能研究[J]. 精密成形工程, 2021, 13(2): 1-6.
NAN Bo, ZHANG Hai-bo, HE Yue-hui. Investigation on the Rheological Behavior of Ceramic Pastes Suitable for Direct Ink Writing[J]. Journal of Netshape Forming Engineering, 2021, 13(2): 1-6.
[46] GIORGIA F, LARISSA W, PAOLO C. Direct Ink Writing of Ceramic Matrix Composite Structures[J]. Journal of the American Ceramic Society, 2017, 100(10): 4397- 4401.
[47] AZUAJT J, MALLO-ABREU A, MAJELLARO M, et al. Catalytic Performance of a Metal-Free Graphene Oxide-Al2O3Composite Assembled by 3D Printing[J]. Journal of the European Ceramic Society, 2021, 41(2): 1399-1406.
[48] MOTEALLEH A, EQTESADI S, PERERA F H, et al. Reinforcing 13-93 Bioglass Scaffolds Fabricated by Robocasting and Pressureless Spark Plasma Sintering with Graphene Oxide[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 97: 108-116.
[49] ZHUO Wei-wei, DONG Ming-qi, ZHOU Zheng-xin, et al. In Situ Formation of Uniformly Dispersed Al4C3Nanorods during Additive Manufacturing of Graphene Oxide/Al Mixed Powders[J]. Carbon, 2019, 141: 67-75.
[50] JIN Yi-pu, CHEN Ning, LI Yi-jun, et al. The Selective Laser Sintering of a Polyamide 11/BaTiO3/Graphene Ternary Piezoelectric Nanocomposite[J]. RSC Advances, 2020, 10(35): 20405-20413.
[51] SHUAI Ci-jun, LIU Ting-ting, GAO Cheng-de, et al. Mechanical and Structural Characterization of Diopside Scaffolds Reinforced with Graphene[J]. Journal of Alloys and Compounds, 2016, 655: 86-92.
[52] SHUAI Ci-jun, FENG Pei, WU Ping, et al. A Combined Nanostructure Constructed by Graphene and Boron Nitride Nanotubes Reinforces Ceramic Scaffolds[J]. Chemical Engineering Journal, 2017, 313: 487-497.
[53] HUANG Zhe-guan, TANG Yang, GUO Hao, et al. 3D Printing of Ceramics and Graphene Circuits-on-Ce-ramics by Thermal Bubble Inkjet Technology and High Temperature Sintering[J]. Ceramics International, 2020, 46(8): 10096-10104.
[54] NIKOLAOU L, HALLIL H, CONéDéRA V, et al. Electro-Mechanical Properties of Inkjet-Printed Graphene Oxide Nanosheets[J]. Physica Status Solidi (a), 2017, 214(3): 1600492.
[55] 韓勝強, 范鵬元, 南博, 等. 先進陶瓷成形技術現狀及發展趨勢[J]. 精密成形工程, 2020, 12(5): 66-80.
HAN Sheng-qiang, FAN Peng-yuan, NAN Bo, et al. Status and Development Trend of Advanced Ceramics Forming Technology[J]. Journal of Netshape Forming Engineering, 2020, 12(5): 66-80.
[56] SUN Qing-lei, LIU Jing-long, PENG Yang, et al. Effective Heat Dissipation of High-Power LEDs through Creation of Three-Dimensional Ceramic Substrate with Kaolin/Graphene Suspension[J]. Journal of Alloys and Compounds, 2020, 817: 152779.
[57] 黃哲觀. 基于噴墨3D打印的石墨烯復合材料的研究[D]. 合肥: 中國科技大學, 2020: 67-84.
HUANG Zhe-guan. Research on Inkjet 3D Printing of Graphene Composites[D]. Hefei: University of Science an Technology of China, 2020: 67-84.
[58] WU Tien-Chun, DAI Jie, HU Guo-hua, et al. Machine-Intelligent Inkjet-Printed α-Fe2O3/rGO towards NO2Quantification in Ambient Humidity[J]. Sensors and Actuators: B, Chemical, 2020, 321: 128446.
[59] ZHANG K Q, HE R J, XIE C, et al. Photosensitive ZrO2Suspensions for Stereolithography[J]. Ceramics International, 2019, 45: 12189-12195.
[60] FENG Zu-ying, LI Yan, HAO Liang, et al. Graphene-Reinforced Biodegradable Resin Composites for Stereolithographic 3D Printing of Bone Structure Scaffolds[J]. Journal of Nanomaterials, 2019, 2019: 9710264.
[61] ZHANG Cheng, JIANG Zhao-liang, ZHAO Li, et al. Stability, Rheological Behaviors, and Curing Properties of 3Y-ZrO2and 3Y-ZrO2/GO Ceramic Suspensions in Stereolithography Applied for Dental Implants[J]. Ceramics International, 2021, 47(10): 13344-13350.
[62] LEBEDEV A A, DAVYDOV S Y, ELISEYEV I A, et al. Graphene on SiC Substrate as Biosensor: Theoretical Background, Preparation, and Characterization[J]. Materials, 2021, 14(3): 590.
[63] LI Xiao-peng, LI Zhao-qian, QUE Long-kun, et al. Electromagnetic Wave Absorption Performance of Graphene/SiC Nanowires Based on Graphene Oxide[J]. Journal of Alloys and Compounds, 2020, 835(15): 155172.
[64] ROMáN-MANSO B, MOYANO J J, PéREZ-COLL D, et al. Polymer-Derived Ceramic/Graphene Oxide Architected Composite with High Electrical Conductivity and Enhanced Thermal Resistance[J]. Journal of the European Ceramic Society, 2018, 38(5): 2265-2271.
[65] YOU Xiao, YANG Jin-shan, HUANG Kai, et al. Multifunctional Silicon Carbide Matrix Composites Optimized by Three-Dimensional Graphene Scaffolds[J]. Carbon, 2019, 155: 215-222.
Research Progress of Preparation Process of Graphene/Ceramic Composites
LI Dana, LIU Hong-juna,b, LI Ya-minb
(a. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals; b. School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China)
The preparation process is the key to adjust the structure of graphene/ceramic composites and optimizing their mechanical and thermoelectric properties. The work reviewed the powder compact sintering process and 3D printing technology of graphene/ceramic composites and their research progress. The powder compact sintering process included pressureless sintering, hot pressing sintering, spark plasma sintering, microwave sintering and high-frequency induction heating sintering, etc. It had the advantages of simple process, good material properties, and easy control of preparation parameters. This was the main preparation process of graphene/ceramic composites, which was used to prepare dense bulk composites. The main 3D printing processes included direct writing molding, laser selective sintering, inkjet printing and stereo light curing, etc., which had the characteristics of controllable structure and shape. It was the current research hotspot of graphene/ceramic composite materials, which was used to form composite devices with complex shapes and specific properties. In addition, the preparation process of graphene/ceramic composites using specific physical and chemical reactions such as in-situ generation method and carbothermic reduction method were briefly introduced, and the dispersion process of graphene in composite materials was reviewed.
graphene; ceramic composites; preparation process; dispersion process
10.3969/j.issn.1674-6457.2022.02.009
TB33;TQ174.6
A
1674-6457(2022)02-0051-09
2021-08-07
國家自然科學基金(52062029)
李丹(1997—),女,碩士生,主要研究方向為石墨烯/陶瓷復合材料。
劉洪軍(1974—),男,博士,教授,主要研究方向為先進材料及其成形技術。