999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

STUDY ON 2-DIMENSIONAL SUBMANIFOLDS WITH CONSTANT DETERMINANT OF BLASCHKE TENSOR

2022-02-11 05:36:16YUYingjiaGUOZhen
數學雜志 2022年1期

YU Ying-jia,GUO Zhen

(Yunnan Normal University,Kunming 650500,China)

Abstract:In this paper,we study the rigidity of 2-dimensional submanifolds in S2+p.Let M2 be a 2-dimensional submanifold in the(2+p)-dimensional unit sphere S2+pwithout umbilic points.Four basic invariants of M2under the Moebius transformation group of S2+pare Moebius metric g,Blaschke tensor A,Moebius form Φ and Moebius second fundamental form B.In this paper,by using inequality estimation,we proved the following rigidity theorem:Let x:M2→S2+pbe a 2-dimensional compact submanifold in the(2+p)-dimensional unit sphere S2+pwith vanishing Moebius form Φ and Det A=c(const)> 0,if trA ≥ ,then either x(M2)is Moebius equivalent to a minimal submanifold with constant scalar curvature in S2+p,orin.Our results complement the case 2-dimensional submanifolds in document[3].

Keywords:2-dimensional submanifolds;Moebius metric;Moebius form;Moebius second fundamental form;Blaschke tensor

1 Introduction

where Hessijand?are the Hessian-matrix and the gradient with respect to the induced metric I=dx·dx.Let?⊥be normal connection,and theis defined byMoreover,we introduce the trace-free Blaschke tensor

Hu and Li studied the dimension of submanifold is m ≥ 3,the Moebius form Φ =0,and the constant scalar curvature.In this paper,we proved the dimension of submanifold is m=2,the Moebius form Φ =0,and Det A=c(const)> 0,we get the following theorem.

Theorem 1.1Let x:M2→S2+pbe a 2-dimensional compact submanifold in the(2+p)-dimensional unit sphere S2+pwith vanishing Moebius form Φ and 0 < Det A=c(const)<,then

and x(M2)is Moebius equivalent to a minimal submanifold with constant curvature in S2+p;or

2 Preliminaries

In this section,we give the Moebius invariants and review its structural equations for surfaces in S2+p,for details we refer to[2].

Then we have the following.

Theorem 2.1(see[2])Two submanifolds x,:M→Snare Moebius equivalent if and only if there exists T in the Lorentz group O(n+1,1)insuch that

From Theorem 2.1,we know that the 2-form

is a Moebius invariant(see[1]).Let Δ be the Laplace operator with respect to g.Then we have〈ΔY,ΔY〉=1+4K,where K is the sectional curvature of g([1]).By defining

then we have([1])

Let{E1,E2}be a local orthonormal basis for(M2,g)with dual basis{ω1,ω2},write Yi=Ei(Y),then

Let{Eα}be an orthonormal basis of V,where

where the coefficients ωijbelong to the connection form of the Moebius metric g,and we have the symmetries Aij=Aji,Bij=Bji.It is clear that

are Moebius invariants,and

De fine the covariant derivatives of A,B and Φ by([1])

The integrability conditions for the structure equations(2.10)-(2.14)are given by([1])

where R1212and Rαβ12denote the sectional curvature of g and the normal curvature of the normal connection.Set K=R1212.The second covariant derivative of Aijandare defined by([1])

3 Integral Inequality

Let x:M2→S2+pbe a submanifold in S2+pwithout umbilic points,the Moebius metric is g= ρ2dx·dx,and so the canonical lift of x is given by Y= ρ(k,x)([1]).Then along with M2,we can choose a moving frame{Y,N,Y1,Y2,E3,···,E2+p}in R4+p1,and we replace Eαin(2.9)by Eα=(Hαk,eα+Hαx).For the Moebius invariants A,B and Φ appearing in the structure equation(2.11)-(2.14),by calculation,we can get the expression(1.1)for Φ,(1.3)for B and(1.2)should be changed to([3])

Lemma 3.1For any positive constants k>a>0,the torus xa,k:Ma,k=S1(a)×S1(b)→S3(k),a2+b2=k2,choose unit frame field{e1}and{e2}in S1(a)and S1(b)respectively,the Moebius invariants components of the torus are as follows:

From(3.7)we see that

The Moebius metric g is given by

and

From(3.1),(3.8),(3.9)and(3.10),we have

where

Then we have

So the conclusion holds.

then we have

Choose a basis{Ei}such that(Aij)is diagonalized,i.e.,

Then we have

Proof

then

From Φ=0,we obtain

Lemma 3.3Let x:M2→S2+pbe a compact submanifold in the unit sphere S2+pwith vanishing Moebius form Φ,we have

ProofLet L:C∞(M)→C∞(M)be L operator([5]),and L(f)is defined by L(f):=(Aij-trAδij)f,ij,from(3.18)we have

then we have

Integrating both sides of the above equation,according to the properties of Δ and L,we get

From Cauchy-Schwarz Inequality,we see

Lemma 3.4Let x:M2→S2+pbe a compact submanifold in the unit sphere S2+pwith vanishing Moebius form Φ,Det A=c > 0,we have

where equality holds if and only if?A=0.

Proof

i.e.,

Take the derivative of the left hand side of the equation,we have

Take the derivative of the right hand side of the equation,we have

thus

Square both ends of the above equation,we have

On the left hand side,we use the Cauchy-Schwarz inequality to get

taking(3.47)in(3.46),we have

Then we have

where the equality holds if and only if?A=0.

From the above lemma,we can get the following theorem:

Lemma 3.5Let x:M2→S2+pbe a compact submanifold in the unit sphere S2+pwith vanishing Moebius form Φ,Det A=c(const)> 0,we have the following inequality

4 Integral Inequality

Theorem 4.1Let x:M2→S2+pbe a 2-dimensional compact submanifold in the(2+p)-dimensional unit sphere S2+pwith vanishing Moebius form Φ,and 0 < Det A=c(const)<,then

and x(M2)is Moebius equivalent to a minimal submanifold with constant curvature in S2+p;or

Which implies

then we get

From Lemma 3.5,we have

i.e,

by use of(2.18),we see

We claim that we can choose the normal frame field{Eα},such that

In fact,we can choose a new orthonormal frame{}in the normal bundle N(M2)such that,and then define a new orthonormal frame{}in the Moebius normal bundle by,whereis the mean curvature vector of M2,thenand with respect to.If{eα},{}are two orthonormal frames in the normal bundle withP,where(σαβ)is an orthogonal matrix,then we have,when α ≥ 4,we have

that means that span{e4,e5,···,e2+p}is totally umbilical in the normal bundle N(M2).From(4.10)we have

where θαβis the Euclidean normal connection of N(M2)([1]).

From(2.19)and?A=0,we have

thus,we have

Since a Riemannian universal coverage is locally equidistant and not general,we can assume that M2is simply connected.From above,TM2has the following decomposition TM2=V1⊕V2,where V1and V2are the 1-dimensional eigenspace of the Blaschke tensor A with eigenvalues a1and a2.

Form(4.17),we can get that the eigenspaces V1and V2are both integrable.We can write M=M1×M2,where M1and M2are both 1-dimensional submanifold.We can define g1=and g2=,then we have

From(2.12)and(4.16),we have

Since M2is compact submanifold,M1and M2are also compact submanifold.

From(4.21)-(4.23),we have a 1-dimensional manifold with the same curvature as(S1(r1),)and(M1,g1),(s1(r2),)and(M2,g2)are also 1-dimensional manifolds with the same curvature.Thus there exist isometries ψ1:(M1,g1) → (S1(r1),)and ψ2:(M2,g2) →(S1(r2),),let ψ =(ψ1,ψ2),then ψ :M2→ S1(r1)× S1(r2)holds the Moebius metric and the Moebius shape operator.(M2,g)and(S1(r1)×S1(r2),)have the same Moebius metric,Moebius second fundamental form,Moebius shape operator,Blaschke tensor,so the x(M2)is Moebius equivalent to

This completes the proof of the main theorem.

主站蜘蛛池模板: av一区二区人妻无码| 精品三级在线| 国产福利影院在线观看| 日韩精品成人在线| 青青操国产| 日本欧美一二三区色视频| 亚洲日韩AV无码精品| 一边摸一边做爽的视频17国产| 国产激情无码一区二区免费| 天天综合色天天综合网| 国产网站一区二区三区| 国产美女叼嘿视频免费看| 国产毛片网站| 国产精品亚欧美一区二区| 女同国产精品一区二区| 午夜一级做a爰片久久毛片| 国产精品极品美女自在线| 国产成人精品三级| 欧美中日韩在线| 国产精品久久久久久影院| 亚洲无码37.| 亚洲熟妇AV日韩熟妇在线| 欧美亚洲激情| 色丁丁毛片在线观看| a级毛片免费播放| 丁香亚洲综合五月天婷婷| 2020精品极品国产色在线观看| 亚洲精品视频免费观看| 国产情精品嫩草影院88av| 国产高清不卡| 色悠久久综合| 欧美日在线观看| 国产乱子伦视频在线播放| 国产凹凸视频在线观看| 18禁色诱爆乳网站| 国产白浆视频| 天天综合天天综合| 成人无码一区二区三区视频在线观看| 国产欧美日韩专区发布| 精品国产成人高清在线| 免费一级毛片完整版在线看| 国产一在线| 久久婷婷五月综合色一区二区| 亚卅精品无码久久毛片乌克兰| 国产精品jizz在线观看软件| www.91在线播放| 伊人丁香五月天久久综合| 亚洲福利片无码最新在线播放| 久久精品国产精品青草app| 网久久综合| 精品无码人妻一区二区| 激情六月丁香婷婷| 国产精品成人一区二区| 欧美在线网| 热re99久久精品国99热| 99热线精品大全在线观看| 乱系列中文字幕在线视频| 最新精品久久精品| 国内精品91| 伊人婷婷色香五月综合缴缴情| 国产福利大秀91| 日本高清免费不卡视频| 欧美精品不卡| 在线欧美日韩国产| 国产精品永久久久久| 亚洲av成人无码网站在线观看| 日本午夜网站| 亚洲综合中文字幕国产精品欧美| 毛片最新网址| 久久中文无码精品| 国产大片喷水在线在线视频| 色婷婷电影网| 99免费在线观看视频| 热热久久狠狠偷偷色男同| 国产成人做受免费视频| 久久久国产精品无码专区| 九九精品在线观看| 不卡网亚洲无码| 国产欧美日韩专区发布| 欧美午夜精品| 欧美一区二区啪啪| 全免费a级毛片免费看不卡|