999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

GCD封閉集上的冪矩陣行列式間的整除性

2021-12-27 07:47:58朱光艷譚千蓉
四川大學學報(自然科學版) 2021年6期
關鍵詞:計算機大學數學

朱光艷, 李 懋, 譚千蓉

(1. 湖北民族大學教育學院, 恩施 445000;2.西南大學數學與統計學院, 重慶 400715;3.攀枝花學院數學與計算機學院, 攀枝花 617000)

1 Introduction

Throughout this paper, we denote by (x,y) (resp. [x,y]) the greatest common divisor (resp. least common multiple ) of integersxandy. LetZdenote the set of integers and |T| stand for the cardinality of a finitie setTof integers. Letfbe an arithmetical function andS={x1,…,xn}be a set ofndistinct positive integers. Let (f(xi,xj)) (abbreviated by (f(S))) denote then·nmatrix havingfevaluated at the greatest common divisor (xi,xj) ofxiandxjas its (i,j)-entry. Let (f[xi,xj])(abbreviated by(f[S])) denote then·nmatrix havingfevaluated at the least common multiple [xi,xj] ofxiandxjas its (i,j)-entry. Letξabe the arithmetical function defined byξa=xafor any positive integerx, whereais a positive integer. Then·nmatrix (ξa(xi,xj)) (abbreviated by (Sa)) and (ξb[xi,xj]) (abbreviated by [Sb]) are called power GCD matrix and power LCM matrix, respectively. A setSis calledfactorclosed(FC) if the conditionsx∈Sandd|ximply thatd∈S. We say that the setSisgcdclosedif (xi,xj)∈Sfor all 1≤i,j≤n. Evidently, any FC set is gcd closd but not conversely.

In 1875, Smith[1]showed that

whereμis the M?bius function andf*μis the Dirichlet convolution offandμ. Apostol[2]extended Smith’s result by showing that iffandgare arithmetical functions and ifβis defined for positive integerstandrby

then

det(β(i,j))=g(1)nf(1)…f(n).

and

ES(x):={z∈Z+:?y∈S,y

Divisibility is one of the most important topics in the field of Smith matrices. Bourque and Ligh[7]showed that ifSis FC, then (S)|[S] holds in the ringMn(Z) ofn×nmatrices over the integers. That is, there exists a matrixA∈Mn(Z) such that [S]=(S)Aor [S]=A(S). Hong[8]showed that such factorization is no longer true in general ifSis gcd closed. Letx,y∈Swithx

Definition1.1[12]LetTbe a set ofndistinct positive integers and 1≤r≤n-1 be an integer. We say thatTis 0-fold gcd closed ifTis gcd-closed. We say thatTisr-foldgcdclosedif there is a divisor chainR?Twith |R|=rsuch that max(R)| min(TR)and the setTRis gcd closed.

Note that Definition 1.1 is stated in a different way from that given in Ref.[12]. However, they are equivalent. It is easy to see that anr-fold gcd closed set is (r-1)-fold gcd closed, but the converse is not necessarily true. Hong[12]proved that the Bourque-Ligh conjecture is true whenn≤5 and ifn≥6 then the LCM matrix [S] defined on any (n-5)-fold gcd-closed setSis nonsingular. In 2005, Zhou and Hong[13]considered the divisibility among power GCD and power LCM matrices for unique factorization domains. On the other hand, Hong[14]initiated the study of the divisibility properties among power GCD matrices and among power LCM matrices. Tan and Lin[15]studied the divisibility of determinants of power GCD matrices and power LCM matrices on finitely many quasi-coprime divisor chains.

In this paper, our main goal is to study the divisibility among the determinants of power matrices (Sa) and (Sb), among the determinants of power matrices [Sa]and [Sb] and among the determinants of power matrices (Sa) and [Sb]. The main result of this paper can be stated as follows.

Theorem1.2Letaandbbe positive integers witha|band letn≥1 be an integer.

(i) Ifn≤3, then for any gcd-closed setSofndistinct positive integers, one has det(Sa)|det(Sb), det[Sa]|det[Sb],det (Sa)|det [Sb].

(ii) Ifn≥4, then for any (n-3)-fold gcd-closed setSofndistinct positive integers, one has det(Sa)|det(Sb),det[Sa]|det[Sb]and det(Sa)|[Sb].

Evidently, Theorem 1.2 extends Hong’s theorem[16]obtained in 2003 and the theorems of Chen and Hong[17]gotten in 2020.

Throughout this paper,aandbstand for positive integers. We always assume that the setS={x1,…,xn} satisfies thatx1<…

2 Auxiliary results

In this section, we supply two lemmas that will be needed in the proof of Theorem 1.2. We begin with a result due to Hong which gives the determinant formulas of a power GCD matrix and a power LCM matrix on a gcd-closed set.

Lemma2.1[18]LetS={x1,...,xn} be a gcd-closed set. Then

and

We can now use Hong’s formulae to deduce the formulae for det(Sa) and det[Sa] whenSis a divisor chain.

Lemma2.2[17]LetS={x1,...,xn} be a divisor chain such thatx1|...|xnandn≥2. Then

3 Proof of Theorem 1.2

In this section, we use the lemmas presented in previous section to show Theorem 1.2.

First, we prove part (i) as follows.

Letn=1. It is clear that the statement is true.

Letn=2. SinceS={x1,x2}is gcd closed, we have (x1,x2)=x1andx1|x2. It then follows that

and

The statement is true for this case.

Letn=3. SinceS={x1,x2,x3} is gcd closed, we havex1|xi(i=2,3) and (x2,x3)=x1orx2. Consider the following two cases:

Case 1 (x2,x3)=x1. Then

and

The statement is true for this case.

Case 2 (x2,x3)=x2. Thenx2|x3. It follows that

and

The statement is true for this case. Part (i) is proved.

Consequently, we prove part (ii).First of all, any (n-3)-fold gcd-closed setSmust satisfy eitherx1|x2|…|xn-3|xn-2|xn-1|xn, orx1|x2|…|xn-3|xn-2and gcd(xn,xn-1)=xn-2.

Case aSis a divisor chain. That is,x1|x2|…|xn-3|xn-2|xn-1|xn. Then by Lemma 2.2, one deduces that

and

The statement is true for this case.

Case bx1|x2|…|xn-3|xn-2and gcd(xn,xn-1)=xn-2. By Lemma 2.1, one has

and

Then

and

The statement is true for this case.

Finally, we prove part (iii).Letn≥4 be an integer,a=1,b=2 and

xk=3k-1,1≤k≤n-3,

xn-2=2·3n-4,xn-1=7·3n-4,xn=28·3n-4.

By Definition 1.1, one knows thatSis (n-4)-fold gcd closed. By Lemma 2.1, one has

det(Sb)=61·23n-6·3n2-3n-1,

and

det[Sb]=(-1)n-4·191·74·

23n-2·3n2-n-9.

Then we can compute and obtain that

and

Part (iii) is proved. This finishes the proof of Theorem 1.2.

猜你喜歡
計算機大學數學
“留白”是個大學問
計算機操作系統
《大學》
大學(2021年2期)2021-06-11 01:13:12
48歲的她,跨越千里再讀大學
海峽姐妹(2020年12期)2021-01-18 05:53:08
大學求學的遺憾
基于計算機自然語言處理的機器翻譯技術應用與簡介
科技傳播(2019年22期)2020-01-14 03:06:34
信息系統審計中計算機審計的應用
消費導刊(2017年20期)2018-01-03 06:26:40
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
Fresnel衍射的計算機模擬演示
主站蜘蛛池模板: 91香蕉国产亚洲一二三区 | 99re精彩视频| 国产亚洲精久久久久久无码AV| 欧美精品啪啪一区二区三区| 国产日本视频91| 人妻精品全国免费视频| 国产成人三级| 亚洲国产无码有码| 欧美α片免费观看| 在线欧美日韩| 欧美日本在线| 欧美啪啪精品| 国产成人亚洲欧美激情| 99热这里只有精品5| 无码区日韩专区免费系列| 国产亚洲精品自在久久不卡| 精品一区二区三区自慰喷水| 日韩av在线直播| 网友自拍视频精品区| 国产v精品成人免费视频71pao | 一区二区日韩国产精久久| 日韩第一页在线| 国产9191精品免费观看| 在线观看国产黄色| 日韩成人在线网站| 激情综合网激情综合| 99在线视频免费| 日本精品影院| 国产在线一区视频| 丁香六月综合网| 国产日本欧美在线观看| 97视频免费在线观看| 99er这里只有精品| 亚洲国产精品一区二区高清无码久久| 国产精品污视频| 久久伊人久久亚洲综合| 小说 亚洲 无码 精品| 国产人前露出系列视频| 国产手机在线小视频免费观看 | 一级黄色欧美| 国产精品伦视频观看免费| 亚瑟天堂久久一区二区影院| 又爽又黄又无遮挡网站| 亚洲一区网站| 2021国产乱人伦在线播放| 国产成人综合久久精品下载| 国产一区二区三区在线观看视频 | 国产情侣一区二区三区| 人妻一区二区三区无码精品一区| 国内a级毛片| 国产95在线 | 亚洲欧美日韩高清综合678| 激情国产精品一区| 久久亚洲国产最新网站| 国产日韩欧美精品区性色| 日本免费一级视频| a欧美在线| 日本欧美成人免费| 欧美一级色视频| 99中文字幕亚洲一区二区| 国内精自线i品一区202| 国产美女无遮挡免费视频| 亚卅精品无码久久毛片乌克兰| 亚洲欧美天堂网| 天天摸天天操免费播放小视频| 性激烈欧美三级在线播放| 香蕉久久国产超碰青草| 国产视频欧美| 亚洲综合专区| 成人免费黄色小视频| 国产成人综合日韩精品无码不卡| 亚洲男人天堂久久| 黄色a一级视频| 欧美一级在线| 国产午夜一级淫片| 久久久亚洲色| 亚洲综合经典在线一区二区| 成人国产精品网站在线看| 2021国产精品自拍| 日韩亚洲高清一区二区| 波多野结衣爽到高潮漏水大喷| 色网站在线视频|