999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

關于高斯最小值猜測的一個注記

2021-12-27 07:46:56鐘揚帆胡澤春
四川大學學報(自然科學版) 2021年6期
關鍵詞:數學

鐘揚帆, 馬 婷, 胡澤春

(四川大學數學學院, 成都 610064)

Letn≥2 and (Xi,1≤i≤n) be a centered Gaussian random vector. The well-knownidk’s Inequality[1-2]says that

E(max1≤i≤n|Xi|)≤E(max1≤i≤n|Yi|)

(1)

If we replace “max” by “min” inidák’s inequality, Gordonetal[3-4]. proved among other things that

(2)

E(min1≤i≤n|Xi|)≥E(min1≤i≤n|Yi|)

(3)

Now we state the main result of this paper.

Theorem1.1The Gaussian minimum conjecture holds if and only ifn=2.

The rest of this paper is organized as follows. In Section 2 and Section 3, we give the necessity proof and the sufficiency proof of Theorem 1.1, respectively. In the final section, we give some remarks.

2 Necessity proof of Theorem 1.1

At first, we calculateE(min1≤i≤3|Yi|). The density functionp1(x,y,z) of (Y1,Y2,Y3) can be expressed by

By the symmetry, we have

(4)

Define a function

and a set

Define a transformation

Denote byDTthe original image ofDunderT.Then we have

DT={(u,v)∈R2:T(u,v)∈D}={(u,v)∈

Now, we have

(5)

By (4) and (5), we get

(6)

Then the density functionp2(x,y) of (X1,X2) can be expressed by

By the symmetry, we have

(7)

where

We have

It follows that

(8)

We have

It follows that

(9)

We have

It follows that

(10)

We have

(11)

By (7)~(11), we obtain

E(min1≤i≤3|Xi|)=

(12)

Hence we get

E(min1≤i≤3|Yi|)-E(min1≤i≤3|Xi|)=

(ii)n≥4. Without loss of generality, we only consider the case thatn=4. We use proof by contradiction. Suppose that (3) holds forn=4. LetYi,Xi,i=1,2,3 be the same as in the above example. LetY4be a standard Gaussian random variable independent of (Y1,Y2,Y3). Then, by the assumption, for anya>0, we have

E((min1≤i≤3|Xi|)∧|aY4|)≥

E((min1≤i≤3|Yi|)∧|aY4|).

Lettinga→∞, by the monotone convergence theorem, we obtain that

E(min1≤i≤3|Xi|)≥E(min1≤i≤3|Yi|).

It is a contradiction. Hence for anyM>0, there existsa0>Msuch that

E((min1≤i≤3|Xi|)∧|a0Y4|)<

E((min1≤i≤3|Yi|)∧|a0Y4|).

3 Sufficiency proof of Theorem 1.1

In this part, we will show that the inequality(3) holds ifn=2.WriteX1=x1f1,X2=x2f2, where bothf1andf2have the standard normal distributionN(0,1).Without loss of generality, we can assume thatx1,x2>0. Further we can assume thatx1=1,x2=a∈(0,1].

and thus the density function of (f1,af2) is

p(x,y)=

At first, we assume thatρ∈[0,1). By the symmetry, we have

E(|f1|∧|af2|)=

Define

Then

We have

Define

whereα>0,β>0,αβ-γ2>0. Then we have

I(?)=J(a2,1,a?)+J(1,a2,a?),

thus

[J(a2,1,aρ)+J(1,a2,aρ)+J(a2,1,-aρ)+

J(1,a2,-aρ)]

(13)

In the following, we come to calculate the functionJ(α,β,γ). We have

J1(α,β,γ)-J2(α,β,γ)

(14)

where

We have

J1(α,β,γ)=

(15)

J2(α,β,γ)=

(16)

By (14)~(16), we get

which together with (13) implies that

[J(a2,1,aρ)+J(1,a2,aρ)+J(a2,1,-aρ)+

(17)

Ifρ=1, thenf2=f1a.s.. Note thata∈(0,1]. Then we have

E(|f1|∧|af2|)=aE(|f1|)=

In addition, ifρ=1, we have

Hence (17) holds for anyρ∈[0,1].

For anya∈(0,1] and anyρ∈(0,1), we have

Hence for anya∈(0,1],

is a strictly increasing function inρ∈[0,1]. Hence it reaches its minimum value atρ=0,i.e. the inequality (3) holds.

4 Remarks

Remark1(i) Prof. Shao Qi-Man[9]told us that the Gaussian minimum conjecture forn=2 can be proved based on the following fact:

P(min(|X1|,|X2|)>x)=1-P(|X1|≤x)-

P(|X2|≤x)+P(|X1|≤x,|X2|≤x)≥

1-P(|X1|≤x)-P(|X2|≤x)+

P(|X1|≤x)P(|X2|≤x)=

1-P(|Y1|≤x)-P(|Y2|≤x)+

P(|Y1|≤x)P(|Y2|≤x)=

1-P(|Y1|≤x)-P(|Y2|≤x)+

P(|Y1|≤x,|Y2|≤x)=

P(min(|Y1|,|Y2|)>x)

(18)

where the Gaussian correlation inequality was used.

Remark2Forn≥3, we can’t obtain the corresponding inequality similar to (18) by using the Gaussian correlation inequality. In fact, these inequalities do not hold by the necessity result of Theorem 1.1.

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 久久香蕉国产线看精品| 成人在线欧美| 欧美日韩国产精品va| 国产欧美自拍视频| 精品無碼一區在線觀看 | 免费中文字幕在在线不卡| 国产精品无码一区二区桃花视频| 97狠狠操| 欧美爱爱网| 久久人人妻人人爽人人卡片av| 东京热av无码电影一区二区| 99久久这里只精品麻豆| 黄色网页在线播放| 国外欧美一区另类中文字幕| 青青草国产一区二区三区| 亚洲国产亚综合在线区| 九九精品在线观看| 伊人久久大香线蕉综合影视| 天堂va亚洲va欧美va国产| 亚洲国产天堂久久综合| 亚洲91精品视频| 性色一区| 丁香六月激情婷婷| 五月天丁香婷婷综合久久| 国产成人精品男人的天堂| 国产黄视频网站| 手机永久AV在线播放| 97影院午夜在线观看视频| 国产区91| 欧美日韩国产高清一区二区三区| 国产一国产一有一级毛片视频| 99这里只有精品免费视频| 青青久久91| 亚洲色图欧美| 免费激情网址| 国产香蕉97碰碰视频VA碰碰看| 国产精品久久久久鬼色| 国产精品手机在线播放| 夜夜操狠狠操| 毛片卡一卡二| 国产一区二区色淫影院| 亚洲乱伦视频| 国产午夜精品一区二区三| 国产精品分类视频分类一区| 国产尤物jk自慰制服喷水| 成人毛片免费在线观看| 国产免费羞羞视频| 亚洲91精品视频| 成人国产精品2021| 国产91av在线| 欧美狠狠干| 亚洲人成影院午夜网站| 国产黄在线观看| 欧美另类视频一区二区三区| 国产精品欧美激情| 亚洲最猛黑人xxxx黑人猛交 | 亚洲精品在线91| 一级毛片免费观看久| 国产导航在线| 国产网友愉拍精品| a级毛片免费播放| 精品伊人久久久大香线蕉欧美 | 伊人久久大香线蕉成人综合网| 欧美日韩国产综合视频在线观看| 亚洲区欧美区| 91成人免费观看在线观看| 国产麻豆精品久久一二三| 亚洲va精品中文字幕| 国产肉感大码AV无码| 久久亚洲黄色视频| 国产乱人激情H在线观看| 免费A级毛片无码免费视频| 欧美激情视频一区| 久久网欧美| 免费国产在线精品一区 | 72种姿势欧美久久久大黄蕉| 国产91特黄特色A级毛片| 中文字幕久久亚洲一区| 中文纯内无码H| 色婷婷亚洲综合五月| 国产成人a毛片在线| 久久精品无码专区免费|