孫勤杰,周曦禾,翁錦萍,李曉旭,周捍東*
(1.南京林業大學材料科學與工程學院,南京 210037; 2. 南京林業大學林業資源高效加工利用協同創新中心,南京 210037;3.國家林業和草原局北京林業機械研究所,北京 100029 )
切屑及粉塵是木質材料及產品生產加工過程中的必然產物,如不加以有效控制和處置,不僅是車間及作業環境的污染源,而且還是粉塵爆炸與火災等事故和職業衛生健康安全的隱患源[1]。目前,家具、地板等木材加工企業雖均已采用除塵系統的吸塵罩對機床產生的切屑粉塵進行吸集,但吸集效果不甚理想,以至于影響產品質量甚至額外增加刀具維護成本[2-3],造成這一現狀的根本原因是,吸塵罩這類非標準的構件設計未能針對種類繁多的切削類型與各自的排屑特征。對于設計欠合理的吸塵罩,可以通過加大其吸風量來提高吸塵罩的吸集效果,但這勢必增加除塵系統的電能消耗而造成能源浪費[4]。因此,在涉塵的環保、生產安全、污染減排和職業衛生健康備受關注的背景下,針對木材切削機床種類繁多、排屑特征差異極大且排屑受切削參數影響等特點,以及吸塵罩的設計缺乏科學性這一現狀,通過對刀具排屑的數值模擬,掌握排屑特征并以此作為吸塵罩優化設計的依據,從源頭上解決粉塵散發造成污染這一難題,具有十分重要的現實意義和應用價值。
目前,國內外在木材切屑的形成、粉塵量及其粒徑分布和機床周圍粉塵散發等研究方面已有較多報道。Pfeiffer 等[5]試驗研究了側銑切屑形成機理與切屑破壞過程;Rogoziński等[6]研究了木質復合材料的CNC鉆孔排屑過程所產生的粉塵量與粒徑分布;Rautio等[7]建立了立式銑削產生粉塵量與平均切屑厚度關系的數學模型;曹平祥等[8]和郭曉磊等[9]采用高速攝像與圖像分析方法,在不同的銑削轉速下,對中密度纖維板、刨花板、杉木細木工板邊部銑削的切屑流速度和擴散角變化規律進行了研究;Darmawan等[10]試驗研究了立式螺旋銑刀不同螺旋角度對松木切屑流擴散角度的影響;Rudak等[11]針對刨花板立式銑削排屑方向與切屑運動速度進行了試驗研究,在此基礎上建立了立式銑削排屑過程的數學模型。在切削排屑氣固流場研究方面, Belut等[12]通過數值模擬了機床周圍顆粒運動軌跡與氣流場;李小民等[13]采用了滑移網格技術和離散相模型,對封邊機吸塵罩內氣流場及切屑顆粒運動分布進行了數值模擬。
綜上所述,目前國內外在木材切屑的產生與切屑流的研究方面,基本是在試驗基礎上開展的,盡管部分研究采用新的技術手段,但在切屑運動特征研究和模型的建立上依然是采用在實物測定進行的。也有學者采用數值模擬方法對封邊機排屑流場開展了相關研究,但對于立式銑削排屑氣固流場的模擬卻鮮有報道。為此,筆者以中密度纖維板(medium density fiberboard,MDF)基材為切削對象,采用計算流體力學模擬技術,研究了立式銑削排屑場氣固流動特征,以期為立式銑削和其他木材切削類型的吸塵罩優化設計提供一種高效、科學的方法。
本研究運用計算流體力學FLUENT仿真軟件,數值模擬直徑6 mm雙刃柄銑刀在常用轉速范圍(10 000~24 000 r/min)下其周邊空氣流動特征、環流場氣流速度及分布,以及環流最大速度與銑刀轉速之間的關系。在進給速度9 m/min的條件下,模擬直徑6 mm雙刃柄銑刀(圓周刃前角8°、后角15°,底刃前角15°、后角20°)在中密度纖維板表面銑削溝槽(寬度6 mm、深度5 mm)的排屑氣固流場,研究分析平面立式銑削的排屑特征、切屑顆粒的運動速度與空間分布規律。
針對板式家具板面開槽、銑型常用的鏤銑加工,選用T001型TCT直刃銑刀。采用HandyScan 300型三維激光掃描設備對銑刀進行掃描,建立銑刀三維輪廓幾何模型,如圖1所示。
計算域的大小與網格疏密決定著模擬的準確性和精度,計算域的確定與網格劃分對于數值模擬至關重要。基于平面立式銑削的加工特點和機床吸塵罩優化設計的目標,為掌握立式銑削刀刃處的排屑特征,模擬以長寬高240 mm×280 mm×100 mm長方體為排屑場氣固流體的計算域(圖2)。鑒于切削刃的復雜輪廓,計算域的網格劃分采用非結構化四面體,并對切削區進行了網格局部細化加密。
數學模型的確定是準確模擬銑刀排屑場中顆粒與氣流流動規律的重要保證。據筆者對板式家具鏤銑排屑量的實測與計算,計算域內兩相流中氣固體積濃度小于0.1,屬于稀相氣固流場;因而,模擬采用歐拉-拉格朗日計算模型,即在歐拉坐標系下用連續方程對氣體運動進行求解,在拉格朗日坐標系下采用離散模型計算固體顆粒運動及軌跡[14]。
在保證計算準確性的前提下,本項研究對排屑場做以下簡化假設:
假設1:由于空氣的黏度和被加工對象材質的密度與硬度相對均較低,且柄銑刀的每刃切削量較小,以及空氣對高速旋轉刀具的冷卻作用,因而忽略銑刀旋轉過程中與空氣、被切削對象之間摩擦所產生的熱量[15];
假設2:考慮木業加工行業中立式銑削速度普遍較高,所產生的切屑顆粒粒徑極差較小且質量較輕,同時也參考國際同行在木材切屑流仿真的實踐經驗[13,16],故將切屑顆粒簡化為球形顆粒。
根據假設1,環流場中的空氣流動服從質量守恒、動量守恒,用公式(1)~(3)3個方程進行描述。根據假設2,氣流場中顆粒運動軌跡采用顆粒運動方程公式(4)進行計算[14]。
1)質量守恒方程
(1)
式中:ρ為空氣密度;t為時間,xi為i方向網格單元長度;ui為i方向氣流速度。
2)動量守恒方程
(2)
式中:ui和uj分別為i和j方向的氣流速度;xi和xj分別為i和j方向的網格單元長度;ρ為空氣密度;p為氣流壓力;τij為應力張量;gi為i方向的重力體積力;Fi為i方向的外部體積力以及其他模型相關源項。
3)湍流方程
立式銑削環流場是銑刀在高速旋轉過程中所產生的,為非穩定的不可壓縮湍流流場,因此,采用realizable k-ε湍流模型對環流場湍流進行模擬[17]。其湍動能及其耗散率輸運方程為:
(3)
(4)
式中:k是環流場湍動能;ε是湍流耗散率;t是時間;uj是j方向的氣流速度;μ是空氣的動力黏度;μt是湍流黏性系數;xj是j方向的網格單元長度;Gk是平均速度梯度引起的湍動能;Gb是浮力影響引起的湍動能;ρ為空氣密度;YM是可壓縮湍流脈動膨脹耗散率的影響;C1、C2和C1ε是常數;C3ε是浮力對耗散率的影響;v是空氣運動黏度系數;S是變形張量;σk、σε分別是湍動能及其耗散率的湍流普朗特常量。
4)切屑顆粒運動方程
由于切屑顆粒為離散、非連續的運動狀態,因此,通過氣流與顆粒之間相互作用的力平衡方程計算顆粒的運動軌跡。其計算公式如下:
(5)
式中:fD(u-up)表示氣流對顆粒的曳力;gx(ρp-ρ)/ρp表示壓力梯度力;t為時間;gx為重力加速度;ρ和ρp分別為空氣和顆粒的密度;fx為附加質量力;u和up分別為氣流、顆粒的速度。
fD的計算公式為:
(6)
式中:dp為顆粒直徑;μ為空氣動力黏度;CD為曳力系數;Re為雷諾數。
模擬以中密度纖維板(密度為850 kg/m3)為銑削對象,根據立式銑削的加工特點,計算域的四周與上表面作為流場的進出口邊界,邊界類型為壓力,壓力值為標準大氣壓;選取的銑削進給速度為9 m/min,產生的切屑顆粒經實測在0.1~300 μm范圍并基本服從rosin-rammler分布,平均切屑產生量為3.83 g/s。
采用網格滑移的方法模擬刀具的旋轉運動,以銑刀的外表面為旋轉壁面,并對壁面進行壁面函數法處理。考慮空氣的黏性,假設銑刀外表面與氣流之間無相對滑移。
為通過上述建立的數學模型中偏微分方程組對排屑域氣固流場的氣流速度、壓力、顆粒運動參數等值進行計算,采用有限體積法將偏微分方程組轉化為離散方程,分別采用PRESTO!壓力插值方法,一階迎風離散格式的動量、湍動能和湍流耗散率插值方法在網格節點上進行構建離散方程,并使用SIMPLIC算法對離散方程組進行計算。為保證邊界條件、網格質量、數學模型選擇的合理性,通過監測計算過程中的動量、質量、耗散率等殘差的收斂性來判定計算結果的準確性,保證計算殘差均在10-3以下[18]。為了提高流場計算速度,先使用穩態求解器計算流場至穩定狀態,再通過瞬態求解器計算非穩態項,時間步長為1×10-4s。
流場中氣流和固體顆粒的運動軌跡、各點的速度大小與方向等信息均可從仿真界面上動態顯示。為定量地分析排屑流場中氣流與顆粒運動特征參數,運用FLUENT軟件后處理模塊的REPORTS功能,通過在計算域中依據需要而設置的截面,記錄該截面上各點氣流與顆粒的速度、方向、壓力和通過該截面的顆粒數、氣流量等參數,以DPM、Excel文檔形式記錄和導出。
在某板式家具生產線KN-2409DE型板面開槽機上,在與模擬相同的銑削、基材和無吸塵罩的條件下,使用i-speed3型高速攝像儀(最高幀數2 000 fps),利用基材區段顏色差異的示蹤原理,采集銑刀排屑視頻,采用i-SPEEDViewer視頻圖像分析軟件,獲得切屑流運動方向、顆粒運動速度,在相同的銑削條件下比較顆粒的模擬速度與實測速度之間的誤差。
為保證模擬的準確性,滿足工程應用的精度要求,同時減小計算工作量,提高模擬效率,排除網格數對模擬計算結果的影響,選用適宜的網格數是關鍵。為此,本項研究選用6個網格數(80萬,100萬,120萬,150萬,210萬和300萬),分別對立式銑削的排屑場進行了數值模擬計算,并以氣流速度值作為檢驗指標,進行網格數與計算結果無關性的驗證。提取了在同一轉速、不同網格數的條件下排屑場中各點的氣流速度,并比較同一點的氣流速度。當速度的誤差值小于3%、能夠滿足工程應用的要求時,則可忽略網格數對計算結果準確性產生的影響[18]。
圖3是以14 000 r/min低轉速、24 000 r/min高轉速為例,采用6個不同的網格數進行排屑場模擬計算,通過分析在垂直于銑刀軸線平面、沿其徑向的氣流速度分布,檢驗網格數對數值模擬的無關性。表1是在所選上述6個網格數條件下,通過數據提取獲得的對應的排屑場在垂直于銑刀軸線、沿其徑向平面的速度最大誤差。誤差的比較是以網格數為80萬個時流場中速度值為基準。
由圖3、表1可見,對于銑刀轉速為14 000和24 000 r/min,當網格數在100萬個以下時,排屑場環流徑向各點的氣流速度均明顯與其他網格數條件下的速度分布重合度不高,計算結果有較大誤差,誤差分別為24.8%和8.5%。當網格數大于100萬個時,排屑場環流徑向各點的氣流速度基本一致,徑向速度分布曲線基本重合,最大誤差分別為3.6%和2.6%。由此可見,當轉速低于14 000 r/min,適宜的網格數150萬~300萬;當轉速高于14 000 r/min,適宜的網格數120萬~300萬。兩種轉速下氣流場速度誤差最小,分別為1.3%與0.8%,故網格數為150萬均為最佳。
筆者認為,網格數對仿真計算精度的影響的原因:一方面是由于非結構化網格過于致密造成網格過度扭曲,從而降低了計算精度;另一方面是因網格尺度過小造成數值計算的截斷誤差,故本研究排屑場數值模擬選用的網格數為150萬。
銑刀的高速旋轉誘導空氣在其表面形成一個環形氣流場,筆者模擬分析了轉速為10 000和24 000 r/min銑刀環流場速度分別情況。圖4是銑刀轉速在24 000 r/min條件下環流速度矢量圖,圖5a、b分別是環流橫截面速度矢量圖和環流徑向速度分布。

圖4 環流場氣流速度矢量圖(銑刀轉速24 000 r/min)Fig. 4 Diagram of vector velocity in annular airflow field (milling speed of 24 000 r/min)

圖5 環流場氣流速度分布圖(銑刀轉速24 000 r/min)Fig. 5 Diagram of air velocity distribution in annular airflow field (milling speed of 24 000 r/min)
由圖4可見,在銑刀切削刃外圍存在一個與銑刀同軸、旋轉同向的環流氣流場。從圖5可見,環流場的外徑為16~40 mm,環流場外徑為銑刀直徑的2.7~6.7倍。在切削刃表面存在一層極薄的黏性底層[19-20],環流最大速度為15.72 m/s,位于切削刃圓附近,環流層內氣流速度隨其半徑的增加呈指數函數關系降低。
圖6是銑刀轉速分別為10 000,12 000,14 000,16 000,18 000,20 000,22 000和24 000 r/min 條件下,環流場氣流的最大速度、平均速度和銑削速度分布。

圖6 銑刀在不同轉速下環流場最大與平均氣流速度Fig. 6 Maximum and average air velocity in annular airflow field at different milling speeds
由圖6可見,銑刀環形流場中最大和平均氣流速度均隨著銑刀轉速的增高呈線性增大,銑刀轉速由10 000 r/min升高至24 000 r/min,最大速度由6.93 m/s上升到15.72 m/s,平均速度由1.82 m/s增加為3.14 m/s。由圖中數據可發現,位于切削圓處的最大氣流速度均大于相同銑刀轉速下切削刃口的切削速度。筆者分析這是由于立式銑刀的結構所致,隨著銑刀的高速旋轉,雙刃銑刀刀片以一定的前角強制刀具排屑槽內空氣作圓周運動,在離心力的作用下被甩向四周,這一作用有助于刀具的排屑和冷卻。
為解決平面立式銑削作業環境粉塵污染的難題,準確掌握其排屑特征是提高吸塵罩吸塵效果的重要依據。筆者針對板件家具表面銑削溝槽加工,在上述6個不同銑刀轉速下,模擬了直徑6 mm雙刃柄銑刀在無約束空間的排屑情況。圖7是轉速在24 000 r/min下模擬得到銑刀排屑切屑顆粒的分布與運動情況。

圖7 立式銑削排屑情況(銑刀轉速24 000 r/min)Fig. 7 The situation of chip removal in vertical milling (milling speed of 24 000 r/min)
由圖7可見,切屑顆粒在銑刀的撞擊下獲得動能并被強制排出切削區,排屑主要集中在兩個區域,即主排屑區和次排屑區。主排屑區是以切削區為頂點的橢圓狀錐體,切屑顆粒在水平錐角為83°~86°、垂直錐角為20°~22°的錐體內向外拋射。在主排屑區內,排屑由密集流和稀疏流兩部分構成。呈柱狀的密集流中以較為粗大顆粒為主,顆粒以17.85 m/s的初始速度沿溝槽輪廓表面噴射,拋射方向與進給方向之間呈14.5°夾角。在密集流噴射的過程中,切屑中粒徑細小、質量較小的顆粒沿著柱狀密集流的軸線以8.22 m/s的速度呈散射狀的稀疏流形式發散。在環流的曳力牽引下,占顆粒數4%~6%細微顆粒由切削區和稀疏流擴散至次排屑區(圖8)。

圖8 次排屑區細微顆粒物分布情況(銑刀轉速24 000 r/min)Fig. 8 Distribution of fine particulate matter in secondary chip discharge area (milling speed of 24 000 r/min)
利用吸塵罩吸集切屑是加工機床粉塵污染源頭控制的重要途徑,因此排屑氣固流場中切屑顆粒的速度是吸塵罩結構優化與氣流組織的重要依據。圖9和圖10分別是銑刀為10 000,12 000,14 000,16 000,18 000,20 000,22 000和24 000 r/min 轉速下,通過模擬獲得的主排屑區密集流和稀疏流中切屑顆粒的平均速度分布情況。
由圖9可以看出,在主排屑區的密集流中,切屑顆粒由切削區排出的初始速度與銑刀轉速呈正相關函數關系,當轉速由10 000 r/min提高至24 000 r/min時,顆粒的初始速度由7.57 m/s 升高至17.85 m/s。在某一銑刀轉速下,密集流中顆粒的速度隨噴射距離的增加呈線性降低。以24 000 r/min銑刀轉速為例,當切屑顆粒的初始速度為17.85 m/s,沿著柱狀軌跡噴射至10倍的銑刀直徑處時,顆粒的速度降至6.63 m/s,僅為初始速度的37%。
由圖10可見,在主排屑區稀疏流中,細小顆粒的初始速度和沿銑刀徑向噴散距離的速度程度衰減與密集流具有相同的規律。以24 000 r/min銑刀轉速為例,顆粒在切削區排出的初始速度為8.22 m/s,噴散至10倍銑刀直徑處時,速度降至1.40 m/s,僅為初始速度的17%。圖9和圖10顯示,切屑顆粒噴射和發散至10倍銑刀直徑處,密集流和稀疏流中顆粒的速度衰減程度不同。

圖9 不同銑刀轉速下主排屑區密集流顆粒平均速度Fig. 9 Average velocity of dense particles in the main chip discharge area at six milling cutter rotation speeds

圖10 不同銑刀轉速下主排屑區稀疏流顆粒平均速度Fig. 10 Average particle velocities of sparse flow in the main chip discharge area at six milling cutter rotation speeds
在上述6個不同銑刀轉速下,通過視頻圖像分析了排屑方向與顆粒分布、密集流與稀疏流顆粒速度變化等特征。試驗表明,銑削的排屑分布和顆粒分布與模擬相吻合;密集流顆粒初始速度和10倍銑刀直徑處速度的實測與模擬誤差分別為3.5%~7.1%和3.3%~6.7%,稀疏流顆粒初始速度和10倍銑刀直徑處速度的實測與模擬誤差分別為3.2%~5.6%和3.1%~4.6%,誤差值與銑刀轉速呈正相關(表2)。

表2 顆粒運動速度測定值與模擬值對比Table 2 The comparison between the measured and simulated velocities of the particle
1)沿立式銑刀軸向存在一個與銑刀同向的旋轉環形氣流場,最大切向速度位于銑刀切削圓外層附近,隨環流半徑增大呈指數減小。銑刀轉速在10 000~24 000 r/min范圍,環形氣流場的直徑為銑刀直徑的2.7~6.7倍,最大切向速度為6.93~15.72 m/s,并與銑刀轉速呈正相關函數關系。
2)平面立式銑削以主排屑區和次排屑區為排屑特征,主排屑區是以切削區為頂點的橢圓狀錐體,銑削速度在10 000~24 000 r/min范圍,切屑在水平錐角為83°~86°、垂直錐角為20°~22°的范圍內拋射和發散;次排屑區位于環流的外部。
3)主排屑區的排屑由密集流和稀疏流兩部分構成,銑削速度在10 000~24 000 r/min范圍內,密集流和稀疏流中顆粒的初始速度與銑刀轉速呈正相關函數關系,分別在7.57~17.85 和3.34~8.22 m/s范圍;密集流和稀疏流中顆粒的速度隨噴射與發散距離的增加呈線性降低,沿著顆粒運動路徑,距切削區10倍銑刀直徑處密集流和稀疏流的顆粒分別在1.14~6.63和0.75~1.40 m/s范圍。
4)通過立式銑床排屑的試驗測定,排屑的方向、顆粒分布等特征與模擬相吻合;密集流和稀疏流的顆粒初始速度及10倍銑刀直徑處速度的實測與模擬誤差為3.1%~7.1%。