馮壯壯,史海濱,苗慶豐,孫 偉,劉美含,代麗萍
基于HYDRUS-1D模型的河套灌區典型夾砂層耕地水分利用分析
馮壯壯,史海濱※,苗慶豐,孫 偉,劉美含,代麗萍
(1. 內蒙古農業大學水利與土木建筑工程學院,呼和浩特 10018;2. 高效節水技術裝備與水土環境效應內蒙古自治區工程研究中心,呼和浩特 10018)
為研究夾砂層耕地水分利用規律,以河套灌區典型夾砂層土壤耕地為研究對象,利用在春玉米生育期田間監測數據,應用土壤水分運動數值模型,探究對夾砂層土壤田間蒸散發、作物耗水及深層土壤水分的補給與深層滲漏規律。選擇2種土壤的夾砂層埋深梯度S1(40~95 cm)、S2(60~110 cm),設置了3個灌水水平W1(252.5 mm)、W2(315.85 mm)、W3(378.75 mm)開展田間試驗,同不含夾砂層處理B作對照,并應用HYDRUS-1D模型模擬春玉米生育期田間蒸散發,土壤水分深層滲漏及地下水補給耕層水量與根系吸水量,與不含夾砂層處理對比分析夾砂層對田間水分利用影響。結果表明:隨著砂層埋深增加,棵間蒸發損失減小,葉面蒸騰水量增加;不含夾砂層處理玉米田間毛管向上補給水量較淺埋砂層與深埋砂層處理分別大57.01%、118.53%,灌水量為315.85 mm時含夾砂層處理的土壤水分深層滲漏最小;玉米生育期內根系吸水量隨砂層埋深的增加而減少,不含夾砂層處理根系吸水量最大。淺埋砂層與深埋砂層處理分別為蒸散量的55.51%、61.31%,不含夾砂層處理為66.69%;暫時性虧缺水量從大到小依次為:S2、S1、B,水分從大到小依次為:B、S2、S1。綜合考慮夾砂層土壤水分遷移、作物水分利用規律,建議在夾砂層耕地春玉米灌溉根據砂層分布因地制宜定灌溉制度,當夾砂層埋深在40~110 cm范圍時,推薦春玉米在生育期灌溉定額為315.85 mm。該研究結果可為河套灌區含有夾砂層農田灌溉制度的制定提供理論指導。
灌溉;土壤含水率;夾砂層土壤;土壤蒸散;地下水補給;深層滲漏;HYDRUS-1D模型
水資源短缺和土壤鹽堿化已成為限制河套灌區灌溉農業可持續發展的重要問題[1],準確評估灌區灌溉用水,對灌區農業生產與水資源優化利用意義重大[2]。關于非飽和帶土壤中水分動態的研究,大多研究都集中于均質土壤。而自然界中土壤剖面并非呈現簡單的均一分布,由于河流黏、砂交錯,黃河灌淤等[3]形成復雜多變的層狀土壤剖面結構[4],土層夾砂結構成為河套灌區常見的一種土體構型[5]。已有研究表明,夾砂層與砂層粒徑都會對土壤水分入滲速率、入滲量產生影響,砂層越接近地面或砂層粒徑越大,越有利于土壤水分入滲[6]。砂層對水分蒸發的影響取決于砂層與土層導水率的大小,砂層對土壤表層鹽分的抑制率大于土層[7-8]。
由于土壤、作物、氣象、地下水、灌溉和管理的空間差異,水文過程變化復雜,農田試驗耗時費力[9],確定有效灌溉策略更為便捷的替代方法是對影響灌溉策略土壤水平衡與作物生產力進行建模[10]。HYDRUS-1D模型可以通過模擬多層變飽和土中的一維水運動對實際蒸散量和深層滲流進行預測,Zhou等[11]通過HYDRUS-1D對作物生長季內土壤水分蒸散量與深層滲漏量模擬結果表明田間蒸散與土壤水分深層滲漏是作物水分循環的主導過程,Hou等[1]應用HYDRUS-1D對海流圖流域玉米水分利用模擬得出當地下水埋深超157 cm時,玉米就不能利用地下水進行蒸騰。目前,含夾砂層土壤的水分分布及運移規律的研究大多通過在室內土柱試驗或者數值模擬進行,對于有實際作物種植和實際田間管理以及年內氣候變化等條件耦合作用下的含夾砂層耕地研究較少。
本研究基于河套灌區典型夾砂層土壤田間觀測數據,通過HYDRUS-1D軟件對不同夾砂層分布下的玉米農田蒸散發、土壤水分深層滲漏與地下水補給、玉米根系吸水等過程進行數值模擬與分析,研究了典型夾砂層耕地間水分利用與轉化規律,以期為當地進一步制定農田灌溉用水策略、有效提高灌溉水利用率提供理論依據。
1.1 試驗區概況
試驗區設在內蒙古河套灌區中部巴彥淖爾市曙光試驗站,位于東經107o13′23″,北緯40o43′26″。所在地區屬溫帶大陸性干旱-半干旱氣候區,氣候干燥、降水稀少、蒸發強烈、冬季漫長寒冷。多年平均降水量為133.90 mm,多年平均氣溫為8.64 ℃,多年作物生育期平均氣溫為19.11 ℃。試驗地土壤屬于黃河灌淤土,具有典型夾砂結構,地下水平均埋深約為2.4~2.9 m,地下水礦化度為1.108 g/L。2020年試驗區生育期內降雨量、潛在作物蒸散量、地下水埋深如圖1所示。
供試作物為春玉米,品種為“西蒙3358”,采用寬窄行種植,寬窄行距分別為60、40 cm。試驗田間管理參照當地農業生產方式進行。為研究土壤夾砂層分布對玉米田間土壤水分運移分布影響及玉米生長對不同夾砂層土壤水分的響應,參照當地的灌水設置了3個灌水水平W1(252.5 mm)、W2(315.85 mm)、W3(378.75 mm),兩個夾砂層埋深梯度處理(S1、S2),砂層埋深較淺為S1(40~95 cm),砂層埋深較深為S2(60~110 cm),同時設置與夾砂層處理灌水相同的3個不含夾砂層的處理BW1、BW2、BW3。各處理灌水量及灌水時間詳見表1。其中不同夾砂層處理與不含夾砂結構土壤處理均在試驗區內選取,在試驗布置前期,通過土鉆鉆孔法確定試驗區砂層的空間分布,選定有代表性砂層分布的夾砂層耕地作為試驗地布置試驗,由表1知,夾砂層埋深與厚度存在由取樣誤差造成的差異,為減小取樣誤差對模擬的影響,在HYDRUS -1D模型中劃分統一的砂層埋深與厚度(S1砂層埋深均設置為40 cm,厚度均設置為55 cm;S2砂層埋深均設置為60 cm,厚度均設置為50 cm)。每個處理小區面積為48 m2,長寬比為3∶1。試驗在玉米生育期內進行,播種時間為2020年5月4日,收獲時間為2020年9月25日。
1.3.1 氣象與含水率、土壤基質勢
氣象數據通過試驗站自動氣象站(HOBO H21-001,Onset,USA)獲取,包括最高氣溫、最低氣溫、相對濕度、風速、太陽輻射、氣壓、降水量等。地下水位由觀測井觀測。土壤體積含水率由TRIME-TDR 型時域反射儀(IMKO GmbH,Ettlingen,德國)測定。使用土壤張力計對土壤的基質勢進行觀測,負壓計(張力計)在砂層的上下部分別埋設,張力計及TRIME管埋設如圖2所示,典型夾砂層耕地土壤物理性質如表2所示。玉米生育期具體時段[12]如表3所示。

表1 不同處理的灌水日期及灌水量

表2 典型夾砂層土壤物理特性

表3 玉米生育期劃分
1.3.2 玉米葉面積指數
玉米生育期內第20~30天記錄玉米株高,分別測量葉片的長度與葉片的最寬寬度計算單株玉米總葉面積LA,計算公式[13]如下:
式中L為第片葉片的長度,cm;W為第片葉片的寬度,cm;為玉米株數;LA為單株玉米總葉面積,cm2;0.75為回歸系數。
玉米葉面積指數計算公式為

式中LAI為葉面積指數;I為株距,cm;R為行距,cm。
1.3.3 棵間蒸發量
棵間土壤蒸發量通過布置在各處理的自制微型土壤蒸發桶測定。該裝置由PVC管制成,分為內筒與外桶兩個部分,管內徑分別為110、125 mm。每日17時使用精度為0.01 g的電子秤稱取蒸發桶質量,為保證準確性,除了灌水與降雨后換土外,保持每3 d換1次土的頻率。
1.3.4 土壤水分特征曲線
土壤水分特征曲線由壓力薄膜儀測定。首先將土樣浸泡在蒸餾水中至飽和,稱質量后放入1500F1型壓力薄膜儀(1500F1 Extractor,SoilMoisture,美國)中,對土樣施加一定的壓力,迫使土壤水分滲出,達到平衡時,土壤基質勢與所加壓力值相等,測量此時土壤含水率,標定土壤的水分特征曲線。
應用EXCEL2016軟件進行數據整理,Origin2018軟件對本文中的插圖進行繪制,DPS(7.05)數據處理系統做顯著性差異分析,HYDRUS-1D軟件建立模型模擬。
1.5.1 HYDRUS-1D水分運動方程
HYDRUS-1D模型[14-15]基于Richards方程,模擬多層變飽和土壤中的一維水分運動,用于預測深層滲漏、補給與蒸散量。其數學模型描述如下:

式中為體積含水率,cm3/cm3;為時間,d;為非飽和導水率,cm/d;為基質勢,cm;為垂直坐標,cm(假設地表為0,向下為正);()為根系吸水源匯項,cm/d。
1.5.2 根系吸水速率
采用Feddes模型計算根系吸水速率,計算公式[16]為
式中()為水分脅迫反應函數;()為標準化的根系吸水分布函數;p為作物潛在蒸騰速率,cm/d。
Feddes模型參數采用HYDRUS-1D模型系統所提供的參數[14]。根系吸水厭氧點土壤基質勢P0為-10 cm,根系吸水最適點開始時土壤基質勢P0pt為-25 cm,根系吸水最適點結束時土壤基質勢P2H、P2L分別為-500、-500 cm,凋萎點對應土壤基質勢P3為-24 000 cm,兩個假設的潛在作物蒸騰速率r2H、r2L分別為0.5、0.1 cm/d。
1.5.3 葉面蒸騰與土壤蒸發計算
參考作物蒸散量ET0由FAO推薦的Penman-Monteith公式[17]計算,由于玉米覆蓋土壤表面,因此被劃分為潛在蒸發量p(mm)與潛在蒸騰量p(mm)。公式如下:


式中為冠層輻射消光系數,本文取0.463[18];ETc為作物實際蒸散發,mm;c為作物系數,不同生育期取值分別為:苗期至拔節期0.7、拔節期至灌漿期1.2、灌漿期至成熟期0.6[17]。
1.5.4 模型參數率定與檢驗
模擬范圍為耕層深度,為地面以下120 cm,垂向離散為121個節點,離散單元為cm,時間離散單元為d。模擬時段為玉米作物生育期(5月4日—9月25日),共145 d。對土層與砂層的土壤水力參數進行了校準和驗證,如表4所示。
通過決定系數(2)、均方根誤差(Root Mean Square Error,RMSE)和納什效率系數(Nash-Sutcliffe Efficiency coefficient,NSE)對模型模擬效果進行評價,其中NSE越接近1,表示模型模擬精度越高。

表4 不同處理下各土層土壤水力特征參數
注:r為土壤殘余含水率,s為土壤飽和含水率,cm3·cm-3;、、為相對經驗參數,一般為0.5;s為飽和導水率,cm·d-1。
Note:ris residual water content andsis saturated water content, cm3·cm-3;,, andare relative empirical parameters, andis generally 0.5;sis saturated hydraulic conductivity, cm·d-1.
受玉米生育期內氣溫變化與土壤質地影響[19],試驗區玉米在生育期內不同處理的蒸騰量大于根系吸水量,產生了不同程度的暫時性水分虧缺。暫時性水分虧缺會造成玉米葉片暫時性萎蔫,在玉米關鍵生育期內出現水分虧缺還會影響玉米籽粒的形成與生長發育。暫時性水分虧缺水量計算公式為

式中WD為暫時性虧缺水量,mm;為根系吸水量,mm。
玉米水分生產力公式[20]為

式中w為水分生產力,kg/(hm2·mm);Yield為玉米產量,kg/hm2;為灌溉水量,mm;為降雨量,mm。
使用2020年6月7日—9月16日測量的土壤含水率對模型水力參數進行了率定,選取其中S1W2處理水分率定過程繪圖,利用均方根誤差RMSE和決定系數2、納什效率系數NSE評估模型精度。土壤含水率模擬值與觀測值的精度驗證如圖3所示。利用具有代表性的4組實測土壤基質勢與土壤水分特征曲線對模型生育期土壤水分模擬進行間接驗證[21],見圖4和圖5。結果表明模型模擬精度較高,土壤含水率模型計算值與實測值的決定系數2、NSE值均約為0.9,RMSE均較小,土壤基質勢與土壤水分特征曲線模擬值2均在0.7以上,表明HYDRUS-1D模擬含有夾砂層土壤水分運動有較好的適用性。同時,由于夾砂層土壤結構較為復雜,當土壤含水率較小時,TRIME管與土壤接觸不緊密,造成測得如圖3所示土壤含水率為0的情況出現[22],率定后的土壤水力參數如表4所示。
通過HYDRUS-1D模擬得出,玉米田間葉面蒸騰與棵間蒸發速率隨玉米生長發育與田間微氣候改變,最大蒸騰蒸散速率都發生在灌漿期間,玉米生育期棵間蒸發a與p分布如圖6所示,最大土壤蒸發速率在玉米苗期與拔節期之間,是因為苗期與拔節期玉米的株高與葉面積較小,使得地表植被覆蓋率較小,玉米株高葉面積如圖7所示,在玉米拔節期前,砂層深埋(S2)處理的葉面積指數較砂層淺埋(S1)處理更大,不含砂層(B)處理與S2處理的葉面積指數較為接近。如圖8所示,在3個灌水水平W1、W2、W3條件下,玉米全生育期內,S2處理較S1處理的ETp分別增加8.74%、8.97%、7.29%,p減小14.76%、8.59%、19.06%,a分別減小8.30%、8.32%、16.93%,p分別增加了13.40%、12.36%、2.24%,B處理較S1處理p分別減小35.99%、56.55%、6.37%,p分別增加24.32%、10.19%、2.48%。隨著灌水量的增加,各夾砂層處理p均減小,p均增加,而不含夾砂層處理在不同灌水量下p與p變化較小,沒有表現出明顯增減趨勢。不同處理ETP和p均表現為B處理最大,S2處理次之,S1處理最小,p則呈現出相反的規律,其中S2處理較S1處理棵間土壤蒸發損失水量減小13.60%。結果顯示,土壤質地與灌水量共同對田間蒸散發變化與分配產生影響[23],隨灌水量增加,田間ETp總體增大,向p分配更多,而當砂層淺埋時玉米蒸騰水分利用少,蒸發損失多。
利用HYDRUS-1D模擬土壤水分通量,通過試驗觀測的土壤體積含水率與土壤深度的乘積可得到當前土層深度的土壤貯水量,結果見圖9。通過分析主要根系層分布深度(0~40 cm)與耕層底部120 cm處土壤水分通量,探討不同夾砂層分布與不同灌水量處理下的主要根系區、耕層水分補給與深層滲漏規律。當上層土壤含水率較小時,由于水勢差驅動,深層土壤水分通過上升毛管水運動,會向上層土壤補給[24],當灌水或者降雨的水量超過土層所能持蓄的最大水量時[25-26],會導致土壤水分向深層滲漏。
在40和120 cm深度處,砂層淺埋(S1)處理玉米生育期土壤水分向上層平均累積補給水量分別為206.23和150.73 mm,砂層深埋(S2)處理分別為142.60和108.30 mm,兩個夾砂層處理的平均累積深層滲漏水量分別為331.19、164.18與214.73、117.96 mm。與S1處理相比,不含夾砂層(B)處理在40和120 cm深度處土壤水分向補給量分別增加36.38%、57.01%,較S2分別增加97.23%、118.53%,深層滲漏量較S1分別增加0.17%、60.64%,較S2分別增加80.45%、123.58%。
在不同生育期,含夾砂層處理與不含夾砂層處理在主要根系區和120 cm深度處的土壤水分深層滲漏量相差較大,滲漏量從大到小依次為B、S1、S2。40與120 cm深度處的土壤水分通過毛管作用向上補給主要在玉米拔節期開始增大,不含夾砂層處理向上層補給水量較大。主要根系區與120 cm土層深度處土壤水分深層滲漏與毛管上升補給各處理各生育期均隨灌水量增加而增大,S1處理下120 cm深度處W1、W2、W3滲漏量分別為灌溉水量的34.91%、28.56%、43.97%,S2處理分別為23.10%、16.66%、36.62%,B處理分別為13.32%、66.04%、85.77%。隨灌水量增大含夾砂層處理向主要根系層補給水量較為穩定,無增加趨勢,而不含夾砂層處理隨灌水量增加主要根系層補給水量增加明顯,BW2與BW3較BW1分別增加27.5%、109.52%。由于砂層與土層對土壤水分的持蓄能力不同,含夾砂層處理土層在玉米苗期的土壤貯水量較不含夾砂層處理小,各處理生育期初期土壤貯水量如圖9所示。不含夾砂層處理在相同灌水下更易造成的土壤水分深層滲漏損失,砂層埋深較大時,砂層以上土層較厚,土壤貯水量較大,表層土壤含水率較高,土壤負壓較低,使深層土壤水分通過毛管作用向上補給較少,同時在灌水后向砂層以下深層滲漏較少。
利用HYDRUS-1D模擬玉米生育期各處理根系吸水量,結果如圖10所示。兩個砂層埋深(S1、S2)處理與不含夾砂層(B)處理,玉米不同生育期的根系吸水量從大到小排序均為:灌漿期、灌漿期-成熟期、抽雄期、拔節期、苗期。隨著砂層埋深增加,作物根系受土壤水分脅迫減弱,S2處理玉米根系吸水量較S1處理在玉米抽雄期、灌漿期、灌漿-成熟期分別增大5.95%、3.12%、2.87%,B處理較S1處理根系吸水量分別增加5.70%、5.59%、10.28%,表明不含夾砂層處理較含夾砂層處理在3個需水量較大的生育期根系吸水脅迫更小,全生育期砂層淺埋與深埋處理根系吸水量分別為潛在蒸散量的55.51%、61.31%,B處理為66.69%。含夾砂層處理在不同灌水量下的根系吸水量無明顯變化,表明在夾砂層埋深不同時,土壤質地是影響玉米根系吸水量的主要因素。
利用HYDRUS-1D模擬的作物蒸騰量與根系吸水量計算暫時性水分虧缺量,利用實測產量數據與降雨量和灌溉量數據計算水分生產力,結果見圖11。由圖7可知,灌漿期玉米葉面積指數顯著大于其他生育期(<0.05),不同處理灌漿期葉面積指數平均為5.51,表明該時期玉米葉片對地表遮蓋率較高,需水主要以蒸騰為主。由圖 11可知,各處理的暫時性水分虧缺都在玉米抽雄期或灌漿期開始出現,由于玉米灌漿期是玉米籽粒形成期,是其生長的關鍵時期[27],灌漿期間作物耗水量較多[28],無效的蒸騰水量過多會使玉米葉片暫時萎蔫與減產[29]。砂層淺埋時,灌漿期3個灌水水平W1、W2、W3處理下的暫時水分虧缺量分別為121.88、27.95、76.05 mm,砂層深埋時分別為149.38、100.20、19.52 mm,不含夾砂層處理分別為72.20、58.23、6.04 mm,砂層深埋處理暫時性虧缺水量較砂層淺埋時更大,而在整個生育期內不含夾砂層處理的暫時性水分虧缺量較小,對玉米生長造成影響較小[30]。隨灌水量增大水分生產力減小,S1處理灌水量W2與W3較W1分別減小23.75%、38.56%,S2處理為20.17%、44.62%,B處理為9.06%、32.05%,在相同灌水處理下,砂層深埋時,土壤水分生產力與不含夾砂層時相近。
夾砂層對土壤水分蒸發的影響主要體現為砂層對土壤水分垂向遷移的阻礙作用[8],同時在不同處理下玉米葉面積指數差異明顯,地表覆蓋率差異顯著,影響葉面蒸騰與棵間土壤蒸發之間的分配。隨著砂層埋深增大土壤蒸發量減少,田間蒸散量與玉米蒸騰量均增大,由于S2葉面積指數較S1處理大,使得在玉米生育期內表層土壤水分蒸發較小,各處理除玉米抽雄期的蒸發量最小(累計為12.26 mm)外,蒸發量在其他各生育期與各處理之間無明顯變化,玉米葉片p在各生育期之間隨時間變化明顯,同時隨著砂層埋深增加,玉米p增大,S2的玉米葉片p較S1處理大8.41%。
玉米葉片通過蒸騰作用消耗根系吸收的水分,玉米根系吸水在不同砂層埋深表現出的根系吸水量差異明顯,相同土壤質地下不同灌水處理之間的根系吸水量并不明顯,與吳元芝等[31]的研究結果一致,相較于其他因素,土壤質地對根系吸水的影響最大。主要根系層的土壤水分通量與研究區域底部土壤水分通量分別反映砂層對砂層上下土層的土壤水分運移的影響。玉米生育期內隨著砂層厚度減小,土壤水分向根系層補給增大,不含夾砂層土壤處理對根系吸水脅迫最小。史文娟等[8,32]的研究表明,砂層對其以下土層毛管水運動沒有影響,當毛管水上升到土砂界面時其上升速度開始減小,且砂層層位越高,土壤水分在砂層以上上升速度越小。反之隨著砂層埋深減小砂層以上土層在灌水后,上層土壤水分向下層滲漏速率增加,同時由于砂層的持水量較土層持水量更小,故在灌水后淺埋砂層的砂層以上土層土壤水分向下滲漏速度與滲漏量均大于砂層深埋的處理。通過比較相同夾砂層埋深與不同灌水量處理下的根系層土壤水分滲漏與補給得出:隨著灌水量增加,土壤水分向根系層補給與滲漏同時增大,但是當灌水量超過土層所能儲蓄的最大水量水分會通過砂層向下滲漏損失造成水分的浪費[33],其次由于砂層含水量較小,造成由于負壓引起的不導水孔隙形成,夾砂層會阻礙土壤水分滲漏與土壤毛管水分上升的水分補給。綜合考慮土壤水分滲漏損失與土壤水分生產力,將灌水量控制在W2(315.85 mm)水平,既可以增大土壤水分向根系層的補給量的同時減小水分的滲漏損失。
由于夾砂層淺埋處理玉米葉面積較小使玉米蒸騰量較小[34],致使砂層深埋處理玉米水分虧缺量較砂層淺埋時大。不含夾砂層土壤暫時性水分虧缺量遠小于含夾砂層處理。
綜上,含有夾砂層耕地土壤水分運移規律與普通耕地差異較大。同時,由于確定各土層土壤質地時,土鉆鉆孔取樣深度存在一定的試驗誤差,導致實際農田砂層分布與模型中輸入的砂層分布的幾何信息之間存在一定的差異。本研究仍需要進一步改進,比如用尋找更加簡單精確的方式確定耕地各土層的土壤質地與空間分布的方法,進一步改進模型,考慮夾砂層結構對玉米生長的影響機制等。在農業水資源緊張,要求高效灌溉的背景下,灌水應結合灌區特殊土壤條件,對灌區的灌溉制度與灌溉策略進一步優化。
本文利用HYDRUS-1D模型模擬了河套灌區典型土壤下土壤水分運動,模擬研究了不同砂層埋深下玉米農田蒸散量變化規律、土壤水分補給與滲漏過程、根系吸水與水分虧缺變化規律。得出如下結論:
1)較不含夾砂層處理,含夾砂層的玉米田間土壤水分蒸發損失大,葉面蒸騰耗水分配較少。隨著夾砂層埋深增加,玉米棵間土壤蒸發減小,分配至葉面蒸騰耗水增加,在此研究中砂層深埋較砂層淺埋處理棵間土壤蒸發損失水量減小13.60%。
2)隨夾砂層埋深減小,主要根系層貯水量減小,土壤水分深層滲漏量減小,砂層以上土層向上補給水量減小。不含夾砂層處理較淺埋砂層與深埋砂層處理田間土壤貯水量更大,使玉米生育期內120 cm深度處滲漏量更多,但由于不受砂層阻水作用影響,不含夾砂層處理玉米田間毛管向上補給水量較淺埋砂層與深埋砂層處理分別大57.01%、118.53%。隨灌水量增加不含砂層處理田間土壤水分深層滲漏與補給均增加,灌水量為315.85 mm時含夾砂層處理的土壤水分深層滲漏最小。
3)玉米生育期內根系吸水量隨砂層埋深的增加而增大,不含夾砂層處理根系吸水受到水分脅迫最小,根系吸水量最大。砂層淺埋與砂層深埋處理根系吸水量分別為潛在蒸散量的55.51%、61.31%,不含夾砂層處理為66.69%。
4)砂層深埋處理在玉米生育期暫時性虧缺水量最大,水分生產力從大到小排序為:不含砂層處理、砂層深埋、砂層淺埋。當灌水量為315.85 mm時,土壤水分生產力減少最小。
[1] Hou L, Zhou Y, Bao H, et al. Simulation of maize (L.) water use with the HYDRUS-1D model in the semi-arid Hailiutu River catchment, Northwest China[J]. Hydrological Sciences Journal, 2017, 62(1): 1-11.
[2] Zhou Y, Wenninger J, Yang Z, et al. Groundwater-surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China-synthesis[J]. Hydrology and Earth System Sciences, 2013, 17(7): 2435-2447.
[3] 鄒宇鋒,蔡煥杰,張體彬,等. 河套灌區不同灌溉方式春玉米耗水特性與經濟效益分析[J]. 農業機械學報,2020,51(9):237-248.
Zou Yufeng, Cai Huanjie, Zhang Tibin, et al. Analysis of water consumption characteristics and economic benefit of spring maize under different irrigation methods in Hetao Irrigation Area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 237-248. (in Chinese with English abstract)
[4] 劉文光,賈生海,范嚴偉,等. 夾砂層土壤膜孔灌水分入滲規律數值模擬與試驗驗證[J]. 水資源與水工程學報,2018,29(4):243-248.
Liu Wenguang, Jia Shenghai, Fan Yanwei, et al. Numerical simulation and experimental validation of sand-layered soil water infiltration under film hole irrigation[J]. Journal of Water Resources and Water Engineering, 2018, 29(4): 243-248. (in Chinese with English abstract)
[5] 范嚴偉,趙文舉,王昱,等. 夾砂層土壤Green-Ampt入滲模型的改進與驗證[J]. 農業工程學報,2015,31(5):93-99.
Fan Yanwei, Zhao Wenju, Wang Yu, et al. Improvement and verification of Green-Ampt infiltration model in sandy soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 93-99. (in Chinese with English abstract)
[6] 邱玥,魏新平,廖華勝,等. 夾砂層土壤水分入滲試驗研究[J]. 水資源與水工程學報,2009, 20(1):120-123.
Qiu Yue, Wei Xinping, Liao Huasheng, et al. Experimental study on soil water infiltration in sand layer[J]. Journal of Water Resources and Water Engineering, 2009, 20(1): 120-123. (in Chinese with English abstract)
[7] 史文娟,沈冰,汪志榮,等. 夾砂層狀土壤潛水蒸發特性及計算模型[J]. 農業工程學報,2007(2):17-20.
Shi Wenjuan, Shen Bing, Wang Zhirong, et al. Water evaporation characteristics and calculation model of sand layered soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007(2): 17-20. (in Chinese with English abstract)
[8] 史文娟,沈冰,汪志榮,等. 蒸發條件下淺層地下水埋深夾砂層土壤水鹽運移特性研究[J]. 農業工程學報,2005,21(9):23-26.
Shi Wenjuan, Shen Bing, Wang Zhirong, et al. Study on the characteristics of soil water and salt transport in shallow groundwater under evaporation conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(9): 23-26. (in Chinese with English abstract)
[9] Jiang Y, Xu X, Huang Q Z, et al. Assessment of irrigation performance and water productivity in irrigated areas of the middle Heihe River basin using a distributed agro-hydrological model[J]. Agricultural Water Management, 2015, 147: 67-81.
[10] Xi B, Bloomberg M, Watt M S, et al. Modeling growth response to soil water availability simulated by HYDRUS for a mature triploidplantation located on the North China Plain[J]. Agricultural Water Management, 2016, 176: 243-254.
[11] Zhou H, Zhao W Z. Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China[J]. Agricultural Water Management, 2019, 221: 286-302.
[12] 趙引,毛曉敏,段萌. 覆膜和灌水量對農田水熱動態和制種玉米生長的影響[J].農業機械學報,2018,49(8):275-284.
Zhao Yin, Mao Xiaomin, Duan Meng. Effects of film mulching and irrigation amount on farmland water and heat dynamics and seed maize growth[J]. Transactions of the Chinese Society for Agricultural, 2018, 49(8): 275-284.(in Chinese with English abstract)
[13] Liu H J, Yu L P, Yu L, et al. Responses of winter wheat (L.) evapotranspiration and yield to sprinkler irrigation regimes[J]. Agricultural Water Management, 2011, 98(4): 483-492.
[14] Jirka-Simunek J, ?ejna M, Saito H, et al. The Hydrus-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media (version 4.17)[EB/OL]. (2013-01)[2021-04]. https://www.researchgate. net/publication/311992347_The_Hydrus-1D_Software_Package_for_Simulating_the_Movement_of_Water_Heat_and_Multiple_Solutes_in_Variably_Saturated_Media_Version_417_HYDRUS_Software_Series_3_Department_of_Environmental_Sciences_Univ
[15] Jirka-Simunek J, van Genuchten M T. Modeling nonequilibrium flow and transport processes using HYDRUS[J]. Vadose Zone Journal, 2008, 7(2): 782-797.
[16] Feddes R A . Simulation of field water use and crop yield[J]. Soil Science, 1978, 129(3):193.
[17] Allan R G, Pereira L S, Raes D, et al. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements[M]. Rome: FAO, 1998.
[18] Wang Z K, Zhao X N, Wu P T, et al. Radiation interception and utilization by wheat/maize strip intercropping systems[J]. Agricultural & Forest Meteorology, 2015, 204: 58-66.
[19] 閆世程,張富倉,吳悠,等. 滴灌夏玉米土壤水分與蒸散量SIMDualKc模型估算[J]. 農業工程學報,2017,33(16):152-160. Yan Shicheng, Zhang Fucang, Wu You, et al. Soil moisture and evapotranspiration in summer maize under drip irrigation based on SimDUALC[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 152-160. (in Chinese with English abstract)
[20] Li D. Quantifying water use and groundwater recharge under flood irrigation in an arid oasis of northwestern China[J]. Agricultural Water Management, 2020, 240: 106326.
[21] Min L, Shen Y, Pei H. Estimating groundwater recharge using deep vadose zone data under typical irrigated cropland in the piedmont region of the North China Plain[J]. Journal of Hydrology, 2015, 527: 305-315.
[22] 李子忠,鄭茹梅,龔元石,等. 時域反射儀對水分非均勻分布土壤含水率的測定[J]. 農業工程學報,2010,26(11):19-23.
Li Zizhong, Zheng Rumei, Gong Yuanshi, et al. Determination of soil moisture content by time-domain reflectometry[J]. Transactions of the Chinese society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(11): 19-23.(in Chinese with English abstract)
[23] 王文焰,張建豐,汪志榮,等. 砂層在黃土中的阻水性及減滲性的研究[J]. 農業工程學報,1995,11(1):104-110.
Wang Wenyan, Zhang Jianfeng, Wang Zhirong, et al. Study on water resistance and permeability reduction of sand layer in loess[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1995, 11(1): 104-110. (in Chinese with English abstract)
[24] 鐘韻,費良軍,傅渝亮,等. 多因素影響下土壤上升毛管水運動特性HYDRUS模擬及驗證[J]. 農業工程學報,2018,34(5):83-89.
Zhong Yun, Fei Liangjun, Fu Yuliang, et al. Hydrus simulation and validation of movement characteristics of soil rising capillary water under multi-factor influence[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 83-89. (in Chinese with English abstract)
[25] 王全九,汪志榮,張建豐,等. 層狀土入滲機制與數學模型[J]. 水利學報,1998(Supp. 1):77-80. Wang Quanjiu, Wang Zhirong, Zhang Jianfeng, et al. Infiltration mechanism of layered soil and its simulation model[J]. Journal of Hydraulic Engineering, 1998(Supp. 1): 77-80. (in Chinese with English abstract)
[26] 王文焰,王全九,沈冰,等. 甘肅秦王川地區雙層土壤結構的入滲特性[J]. 土壤侵蝕與水土保持學報,1998(2):37-41.
Wang Wenyan, Wang Quanjiu, Shen Bing, et al. Infiltration characteristics of soil with double-layer structure in Qinwangchuan Area of Gansu Province[J]. Journal of Soil Erosion and Soil and Water Conservation, 1998(2): 37-41. (in Chinese with English abstract)
[27] 王雪,馬鐵民,楊濤,等. 基于近紅外光譜的灌漿期玉米籽粒水分小樣本定量分析[J]. 農業工程學報,2018,34(13):203-210. Wang Xue, Ma Tiemin, Yang Tao, et al. Moisture quantitative analysis with small sample set of maize grain in filling stage based on near infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 203-210. (in Chinese with English abstract)
[28] 彭霄,蒲甜,楊峰,等. 灌水時間和灌水比例對單套作玉米產量及水分利用效率的影響[J]. 中國農業科學,2019,52(21):3763-3772.
Peng Xiao, Pu Tian, Yang Feng, et al. Effects of irrigation time and proportion on yield and water use efficiency of single intercropping maize[J]. Scientia Agricultura Sinica, 2019, 52(21): 3763-3772. (in Chinese with English abstract)
[29] 米娜,蔡福,張玉書,等. 不同生育期持續干旱對玉米的影響及其與減產率的定量關系[J]. 應用生態學報,2017,28(5):1563-1570.
Mi Na, Cai Fu, Zhang Yushu, et al. Effects of drought on maize yield at different growth stages and quantitative relationship with yield reduction[J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1563-1570. (in Chinese with English abstract)
[30] 漆棟良,胡田田,宋雪. 交替隔溝灌溉制度對制種玉米耗水規律和產量的影響[J]. 農業工程學報,2019,35(14):64-70.
Qi Dongliang, Hu Tiantian, Song Xue. Effects of alternate furrow irrigation system on water consumption and yield of seed maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 64-70. (in Chinese with English abstract)
[31] 吳元芝,黃明斌. 基于Hydrus-1D模型的玉米根系吸水影響因素分析[J]. 農業工程學報,2011, 27(Supp.2):66-73. Wu Yuanzhi, Huang Mingbin. Analysis of influencing factors of water uptake by maize roots based on Hydrus-1D model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.2): 66-73. (in Chinese with English abstract)
[32] 王丁,費良軍. 層狀土壤上升毛管水運移特性試驗研究[J]. 地下水,2009,31(1):35-37,66.
Wang Ding, Fei Liangjun. Experimental study on water transport characteristics of rising capillary in layered soil[J]. Groundwater, 2009, 31(1): 35-37, 66. (in Chinese with English abstract)
[33] 馮浩,王杰,王乃江,等. 起壟覆膜條件下夏玉米農田耗水過程分析[J]. 農業機械學報,2018,49(9):205-213. Feng Hao, Wang Jie, Wang Naijiang, et al. Analysis of water consumption in summer maize field under planting pattern of ridge-furrow with plastic film mulching[J]. Journal of Agricultural Machinery, 2018, 49(9): 205-213. (in Chinese with English abstract)
[34] 李瑞平,趙靖丹,史海濱,等. 內蒙古通遼膜下滴灌玉米棵間蒸發量SIMDual_Kc模型模擬[J]. 農業工程學報,2018,34(3):127-134.
Li Ruiping, Zhao Jingdan, Shi Haibin, et al. SIMDual_Kc model for inter-plant evaporation of maize under mulch drip irrigation in Tongliao, Inner Mongolia[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 127-134. (in Chinese with English abstract)
Water use analysis of cultivated land with typical sand layers in Hetao Irrigation District of Inner Mongolia using HYDRUS-1D model
Feng Zhuangzhuang, Shi Haibin※, Miao Qingfeng, Sun Wei, Liu Meihan, Dai Liping
(1.,,010018,; 2.010018,)
Extensive sand layers are widely distributed over the impact plain of the Yellow River, particularly for Hetao Irrigation Areas in Inner Mongolia of western China. The migration of water and salt under the soil sand layer has posed a great influence on soil water utilization, soil salinization control, and crop growth. In this study, a numerical model of soil water movement was proposed to investigate the field evapotranspiration, crop water consumption, water supply, and deep soil water leakage in the sand layer using the data of field monitoring and laboratory experiments during the growth period of spring maize. Taking the cultivated land of the typical sand layer in the Hetao Irrigation Area as the research object and planting crop as spring corn, two gradients of buried depth were selected: S1 (40-95 cm) and S2 (60-110 cm) of the sand layer in the soils. Three irrigation levels were also set to carry out the field experiment, and then to compare with BWI without sand layer, including W1 (252.5 mm), W2 (315.85 mm), and W3 (378.75 mm). A HYDRUS-1D model was selected to simulate the field evapotranspiration during the growth period of spring maize, deep seepage of soil water, groundwater recharge, and root water absorption. In addition, the temporary water deficit and water productivity were calculated during the whole growth period. Water use in the cultivated land with sand layer was then compared with that without sand layer. The results showed that the soil evaporation loss between grains decreased, whereas, the leaf transpiration water increased, with the increase of buried depth of the sand layer. Specifically, the soil layer above the sand layer was thicker, the soil water storage was larger, the surface soil moisture content was higher, and the soil negative pressure was lower when the buried depth of the sand layer was larger. As such, the deep soil water was less replenished upward through the capillary action. At the same time, there was less leakage to the deep layer below the sand layer after irrigation. Furthermore, the upstream water supply of maize in the field without sand layer increased by 57.01% and 118.53%, respectively, compared with the treatment of shallow (40-95 cm), and deep sand layer (60-110 cm). More importantly, the deep-water leakage of soil under the treatment of sand layer was the least, when the irrigation amount was 315.85mm. Correspondingly, the water absorption of maize roots decreased with the increase in the buried depth of the sand layer, where the largest was found without sand layer during the growth period. Specifically, the shallow (40-95 cm) and deep sand layer (60-110 cm) treatment were 55.51% and 61.31% of evapotranspiration, respectively, whereas, the treatment without sand layer was 66.69%. The irrigation system can be determined for spring maize in the sand layer, according to the sand layer distribution and local conditions. Particularly, the recommended irrigation quota of spring corn can be 315.85 mm during the growth period, when the sand layer was similar to the S1WI and S2WI treatment. The recommendation can be attributed to avoiding the leakage loss of irrigation water in the deep soil water of the farmland with the sand layer. The findings can also provide important theoretical guidance for the formulation of a farmland irrigation system with the sand layer in the Hetao Irrigation District.
irrigation; soil water content; sand-layered soil; soil transpiration; groundwater recharge; deep seepage; HYDRUS-1D model
馮壯壯,史海濱,苗慶豐,等. 基于HYDRUS-1D模型的河套灌區典型夾砂層耕地水分利用分析[J]. 農業工程學報,2021,37(18):90-99.doi:10.11975/j.issn.1002-6819.2021.18.011 http://www.tcsae.org
Feng Zhuangzhuang, Shi Haibin, Miao Qingfeng, et al. Water use analysis of cultivated land with typical sand layers in Hetao Irrigation District of Inner Mongolia using HYDRUS-1D model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(18): 90-99. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.18.011 http://www.tcsae.org
2021-05-15
2021-08-18
國家自然科學基金項目(51769024);國家基金重點項目(51539005)
馮壯壯,研究方向為節水灌溉理論與新技術。Email:1445820101@qq.com
史海濱,博士,教授,研究方向為節水灌溉理論與新技術。Email:shi_haibin@sohu.com
10.11975/j.issn.1002-6819.2021.18.011
S274
A
1002-6819(2021)-18-0090-10