李 粵,郭超凡,姚德宇,賀寧波,張喜瑞,吳紫晗,李 媛
定甩刀防纏式香蕉秸稈粉碎還田機設計與試驗
李 粵1,郭超凡1,姚德宇1,賀寧波1,張喜瑞1※,吳紫晗1,李 媛2
(1. 海南大學機電工程學院,海口 570228;2. 中國熱帶農業科學院科技信息研究所,海口 570228)
針對香蕉秸稈粉碎機具纏繞造成秸稈粉碎率不達標等問題,該研究設計了一種定甩刀防纏式香蕉秸稈粉碎還田機。在粉碎過程中,粉碎定刀與高速運轉中的Y型甩刀對香蕉秸稈形成三點支撐,進而實現秸稈粉碎與避免秸稈纏繞。其中,Y型甩刀由2個L型刀片組合的Y型粉碎刀與甩刀構成。確定了各關鍵部件的結構參數、動定刀排列組合方式及香蕉秸稈粉碎過程受力分析,明確了影響粉碎效果的主要因素為機具前進速度、粉碎刀輥轉速以及Y型甩刀折彎角。以前進速度、刀輥轉速和甩刀折彎角為試驗因素,以香蕉秸稈粉碎合格率和拋撒不均勻度為評價指標,進行三水平三因素正交田間試驗,確定優化參數組合為前進速度1.85 m/s,刀輥轉速1 500 r/min,Y型甩刀片折彎角140°,此時香蕉秸稈粉碎合格率為95.1%,拋撒不均勻度為14.6%,滿足香蕉秸稈粉碎作業性能要求。與已有秸稈粉碎機進行性能對比試驗,結果表明,該研究研制的定甩刀防纏式香蕉秸稈粉碎還田機秸稈粉碎合格率提高了1.7個百分點,防纏性能更優。該機具的研制對解決蕉區秸稈粉碎還田關鍵技術問題具有重要意義和應用價值。
農業機械;試驗;香蕉秸稈;定刀;甩刀;防纏;粉碎還田機
海南省是香蕉種植的主要種植區[1],香蕉具有生長周期短和產量高等特點,但同樣伴隨著大量的香蕉秸稈等農業廢棄物[2]。每到香蕉收獲季節地里都會留下大量的秸稈,對香蕉秸稈的有效處理一直都存在很大問題,香蕉秸稈處理的效果會直接影響下一次香蕉產量,進而影響蕉農收入。
目前對香蕉秸稈的處理方式主要有以下3種:機械化粉碎還田、香蕉秸稈纖維提取、香蕉秸稈回收做成青飼料[3-5]。其中,機械化粉碎還田是綠色還田的一種有效方式,秸稈粉碎拋撒覆蓋地表,以減少土壤水蝕和風蝕,進而提高土壤抗旱能力和增強土壤肥力[6]。并且長期的秸稈還田對土壤細菌群落豐富度與多樣性具有積極影響[7],進一步促進香蕉的再次種植與發育,形成良好循環。
由于香蕉秸稈的主要生物特性不同于與玉米、水稻、小麥等農作物秸稈,香蕉秸稈直徑粗大,一般秸稈直徑范圍為100~200 mm;含水率高,纖維含量豐富[8-9]。因此秸稈還田機具必須能夠對粗大的香蕉秸稈有粉碎效果。目前,市場上的秸稈粉碎還田機分為臥式與立式兩種類型。立式作為一種新型粉碎方式,還處于研發階段,吳學尚基于粉碎原理設計了甩刀式立式香蕉秸稈粉碎機,通過調整刀軸高度,甩刀在粉碎刀軸高速轉動下對香蕉秸稈實施不同效果的粉碎[10]。立式粉碎方式雖能降低功耗但不利于秸稈喂入,立軸處纏繞較為嚴重。相對于立式粉碎,臥式粉碎方式趨于成熟,張喜瑞等基于滑切原理,粉碎刀采用刀刃擬合曲線并設計秸稈粉碎機[11];王自強等設計溝齒式香蕉假莖粉碎還田機,提高了假莖粉碎率適用性不強[12];魏思林等通過分析秸稈粉碎特點,設計了一種砍切喂入雙輥式秸稈粉碎還田機,提高粉碎效率[13];鄭智旗等設計的動定刀支撐滑切式秸稈粉碎裝置,利用等滑切角式粉碎定刀和隨粉碎刀輥高速旋轉的粉碎動刀形成的支撐滑切作用對秸稈進行粉碎[14]。以上粉碎方式雖使秸稈粉碎效果更加顯著,但均存在刀輥纏繞嚴重、刀片易損耗、部分裝置動定刀無法有效配合的問題,尤其在秸稈老化后韌性較高的情況下,導致粉碎還田機無法長時間運作,進而影響粉碎效率。
針對香蕉秸稈韌性強、易纏繞刀軸、動定刀無法有效配合,影響后期香蕉秸稈粉碎效果的問題,在綜合分析香蕉秸稈物理特性以及秸稈粉碎還田機的優劣勢的基礎上,提出了定甩刀相互支撐實現粉碎防纏的方法。基于此設計思路,本文通過理論分析確定了關鍵粉碎部件的主要結構參數;設計動定刀相互配合參數;通過三水平三因素正交試驗,選取優化組合,并進行田間試驗,以期為南方香蕉種植區秸稈粉碎還田機的研究提供參考。
定甩刀防纏式香蕉秸稈粉碎還田機主要包括三點懸掛裝置、機架、傳動裝置、粉碎裝置和防纏裝置。傳動裝置由變速箱、主帶輪、從帶輪、V型皮帶、張緊輪組成。防纏裝置主要由4排定刀排列構成。粉碎裝置包括粉碎刀輥、Y型甩刀。整機結構如圖1所示。
機具在拖拉機的三點懸掛裝置的牽引下進行作業,先將動力傳遞給傳動裝置的變速箱輸入軸,動力經皮帶輪傳遞給粉碎刀輥,刀輥高速轉動,Y型甩刀與定刀共同對香蕉秸稈作用,兩者相對運動增加了對秸稈的切削力,香蕉秸稈粉碎后經鎮壓輥壓實進行還田,整機的主要性能指標與技術參數如表1所示。

表1 香蕉秸稈粉碎還田機主要技術參數
已有香蕉秸稈粉碎還田機采用雙側傳動,整機的動不平衡大;采用L型粉碎刀,雖然粉碎效果顯著,但出現香蕉秸稈纏繞刀具、刀輥的現象;傳動軸與刀輥通過齒輪傳動,不利于遠距離傳動且精度不高,存在振動、沖擊大等問題。因此,本文研制的定甩刀防纏式香蕉秸稈粉碎還田機從以下幾個方面進行改進:
1)優化傳動系統,增強粉碎穩定性。將皮帶輪兩側傳動改為單側傳動,減少了整機質量,將三點懸掛裝置進行適當的橫向移動以盡量使得兩側配重平衡。
2)定甩刀交錯排布,提高防纏效果。結合香蕉秸稈纖維特點,利用機架內部空間,增加防纏裝置,防纏裝置主要由安裝于機架兩側的兩排定刀組成,每側定刀之間交錯排列,各自與運動中的粉碎刀片相互配合,粉碎香蕉秸稈的同時進行防纏。
3)兩級增速,粉碎更加徹底。為了保證機具在作業過程中運行的穩定,傳動裝置中錐齒輪組(增速)將動力傳遞給帶輪組(增速),帶輪輸出動力至粉碎刀輥,通過帶傳動,有利于機具傳動平穩、緩沖吸振。此時的粉碎刀軸高速轉動,對于粗大的香蕉秸稈,兩級增速可以確保能夠粉碎香蕉秸稈。
2.1.1 粉碎甩刀組合設計
目前,秸稈粉碎還田刀片主要有3種類型:直刀型、甩刀型(Y型、L型、T型)、錘爪型[15]。甩刀的類型對秸稈粉碎質量有很大影響[16]。直刀型粉碎刀粉碎效率高但撿拾效果差,錘爪式雖能將秸稈大面積卷入粉碎裝置但對于纖維含量豐富的香蕉秸稈粉碎效果較差。甩刀型粉碎刀在田間作業時隨秸稈粉碎軸高速旋轉,沖擊并切斷秸稈,粉碎效率高,且具備滿足秸稈粉碎裝置粉碎和收集秸稈的要求,因此選用甩刀型粉碎刀[17]。
在甩刀型粉碎刀片中,由于Y型和L型刀片具有較好的剛度和耐磨性,適用香蕉秸稈的粉碎還田作業[18]。本文對Y型刀片與L型刀片在相同的條件進行秸稈切割試驗,對L型和Y型刀片在試驗秸稈上的相同部位以相同的角速度對秸稈進行切割和受力分析,如圖2所示。
粉碎刀對香蕉秸稈的支持力大小直接影響秸稈粉碎效率[19]。以平行莖稈纖維為軸,垂直其方向為軸,建立直角坐標系。秸稈受力方程可表示為

當以相同的作用力切割秸稈時,Y型刀刃和L型刀刃以相同角度切割秸稈,因此有:


綜上可得:

本文采用的Y型甩刀分別由2個L型刀片組合的Y型粉碎刀與甩刀結合構成,如圖3所示。粉碎機工作時的工況復雜,需提高粉碎刀具的耐磨性以及耐腐蝕性,故Y型甩刀采用的材料為Cr12MoV,具有較強的耐磨性和淬透性[21]。刀片兩側開刃,便于通過傳動系統實現刀軸正反轉。
螺柱直徑小于孔直徑可以使刀片在運動過程中相對于圓柱銷轉動,在遇到硬質物體時刀刃部分被動避開來自異物的作用力,更好地適應田地的復雜環境。國內香蕉秸稈粉碎還田機的粉碎刀折彎角在120°~160°范圍內[19],考慮刀身長度大于刀片折彎部分長度保證刀身部分安裝在刀盤上的穩定性,本文選取120°、140°、150°的粉碎甩刀折彎角進行對比試驗。
2.1.2 粉碎刀輥的設計
粉碎刀輥是香蕉秸稈粉碎還田機粉碎裝置的關鍵部件。粉碎刀輥材料為20CrMnTi,淬透性較高,經滲碳淬火后具有硬而耐磨的表面與堅韌的心部,具有較高的低溫沖擊韌性[22]。為減輕軸的質量,降低功耗,刀輥選用空心軸,且內、外徑比值控制在0.5~0.6的范圍內,以保證刀輥的剛度和扭轉穩定性[23]。當內、外徑比值大時,其壁過薄,易造成刀輥彎曲變形影響粉碎效果;當內、外徑比值小時,其壁過厚,功耗增大,結合已有的裝置,刀輥外徑為90 mm,內徑為40 mm。
刀輥轉速影響香蕉秸稈粉碎效果,是香蕉秸稈粉碎合格率的主要因素之一。影響粉碎秸稈的切割線速度約為30~48 m/s,國內已知的秸稈粉碎還田機的粉碎甩刀回轉半徑在240~300 mm[14],考慮刀輥動平衡等因素,選取粉碎甩刀的回轉半徑為290 mm。
刀輥轉速可由下式計算:

求解可得=988~1 581 r/min。
防纏裝置主要由安裝在機架兩側的定刀構成,定刀結構對于防纏效果起關鍵作用,定刀材料為65 Mn彈簧鋼,錳提高淬透性,經熱處理后的綜合力學性能優于碳鋼,當定刀受到來自香蕉秸稈的沖擊時,可保持一定的抗沖擊性,有較強的回復力。
定刀主要由刀柄、連接孔、刀身、刀刃和折彎角5個部分組成。定刀結構及參數如圖4所示。刀柄與機架通過螺釘固定,刀柄與刀身連接處的折彎角=90°,刀柄上部與機架上表面貼合,此時刀身正好垂直于機架,此時刀刃對秸稈單位面積產生的壓強最大,能夠保證有效切斷香蕉秸稈。
為保持粉碎刀輥兩端的軸承負載均勻,動刀排列時應盡量平衡[24]。根據《農業機械設計手冊》[25]考慮香蕉樹株高的影響,確定Y型甩刀的刀片數量為18把。為充分利用機架上部空間,排列方式采用交錯排列,徑向夾角分別為90°或180°。

1.刀柄 2.連接孔 3.折彎角 4.刀身 5.刀刃

1.Y型甩刀 2.第1排定刀 3.第2排定刀
1.Y-type flailing blade 2.The first row of fixed blade 3.The second row of fixed blade
注:1為甩刀與刀輥端面的距離,mm;2為甩刀與第1排定刀的水平距離,mm;3為定刀的水平間距,mm;4為甩刀與第2排定刀的垂直距離,mm;5為定刀的垂直間距,mm。
Note:1is the distance between the flail blade and the end face of the blade roller, mm;2is the horizontal distance between the flailing blade and the first row of fixed blade, mm;3is the horizontal distance of fixed blade, mm;4is the vertical distance between the flailing blade and the second row of fixed blade, mm;5is the vertical distance of fixed blade, mm.
圖5 刀片排布示意圖
Fig.5 Schematic diagram of blade arrangement
地表的香蕉秸稈被粉碎刀輥卷入粉碎裝置,同時隨著Y型甩刀進行轉動。當甩刀與機架上的定刀同時與香蕉秸稈發生接觸時,秸稈受力發生變形、剪切、粉碎。在秸稈受力過程中,由于秸稈直徑相對于甩刀和定刀的回轉半徑較小,因此在接觸香蕉秸稈表皮時甩刀和定刀可視為處于平行位置[26]。秸稈粉碎過程的受力如圖6所示。
鎘是一種有害的微量物質,在一定的濃度水平,對人類和其他生命體具有直接的損害作用。土壤中的鎘,不但對植物的正常生長無效,而且比其他元素(Cu、Pb、Zn等)更低濃度對植物產生毒害作用。一般情況下,土壤鎘污染對動物影響,主要通過食用鎘污染植物或飲水引起;人體中的鎘都是出生后由外界環境攝取而積累于體內的,因為新生兒體幾乎沒有鎘的存在;重金屬鎘可導致腎虧損,從而引發骨痛病、高血壓、貧血等疾病[19]。
甩刀與定刀對香蕉秸稈進行切斷的瞬時處于力矩平衡狀態。甩刀刀柄的通孔與秸稈的接觸距離1和定刀的固定通孔與秸稈的接觸距離2均會影響秸稈的受力。接觸距離過大會導致刀具受壓變形,影響粉碎效果;接觸距離過小會導致粉碎不徹底。

1.Y型甩刀 2.香蕉秸稈 3.定刀
1.Y-type flailing blade 2.Banana straw 3.Fixed blade注:F1為甩刀對香蕉秸稈的支持力,N;?1為甩刀與秸稈間的摩擦力,N;為秸稈質量,kg;為重力加速度,9.8 m·s-2;F為離心力,N;F2為定刀對香蕉秸稈的支持力,N;?2為定刀與秸稈間的摩擦力,N;ω為甩刀角速度,rad·s-1;為秸稈的回轉半徑,mm;1為甩刀柄的通孔與秸稈的接觸距離,mm;2為定刀的固定通孔與秸稈的接觸距離,mm。為秸稈粉碎時甩刀與定刀相互作用力的夾角,(°);為甩刀的折彎角,(°)。
Note:F1is the support force of the flailing blade on the straw, N;1is the friction between the flailing blade and the straw;is the mass of stalk, kg;is gravitational acceleration, 9.8 m·s-2;Fis the centrifugal force, N;F2is the support force of the fixed blade on the straw, N;2is the friction between the fixed blade and the straw;ωis the angular velocity of blade, rad·s-1;is the radius of gyration of the straw, mm;1is the contact distance between the through hole of the flailing blade handle and the straw, mm;2is the contact distance between the fixed through-hole of the fixed blade and the straw, mm;is the included angle of the interaction force between the flailing blade and the fixed blade when straw is crushed, (°);is the bending angle of the flailing blade, (°).
圖6 秸稈粉碎過程受力分析
Fig.6 Stress analysis of straw crushing process
香蕉秸稈切斷瞬間的受力方程為

對式(7)求解可得:

定甩刀防纏式香蕉秸稈粉碎還田機設計加工完成后,根據GB/T 24675.6—2009《保護性耕作機械秸稈粉碎還田機》標準的要求[27],于2021年3月23日在海南大學的農機試驗基地進行田間試驗。試驗田長40 m,寬50 m,試驗選用的香蕉樹品種為“巴西蕉”,香蕉樹高度為2 000~2 600 mm,香蕉莖稈直徑范圍為38~52 mm,香蕉莖稈平均纖維含量3.8%。為表明秸稈粉碎效果[28],采用測定秸稈還田后秸稈粉碎合格率和秸稈拋撒不均勻度作為秸稈粉碎效果的評價指標。
根據《農業機械試驗條件測定方法的一般規定》(GB/T5262—2008)[29],香蕉秸稈粉碎合格率采用五點法進行測定。在機具作業行程中,隨機選取3個試驗區(1 m×1 m),每個試驗區取2條對角線的交點作為一個取樣點,在2條對角線上,距4個頂點距離約為對角線長度1/4處取另外4個點作為取樣點,每個試驗區共5個取樣點。收集所有取樣點的秸稈,并稱質量、計算秸稈粉碎合格率,對15個取樣點的秸稈粉碎合格率求平均值。


香蕉地實際作業環境復雜,對行駛、機具運行等因素有直接影響。由于香蕉根莖對拖拉機的行駛產生阻礙,在實際作業中機具的前進速度在1~2 m/s范圍內[11,13],本文前進速度選取1.45、1.65 和1.85 m/s。基于減阻防纏原理,結合香蕉秸稈粉碎效果和前文參數分析,為確定參數最佳組合,本試驗選取影響秸稈粉碎合格率的主要因素還田機前進速度、粉碎刀輥轉速、Y型甩刀折彎角進行三水平三因素試驗,試驗因素水平編碼如表2所示。田間試驗通過三水平三因素的正交試驗,選擇最佳9組因素組合進行試驗,正交試驗方案如表3所示。

表2 因素水平編碼表

表3 正交試驗方案

表4 方差分析

Table 4 Variance analysis
注:<0.05為顯著,<0.01為極顯著,下同。 Note:<0.05 means significant,<0.01 means highly significant, the same below.




香蕉秸稈纖維的纏繞程度會直接影響秸稈粉碎果。為驗證優化設計后機具的粉碎效果與防纏效果,與已有臥式秸稈粉碎還田機進行對比試驗,還田機前進速度均為1.85 m/s,刀輥轉速為1 500 r/min,刀片折彎角為140°,在海南大學的農機試驗基地進行5次對比試驗,粉碎合格率取平均值,且對比香蕉秸稈纏繞情況,試驗結果如表5所示。

表5 作業性能對比
試驗結果表明,定甩刀防纏式香蕉秸稈粉碎還田機的秸稈粉碎合格率為94.9%,相對于已有臥式香蕉秸稈粉碎還田機提高了1.7個百分點,防纏效果有較大改善,香蕉莖稈纖維只對粉碎刀輥有小部分的局部纏繞,纏繞情況如圖8所示。
1)基于香蕉秸稈粉碎合格率及秸稈拋撒不均勻度的作業要求,本文設計了一種定甩刀防纏式香蕉秸稈粉碎還田機,甩刀與定刀配合,達到支撐粉碎的效果,解決了粉碎刀輥的纏繞問題。
2)通過對各關鍵部件結構參數的研究、動定刀的排列組合以及香蕉秸稈粉碎過程受力分析,確定了Y型甩刀和定刀的結構參數、定甩刀組合參數。
根據實際田間作業條件,通過三水平三因素的正交試驗,確定較優參數組合為前進速度1.85 m/s,刀輥轉速為1 500 r/min,Y型甩刀刀片折彎角為140°,此時香蕉秸稈粉碎合格率為95.1%,拋撒不均勻度為14.6%,優化參數可以滿足香蕉秸稈粉碎的實際要求。通過對比試驗,驗證防纏裝置作業效果更優。
[1] 雷武逵. 香蕉產業升級配套技術及對策研究[J]. 廣西農業科學,2008,39(3):397-400.
Lei Wukui. Complementary upgrading technology for banana industry and its countermeasures[J]. Guangxi Agricultural Sciences, 2008, 39(3): 397-400. (in Chinese with English abstract)
[2] 孫鵬,劉滿意,王蓓蓓. 香蕉秸稈不同還田模式對土壤微生物群落的影響[J]. 熱帶生物學報,2021,12(1):57-62.
Sun Peng, Liu Manyi, Wang Beibei. Effects of fresh harvested banana foliage on the soil microbial community structures[J]. Journal of Tropical Biology, 2021, 12(1): 57-62. (in Chinese with English abstract)
[3] Yang L, Tan L L, Zhang F H, et al. Duration of continuous cropping with straw return affects the composition and structure of soil bacterial communities in cotton fields. [J]. Canadian journal of Microbiology, 2018, 64(3): 167-181.
[4] 歐忠慶,張園,劉智強,等. 正反轉倒U型甩刀香蕉莖稈粉碎還田機的設計與試驗[J]. 農機化研究,2020,42(12):80-84.
Ou Zhongqing, Zhang Yuan, Liu Zhiqiang, et al. Design and experiment on banana stalks disintegrator with positive and negative u-shaped flail blade[J]. Agricultural Mechanization Research, 2020, 42(12): 80-84. (in Chinese with English abstract)
[5] 李雙,梁棟,張喜瑞,等. 香蕉莖稈纖維提取刀片的改進設計[J]. 食品與機械,2019,35(1):130-135.
Li Shuang, Liang Dong, Zhang Xirui, et al. Improved design of banana stalk fiber extraction blade[J]. Food&Machinery, 2019, 35(1): 130-135. (in Chinese with English abstract)
[6] 馮佐龍. 4QZ-12型青飼料收獲機關鍵部件的研究[D]. 保定:河北農業大學,2008.
Feng Zuolong. Study on Key Parts of 4QZ-12 Forage Harvester[D]. Baoding: Agricultural University of Hebei, 2008. (in Chinese with English abstract)
[7] 李寶鳳,許和華,劉國. 機械化保護性耕作技術在小麥生產中的應用[J]. 現代農機,2019,26(2):48-51.
Li Baofeng, Xu Hehua, Liu Guo. Application of mechanized conservation tillage technology in wheat production[J]. Modern Agricultural Machinery, 2019, 26(2): 48-51. (in Chinese with English abstract)
[8] 張喜瑞,甘聲豹,鄭侃,等. 滾割喂入式臥軸甩刀香蕉假莖粉碎還田機設計與試驗[J]. 農業工程學報,2015,31(4):33-41.
Zhang Xirui, Gan Shengbao, Zheng Kan, et al. Design and experiment on cut roll feeding type horizontal shaft flail machine for banana pseudostem crushing and returning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 33-41. (in Chinese with English abstract)
[9] 李志強,李粵,賀寧波,等. 縱向雙輥式香蕉秸稈粉碎還田機的設計與試驗[J]. 中國農機化學報,2020,41(3):180-184.
Li Zhiqiang, Li Yue, He Ningbo, et al. Design and experiment of banana stalk crushing and returning machine with lengthways double rollers type[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(3): 180-184. (in Chinese with English abstract)
[10] 吳學尚,李粵,張喜瑞,等. 甩刀式立式香蕉秸稈粉碎機的設計[J]. 農機化研究,2014,36(4):83-86.
Wu Xueshang, Li Yue, Zhang Xirui, et al. The design of the vertical flail banana stalk crushing machine[J]. Agricultural Mechanization Research, 2014, 36(4): 83-86. (in Chinese with English abstract)
[11] 張喜瑞,王自強,李粵,等. 滑切防纏式香蕉秸稈還田機設計與試驗[J]. 農業工程學報,2018,34(3):26-34.
Zhang Xirui, Wang Ziqiang, Li Yue, et al. Design and experiment of sliding-cutting and anti-twining returning device for banana straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 26-34. (in Chinese with English abstract)
[12] 王自強,李粵,張喜瑞,等. 溝齒式香蕉假莖粉碎還田機設計與試驗[J]. 農機化研究,2018,40(12):55-59.
Wang Ziqiang, Li Yue, Zhang Xirui, et al. Design and experiment on banana stalks disintegrator with double shafts[J]. Agricultural Mechanization Research, 2018, 40(12): 55-59. (in Chinese with English abstract)
[13] 魏思林,李粵,張喜瑞,等. 砍切喂入雙輥式香蕉秸稈粉碎還田機設計與試驗[J]. 農機化研究,2019,41(10):80-84,90.
Wei Silin, Li Yue, Zhang Xirui, et al. Design and experiment of double-roller returning machine with the type of cutting and feeding for banana straw[J]. Agricultural Mechanization Research, 2019, 41(10): 80-84, 90. (in Chinese with English abstract)
[14] 鄭智旗,何進,李洪文,等. 動定刀支撐滑切式秸稈粉碎裝置設計與試驗[J]. 農業機械學報,2016,47(S1):108-116.
Zheng Zhiqi, He Jin, Li Hongwen, et al. Design and experiment of straw-chopping device with chopping and fixed blade supported slide cutting[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(S1): 108-116. (in Chinese with English abstract)
[15] 施印炎,羅偉文,胡志超,等. 全量秸稈粉碎條鋪與種帶分型清秸裝置設計與試驗[J]. 農業機械學報,2019,50(4):58-67.
Shi Yinyan, Luo Weiwen, Hu Zhichao, et al. Design and test of equipment for straw crushing with strip-laying and seed-belt classification with cleaning under full straw mulching[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 58-67. (in Chinese with English abstract)
[16] 章志強,何進,李洪文,等. 可調節式秸稈粉碎拋撒還田機設計與試驗[J]. 農業機械學報,2017,48(9):76-87.
Zhang Zhiqiang, He Jin, Li Hongwen, et al. Design and experiment on straw chopper cum spreader with adjustable spreading device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 76-87. (in Chinese with English abstract)
[17] 林靜,馬鐵,李寶筏. 1JHL-2型秸稈深埋還田機設計與試驗[J]. 農業工程學報,2017,33(20):32-40.
Lin Jing, Ma Tie, Li Baofa. Design and test of 1JHL-2 type straw deep burying and returning machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 32-40. (in Chinese with English abstract)
[18] 賈洪雷,姜鑫銘,郭明卓,等. V-L型秸稈粉碎還田刀片設計與試驗[J]. 農業工程學報,2015,31(1):28-33.
Jia Honglei, Jiang Xinming, Guo Mingzhuo, et al. Design and experiment of V-L shaped smashed straw blade[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 28-33. (in Chinese with English abstract)
[19] 劉鵬,何進,李艷潔,等. 異速對輥式玉米秸稈粉碎還田裝置設計與試驗[J]. 農業工程學報,2020,36(14):69-79. Liu Peng, He Jin, Li Yanjie, et al. Design and experiment of double rollers maize stalk chopping device with different rotation speeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(14): 69-79. (in Chinese with English abstract)
[20] 李果,李粵,張喜瑞,等. 秸稈粉碎還田機甩刀的設計[J]. 農機化研究,2014,36(8):122-125.
Li Guo, Li Yue, Zhang Xirui, et al. Design on the flail of straw chopper machine to field[J]. Agricultural Mechanization Research, 2014, 36(8): 122-125. (in Chinese with English abstract)
[21] 趙昌勝. 高速工具鋼在模具制造中的應用及熱處理[J]. 模制造,2011,11(11):88-90.
Zhao Changsheng, Application and heat treatment of high-speed tool steel in die & mold manufacture[J]. Mould Manufacture, 2011, 11(11): 88-90. (in Chinese with English abstract)
[22] 肖佳. 采棉機摘錠溫擠壓精制坯工藝研究[D]. 秦皇島:燕山大學,2012.
Xiao Jia. Process Research on Warm-Extrusion- Fine-Blocking for Picking Spindle of Cotton-Picking Machine[D]. Qinhuangdao: Yanshan University, 2012. (in Chinese with English abstract)
[23] 段文獻. 夾指鏈式殘膜回收裝置的設計及試驗[D]. 石河子:石河子大學,2017.
Dua Wenxian. Design of Clamping Finger-Chain Type Device for Recycling Agricultural Plastic Film[D]. Shihezi: Shihezi University, 2017. (in Chinese with English abstract)
[24] 李明,王金麗,鄧怡國,等. 1GYF-120型甘蔗葉粉碎還田機的設計與試驗[J]. 農業工程學報,2008,24(2):121-126.
Li Ming, Zhang Jinli, Deng Yiguo, et al, Structural design and experiments on sugarcane leaf shattering and returning machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(2): 121-126. (in Chinese with English abstract)
[25] 中國農業機械化科學研究院. 農業機械設計手冊[M]. 北京:中國農業科學技術出版社,2007.
[26] 孫妮娜,王曉燕,李洪文,等. 差速鋸切式水稻秸稈粉碎還田機設計與試驗[J]. 農業工程學報,2019,35(22):267-276.
Sun Nina, Wang Xiaoyan, Li Hongwen, et al. Design and experiment of differential sawing rice straw chopper for turning to field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 267-276. (in Chinese with English abstract)
[27] 中華人民共和國國家質量監督檢驗檢疫總局中國國家標準化管理委員會. 保護性耕作機械秸稈粉碎還田機:GB/T 24675. 6—2009[S]. 北京:中國標準出版社,2009.
[28] 李洋陽,劉思宇,單春艷,等. 保護性耕作綜合效益評價體系構建及實例分析[J]. 農業工程學報,2015,31(15):48-54.
Li Yangyang, Liu Siyu, Shan Chunyan, et al. Framework for comprehensive benefit assessment on conservation tillage and its application[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(15): 48-54. (in Chinese with English abstract)
[29] 農業部農業機械試驗鑒定總站,GB/T 5262-2008 農業機械試驗條件測定方法的一般規定[S]. 北京:中國標準出版社,2008.
[30] 李果. 1JGHXJ-160A型臥式香蕉秸稈粉碎還田機的研究[D]. 海口:海南大學,2015.
Li Guo. Design and Manufacture of 1JGHXJ-160A Horizontal Banana Returning Straw Crushing Machine[D]. Haikou: Hainan University, 2015. (in Chinese with English abstract)
[31] 唐寧寧. 1JGHL-160A型香蕉秸稈全量粉碎還田聯合作業機的研制[D]. 海口:海南大學,2017.
Tang Ningning. Design and Manufacture of 1JGHL-160A Banana Straw Total Crushing and Returning Combined Machine[D]. Haikou: Hainan University, 2017. (in Chinese with English abstract)
[32] 宋雅婷. 1XHJ-1600型臥式香蕉假莖粉碎還田機關鍵部件的優化設計與試驗研究[D]. 海口:海南大學,2016.
Song Yating. Design and Optimization of Key Components & Test of Horizontal Banana Straw Crushing Machine[D]. Haikou: Hainan University, 2016. (in Chinese with English abstract)
Design and experiment of banana straw crushing and returning machine with anti-wrapping device supported by flailing blade
Li Yue1, Guo Chaofan1, Yao Deyu1, He Ningbo1, Zhang Xirui1※, Wu Zihan1, Li Yuan2
(1.,,570228,; 2.,,570228,)
Banana straw is usually broken into pieces to degrade naturally in the farmland. However, severe entanglement of knife roller easily causes the wear of blades, leading to a short service life and low crushing efficiency in the conventional banana straw-crushing and returning machine. A great challenge has also been posed on the effective coordination of fixed knives during operation, especially in the case of high toughness after the aging of banana straw. Therefore, this study aims to improve the smashing rate of banana straw up to the standard requirement, thereby avoiding the winding of banana straw in pulverizers. An anti-wrapping device with a fixed flailing knife was also designed to reduce the entanglement for the banana straw-crushing and returning machine. Specifically, the movable and fixed knife was effectively coordinated in the machine. Three-point support was also formed using the crushing fixed knife and the Y-shaped flailing knife in high-speed crushing operation for the banana straw. As such, the highly efficient straw-crushing was realized to avoid straw entanglement. Among them, the Y-shaped flailing knife was composed of two L-shaped blades combined with a Y-shaped flailing knife and a flail. A systematic investigation was made on the optimization of structural parameters for the key components of crushing, the arrangement and combination of fixed knives, as well as the force analysis of banana straw during crushing. Correspondingly, the main test factors were determined as the forward speed of the returning machine, the speed of the crushing knife roller, and the bending angle of the Y-shaped flailing knife. A three-level three-factor orthogonal field test was then carried out, where the evaluation indicators were set as the crushing qualification rate of banana straw, and the unevenness of throwing. An optimal parameter combination was achieved, where the forward speed was 1.85 m/s, the knife roller speed was 1 500 r/min, and the bending angle of the Y-shaped flailing knife was 140°. In this case, the crushing qualification rate of banana straw was 95.1%, and the unevenness of throwing was 14.6%, indicating suitable for the actual situation of banana straw crushing. A comparison test was also conducted to verify the performance of the improved pulverizer. It was found that the qualified rate of straw smashing increased by 1.7 percentage points in the fixed-blade anti-wrapping banana straw crushing and returning machine, where the anti-wrapping device performed better. Consequently, the anti-wrapped banana straw crushing and returning machine with a fixed flailing knife can be expected to realize the sliding cooperation of the flailing and fixed knife for a better crushing effect, thereby reducing the entanglement of crushing knife roller. As such, the higher squeezing force of the cutter on the straw greatly contributed to effectively improving the crushing performance under the optimal operation requirements in the southern banana areas. The finding can provide strong technical support to the straw crushing and returning to the field in the banana areas.
agricultural machinery; test; banana stalk; fixed blade; flailing blade; anti-wrapping; crushing and returning machine
10.11975/j.issn.1002-6819.2021.18.002
S147.2
A
1002-6819(2021)-18-0011-09
2021-05-11
2021-09-08
國家自然科學基金項目(51965015,52075137);海南省院士工作站專項(SQ2020ysgzz0009)
李粵,教授,研究方向為熱帶農業機械技術與裝備。Email:liyue_888888@163.com
張喜瑞,博士,教授,博士生導師,研究方向為熱帶智能農業機械性能設計與試驗。Email:zhangxirui_999@sina.com
中國農業工程學會會員:李粵(E041200562S);張喜瑞(E04230000M)
李粵,郭超凡,姚德宇,等. 定甩刀防纏式香蕉秸稈粉碎還田機設計與試驗[J]. 農業工程學報,2021,37(18):11-19. doi:10.11975/j.issn.1002-6819.2021.18.002 http://www.tcsae.org
Li Yue, Guo Chaofan, Yao Deyu, et al. Design and experiment of banana straw crushing and returning machine with anti-wrapping device supported by flailing blade[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(18): 11-19. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.18.002 http://www.tcsae.org