周岳強, 董國軍, 許德如, 鄧 騰, 吳 俊, 王 翔, 高 磊, 陳孝剛
湖南黃金洞金礦床白鎢礦Sm-Nd年齡及其地質意義
周岳強1,2,3, 董國軍3*, 許德如1,4, 鄧 騰4, 吳 俊3, 王 翔3, 高 磊5, 陳孝剛5
(1. 中國科學院 廣州地球化學研究所 礦物學與成礦學重點實驗室, 廣東 廣州 510640; 2. 中國科學院大學, 北京 100049; 3. 湖南省 地質礦產勘查開發局 四〇二隊, 湖南 長沙 410004; 4. 東華理工大學 核資源與環境國家重點實驗室, 江西 南昌 330013; 5. 湖南黃金洞礦業有限責任公司, 湖南 岳陽 414507)
黃金洞金礦床是江南造山帶上重要的金礦產地之一, 礦體賦存在新元古代的淺變質巖中, 受東西向-北西西向構造的嚴格控制。多年來, 黃金洞金礦床的成礦年齡一直存在著爭議。通過對黃金洞金礦區的白鎢礦開展詳細的野外調查、巖相學觀察和Sm-Nd同位素分析, 在147Sm/144Nd-143Nd/144Nd圖解中獲得白鎢礦的等時線年齡為(129.7±7.4) Ma (MSWD=1.0), 對應的Nd()值為?8.21~ ?8.68。結合黃金洞礦區白鎢礦與含金硫化物的交切關系觀察、以及前人的成礦年代學和礦物學研究成果, 認為白鎢礦的等時線年齡可作為黃金洞金礦床的成礦年齡。白鎢礦的Nd() 值大于賦礦地層新元古界冷家溪群和湘東北早白堊世花崗巖, 但小于新元古界倉溪巖群, 表明白鎢礦中的Nd部分來自新元古界冷家溪群和(或)湘東北早白堊世花崗巖, 部分來自新元古界倉溪巖群。綜合前人的研究, 認為在江南造山帶的金銻鎢成礦作用中, 新元古界為礦源層, 區域變質作用和巖漿作用共同促進了金等成礦物質的活化, 構造活化為含礦熱液的運移和沉淀提供了通道和空間。
金礦床; 白鎢礦; Sm-Nd同位素; 湘東北; 江南造山帶
在對金礦床定年時, 最理想的方式是選取與金同期的礦物進行直接定年[1]。然而, 熱液型金礦床中往往缺少可通過傳統方法直接定年的礦物。因此, 其成礦年齡的確定成為一個難以解決的問題[1–2]。近幾十年來, 人們發現很多金礦床中都有白鎢礦的出現, 且這些白鎢礦與金關系密切, 常被作為重要的找礦標志[3–6]。又由于白鎢礦中的Ca2+與Sm、Nd等稀土元素有著相似的半徑和電子結構[7], 使得白鎢礦具有較高的稀土元素含量和Sm/Nd比值[1,8]。因此, 自20世紀80年代 Fryer.[3]首次成功實現Sm-Nd同位素定年以來, 白鎢礦Sm-Nd同位素定年逐漸被運用于許多金礦床的研究中[1,9–12]。
江南造山帶是華南著名的金銻鎢銅鉛鋅多金屬成礦帶, 帶內分布著數百個金-(銻)-(鎢)礦床(點)。多年來, 前人針對江南造山帶上的金-(銻)-(鎢)礦床的成礦時代進行了大量研究, 但得到的年齡大多為流體包裹體Rb-Sr等時線年齡[13–25]、黃鐵礦和方鉛礦等的Pb-Pb模式年齡[26–27]、石英裂變徑跡年齡[28]等類型。流體包裹體Rb-Sr等時線年齡極易受到次生流體包裹體的影響; Pb-Pb模式年齡則容易因為后期熱液活動導致Pb的丟失而不準確; 由于石英的U含量低且不均勻, 石英裂變徑跡年齡的準確性也不高, 且所測的石英也可能為非成礦期的石英。因此, 這些年齡相互之間差異很大, 在很大程度上已制約著對江南造山帶金銻鎢成礦機理的深入研究。自2003年彭建堂等[11]通過白鎢礦的Sm-Nd同位素測試獲得沃溪金銻鎢礦床的成礦年齡開始, 一些學者[12,29–34]以白鎢礦、含金毒砂以及輝銻礦等與金銻鎢礦床的成礦階段密切相關的礦物為對象, 運用Sm-Nd同位素、Re-Os同位素等可靠程度較高的測年方式, 獲得了江南造山帶西南段沃溪金銻鎢礦床、渣滓溪鎢銻礦床、板溪銻礦床、字溪金礦床、金井金礦床、龍山銻金礦床、平秋金礦床和八克金礦床的成礦年齡。
黃金洞金礦床位于江南造山帶中段的湘東北地區, 是江南造山帶上最重要的幾個金礦床之一。前人曾獲得黃金洞金礦床的黃鐵礦Pb-Pb模式年齡為552~416 Ma[26], 流體包裹體Rb-Sr等時線年齡為(425±33) Ma[23]和(152±13) Ma[20]。由于這些測年方法存在著較大的局限性, 黃金洞金礦床目前仍缺乏可靠程度高的成礦年齡。在黃金洞金礦床的勘探開采過程中我們發現, 礦區金品位較高的地段往往有白鎢礦出現。基于此, 本次研究擬對黃金洞金礦區的含白鎢礦礦石進行詳細的野外和鏡下觀察, 并對白鎢礦進行Sm-Nd同位素測試, 以獲得黃金洞金礦床的成礦年齡并探討白鎢礦中Nd的來源。在此基礎上, 結合前人的研究成果, 探討江南造山帶上金- (銻)-(鎢)礦床的成因。
江南造山帶位于揚子陸塊與華夏陸塊的接合部位、揚子陸塊的東南緣, 又被稱為“江南古陸”“江南古島弧”“江南隆起”[35–36](圖1), 以大面積出露元古宇(1.85~0.8 Ga)淺變質火山碎屑巖為特征[20]。此外, 古生代和中生代的淺海相和陸相地層也有少量出露。中生代的陸相沉積多分布于一系列斷陷盆地之中[36,40]。
江南造山帶的構造演化與新元古代以來揚子陸塊與華夏陸塊的活動緊密相關[41]。新元古代, 作為Rodinia大陸聚合的重要組成部分, 揚子陸塊與華夏陸塊發生碰撞, 形成了江南造山帶[42]。之后, 江南造山帶在加里東期、印支期和燕山期經歷了多期的構造作用。早古生代, 南華裂谷盆地閉合, 揚子和華夏陸塊之間再次發生碰撞, 拉開了加里東期陸內造山作用的序幕。這次造山作用在江南造山帶前泥盆紀地層中形成了一系列北西?近東西向的韌性剪切帶、斷裂和褶皺構造[43–44], 形成了大量的花崗巖、花崗閃長巖和少量的火山巖[45], 并使得地層普遍發生綠片巖相?角閃巖相的變質[41]。印支期的造山作用發生于早中生代, 它使得華南最終成為Pangea超大陸的一部分[46]。同時, 它使得華南早三疊世以前的地層大量褶皺變形和形成逆沖推覆構造, 并伴隨著區域變質作用和巖漿活動[47–48]。印支期巖漿巖規模較小, 以S型花崗巖為主。燕山期, 隨著古太平洋板塊向歐亞板塊的俯沖和回撤, 江南造山帶發育了一系列北東向的深大斷裂和斷陷盆地[49], 同時形成了大量的花崗巖、基性?超基性巖脈和基性?酸性火山巖[50–52]。

圖1 湘東北地質及大地構造位置圖
(a) 華南構造劃分圖(據文獻[37]修改); (b) 湘東北地區構造地質圖(據文獻[38,39]修改)。
1–第四系; 2–白堊紀?第三紀砂巖和礫巖; 3–中泥盆世?中三疊世碳酸鹽巖、砂巖和泥巖; 4–震旦紀?志留紀砂巖、頁巖、礫巖和板巖; 5–新元古界板溪群碎屑沉積巖; 6–新元古界冷家溪群淺變質濁積巖; 7–新元古界倉溪巖群片巖, 片麻巖; 8–燕山期花崗巖; 9–印支期花崗巖; 10–加里東期花崗巖; 11–元古宙花崗巖; 12–斷裂; 13–韌性剪切帶; 14–金礦床(點); 15–鈷礦點; 16–錫礦化; 17–鎢礦化; 18–鈹礦化; 19–鈮鉭礦化; 20–銅礦化; 21–鉛鋅礦化; 22–鎢錫礦化; 23–銅多金屬礦床(點)。
(a) Tectonic framework of South China (modified after reference [37]); (b) geological and structural map of northeastern Hunan (modified after references [38,39]).
1–Quaternary; 2–Tertiary-Cretaceous sandstone and conglomerate; 3–Middle Triassic-Middle Devonian carbonate, sandstone and siltstone; 4–Silurian-Sinian sandstone, shale, conglomerate and slate; 5–clastic sediments of the Neoproterozoic Banxi Group; 6–low-grade metamorphosed turbidites of the Neoproterozoic Lengjiaxi Group; 7–schist and gneiss of the Neoproterozoic Lengjiaxi Group; 8–Yanshanian granitoids; 9–Indosinian granitoids; 10–Caledonian granitoids; 11–Proterozoic granit0ids; 12–fault; 13–ductile shear zone; 14–Au deposit or occurrence; 15–Co deposit; 16–Sn mineralization; 17–W mineralization; 18–Be mineralization; 19–Ni-Ta mineralization; 20–Cu mineralization; 21–Pb-Zn mineralization; 22–W-Sn mineralization; 23–Cu polymetallic deposit or occurrence
湘東北地區位于江南造山帶的中段(圖1a)。區內出露的地層主要為新元古界、中生界白堊系及新生界第四系。新元古界主要分布于斷隆帶上, 由倉溪巖群、冷家溪群和板溪群組成。倉溪巖群主要由云母片巖和黑云母斜長片麻巖組成。冷家溪群和板溪群為一套具有復理石建造的淺變質火山碎屑巖和黏土巖。冷家溪群主要由板巖、(粉)砂質板巖和變質雜砂巖組成, 由老至新依次為雷神廟組、黃滸洞組、小木坪組和大藥姑組。冷家溪群與上覆板溪群呈角度不整合接觸[53]。新元古界的冷家溪群和板溪群富含Au、Sb和W等元素[54], 是金銻鎢礦床的主要賦礦地層[36]。其中, 冷家溪群含Au 0.5~44.2 ng/g, 是地殼克拉克值的1~8倍[38]; 含鎢5~15 μg/g, 局部高達0.18%[54]。白堊系和第四系主要分布于斷陷盆地。除此以外, 震旦紀至三疊紀的地層在區內也有少量出露(圖1b)。
湘東北地區北東向深大斷裂發育。以這些斷裂為界, 湘東北被劃分為一系列相間分布的斷隆和斷陷盆地, 被稱為“盆?嶺式構造”[41]。此外, 2004年肖擁軍等[55]根據構造形跡和地球物理資料認為, 湘東北地區還存在著三條近東西向的韌性剪切帶。新元古代、加里東期、印支期和燕山期巖漿巖在湘東北地區都有出露[56]。新元古代巖漿巖包括長三背、葛藤嶺、大圍山和張邦源等巖體, 主要為S型花崗巖, 成巖年齡大多分布于833~816 Ma之間, 形成于同碰撞的構造環境[35,57–61]。加里東期巖體包括張坊、板杉鋪和宏夏橋等, 成巖年齡為434~432 Ma,為I型花崗巖, 為加厚的中下地殼發生部分熔融而成[62–63]。印支期巖漿巖僅在湘東北的西南部有出露, 成巖年齡分布于250~233 Ma之間, 目前相關研究較少[64]。燕山期巖漿巖出露面積最大, 主要為S型花崗巖, 是伸展環境下加厚下地殼發生部分熔融的產物[65], 代表性巖體有連云山巖體、望湘巖體及金井巖體(圖1b)。其中, 連云山巖體主要由中細粒二云母花崗巖和中粗粒斑狀黑云母花崗巖組成, 為強過鋁質S型花崗巖[39], 其成巖年齡分布于 155~130 Ma之間[49,56],常見綠泥石化、綠簾石化、高嶺土化及絹云母化。在連云山巖體周圍, 由近到遠依次出現W-Sn-Nb- Ta-Be礦化帶、Cu-Pb-Zn礦化帶和Au礦化帶(圖1b)[38,39]。
湘東北地區是江南造山帶重要的金礦產地之一。區內產出有大萬(大洞和萬古)、黃金洞和雁林寺等多個金礦床(點), 它們均分布于北東向深大斷裂長平斷裂帶兩側新元古代冷家溪群的板巖之中(圖1b)。其中, 大萬和黃金洞金礦床均為大型?超大型金礦床。
黃金洞金礦床位于湘東北地區北東向長沙?平江深大斷裂帶(簡稱長平斷裂帶)的SE側(圖1b)。區內出露的地層主要為新元古界冷家溪群大藥姑組, 局部被第四系覆蓋。大藥姑組主要由粉砂質板巖、砂質板巖和絹云母板巖組成。巖石普遍經受了區域淺變質作用, 產生的蝕變主要為絹云母化, 其次為弱硅化及少量綠泥石化、黃鐵礦化和碳酸鹽化。礦區內褶皺和斷裂都很發育。褶皺主要為倒轉背向斜, 褶皺樞紐呈北西(西)走向。區內發育兩組斷裂, 分別為東西向?北西西向和北東向。東西向?北西西向斷裂的走向與褶皺樞紐方向大致平行。北東向斷裂主要為泥灣斷裂和許多近平行的次級斷裂。這些斷裂走向北北東, 傾向北西西, 傾角通常大于50°。礦區內尚未發現有火成巖出露(圖2)。
截至2018年, 黃金洞金礦區已探明的金資源量(保有資源量+已開采資源量)達82 t, 平均品位約5 g/t[66]。礦區共發現19條金礦脈, 走向東西向至北西西向, 受東西向?北西西向斷裂控制。其中, 1號脈和3號脈的金資源量占整個礦區金資源量的50%以上。1號脈傾向北, 傾角20°~40°, 沿走向延伸長約3200 m, 礦體厚0.46~2.16 m。3號脈傾向南, 傾角45°~70°, 沿走向延伸長約3300 m, 礦體厚約0.74~ 3.65 m。礦石類型主要為石英脈型和蝕變巖型, 少量為構造角礫巖型(圖3a~3c)。礦石礦物主要為毒砂和黃鐵礦, 少量為白鎢礦、輝銻礦、方鉛礦、閃鋅礦、黃銅礦和自然金等。脈石礦物主要為石英和方解石, 少量為綠泥石、絹云母和白云石等。金呈自然金、晶格金和納米級金顆粒三種形式存在。其中, 晶格金和納米級金顆粒主要賦存于毒砂和含砷黃鐵礦中[56,67,68]。近礦圍巖的蝕變類型多樣, 主要蝕變類型為硅化、黃鐵礦化和毒砂化, 可見少量的絹云母化和綠泥石化。局部圍巖可見輝銻礦化和葉臘石化。
根據野外和鏡下觀察到的穿插關系, 可將黃金洞金礦床的熱液作用劃分為四個階段(圖4): 第一階段以無礦石英(Qz1)為特征, 石英顆粒較大(圖3c); 第二階段以白鎢礦和石英(Qz2)為特征(圖3e); 第三階段為金多金屬硫化物階段, 形成石英(Qz3)、毒砂、黃鐵礦、方鉛礦和自然金礦物組合(圖3f); 第四階段由方解石、石英(Qz4)和少量黃鐵礦組成(圖3g~3h)。其中, 第三階段與金成礦有關。局部可觀察到第二階段的白鎢礦細脈切穿了第一階段形成的無礦石英(Qz1) (圖3c~3e), 同時又被第三階段形成的金多金屬硫化物細脈切穿(圖3c、3e和3f)。
本次研究的含白鎢礦礦石均采自3號礦脈(圖2), 詳細采樣位置見表1。礦區的白鎢礦通常為乳白色, 油脂光澤, 呈細脈狀、團塊狀產出。
在詳細進行野外和室內觀察的基礎上, 首先將樣品碎至粒徑約0.25 mm (60目)。然后, 在雙目鏡下借助熒光燈挑選白鎢礦。在挑選過程中, 將混晶和雜質剔除, 使白鎢礦的純度達到99%以上。最后, 將挑選出來的白鎢礦碎至粒徑約0.075 mm (200目)。白鎢礦Sm-Nd同位素的測定工作在中國地質調查局武漢地質調查中心的Triton熱電離質譜儀上完成。詳細的操作流程參考李華芹[69]。樣品分析測試在超凈化實驗室完成。通過同位素稀釋法得到Sm和Nd含量, 直接對提純的樣品分析得到Nd同位素比值, 質譜分析過程中產生的質量分餾采用146Nd/144Nd=0.7219進行冪定律校正。在分析過程中,采用GBW04419、BCR-2和GSW標準物質對全流程和儀器進行監控。GBW04419的測定結果為Sm=3.028 μg/g, Nd=10.08 μg/g,143Nd/144Nd= 0.512720±0.000005(1σ), 與其證書值(3.03±0.04、10.10±0.12、0.512725±0.000005(2σ))在誤差范圍內一致; BCR-2的測定結果為Sm=6.54 μg/g, Nd=28.85 μg/g,143Nd/144Nd=0.512636±0.000008 (1σ), 與其推薦值(6.41~6.73、27.62~28.97、0.512618~0.512650)在誤差范圍內一致; GSW的測定結果為143Nd/144Nd = 0.512433±0.000005(1σ), 與推薦值0.512438±6(2σ)在誤差范圍內完全一致。標準全流程Sm、Nd空白分別為3.0×10?11g和2.0×10?11g, 對樣品分析結果的影響可忽略不計。Sm和Nd含量的分析誤差優于1%,147Sm/144Nd的分析誤差為0.005%。Sm-Nd同位素年齡通過Isoplot程序分析處理[70]。計算時采用的147Sm衰變常數為6.54×10?12a?1, 球粒隕石均一儲庫(CHUR)現代的147Sm/144Nd和143Nd/144Nd值分別采用0.1967和0.512638[71]。
李達是中共一大的發起者、籌備者、召集者和組織者,他和夫人王會悟也是同時參加黨的一大的唯一一對夫妻。在中國共產黨早期領導人中,“還很少有像李達同志這樣勤奮、這樣有豐富的卓越的成就,這樣在任何困難危險的環境下生命不息、戰斗不止的馬克思主義宣傳家、教育家,這樣堅定勇敢而不斷追求進步,力求達到當代的最高水平的馬克思主義理論戰士”。他為中國共產黨的創立,為馬克思主義在中國的傳播,為豐富毛澤東哲學思想作出了重要貢獻。

圖2 黃金洞礦區地質圖(據文獻[36]修改)

圖3 黃金洞礦區礦脈野外、手標本及顯微鏡下照片
(a) 蝕變巖型礦石; (b) 構造角礫巖型礦石; (c) 石英脈型礦石手標本; (d) 紫外熒光燈照射下的石英脈型礦石手標本; (e) 白鎢礦細脈切穿了無礦石英, 又被黃鐵礦、毒砂細脈切穿(正交偏光); (f) 金多金屬硫化物細脈切穿白鎢礦(反射光); (g) 和 (h) 石英和方解石的礦物組合(正交偏光)。Apy–毒砂; Au–自然金; Cal–方解石; Gn–方鉛礦; Py–黃鐵礦; Qz–石英; Sch–白鎢礦。
(a) Altered rock type ore; (b) tectonic breccia type ore; (c) quartz vein type ore; (d) quartz vein type ore irradiated by the ultraviolet fluorescent lamp; (e) vein of scheelite crosscutting barren quartz and crosscutted by vein of pyrite and arsenopyrite (cross-polarized light); (f) vein of Au polymetallic sulfide crosscutting vein of scheelite (reflected-light); (g) and (h) quartz and calcite (cross-polarized light). Apy–arsenopyrite; Au–native gold; Cal–calcite; Gn–galena; Py–pyrite; Qz–quartz; Sch–scheelite

圖4 黃金洞金礦床的成礦階段和礦物組合
黃金洞礦區3號脈采集的5件樣品中白鎢礦的Sm和Nd含量以及同位素組成如表1所示。白鎢礦Sm和Nd的含量分別為0.5517~5.1330 μg/g和0.5854~ 3.5100 μg/g,147Sm/144Nd比值分布于0.5702~1.1130之間,143Nd/144Nd比值分布于0.512521~0.512979之間。在143Nd/144Nd-147Sm/144Nd圖解中, 5個白鎢礦樣品表現出良好的線性關系(圖5)。運用Isoplot程序求得白鎢礦的等時線年齡(129.7±7.4) Ma, MSWD為1.0, (143Nd/144Nd)i值為0.512040±0.000038 (圖5), 對應的Nd()值為?8.21 ~ ?8.68 (表1)。由于所有樣品均采自黃金洞礦區3號礦脈, 是同源同期熱液活動的產物, 本次獲得的年齡(129.7±7.4) Ma可代表白鎢礦的真實形成年齡。
白鎢礦在江南造山帶以及世界上其他地區的很多金礦床中都有產出[36,72]。這些白鎢礦與自然金同時形成或形成于自然金之前[36,72–75], 大多與金有著成因上的聯系[75–76]。因此, 白鎢礦Sm-Nd同位素定年被廣泛用于金礦床的成礦年齡限定[1,9–12]。
在黃金洞金礦區, 白鎢礦出現的地段金的品位往往較高, 甚至有明金出現。根據黃金洞金礦床的階段劃分結果, 金形成于第三階段。這一階段的含金硫化物細脈切穿了第二階段的白鎢礦(圖3f), 且白鎢礦的Sm-Nd等時線年齡為(129.7±7.4) Ma。因此, 推測黃金洞金成礦的年齡晚于(129.7±7.4) Ma。而目前尚未在白堊系中發現金礦化的現象表明(圖1b), 黃金洞金礦床的成礦年齡應早于白堊系的沉積年齡。此外, 長平斷裂帶通常被認為是黃金洞等金礦床的導礦構造[56,77]。長平斷裂帶上產出的大巖金礦化點(圖1b)與黃金洞金礦床相鄰, 礦物組合石英?毒砂?黃鐵礦與黃金洞金礦床成礦階段(第三階段)的礦物組合類似, 這表明大巖金礦化點和黃金洞金礦床可能為同一期金成礦事件的產物。前人[56]已通過鋯石U-Pb定年和白云母Ar-Ar定年得到大巖金礦化點的成礦年齡為(142~130) Ma。根據以上論述, 黃金洞金礦床的成礦年齡應為130 Ma左右, 與白鎢礦的Sm-Nd等時線年齡近似。白鎢礦的年齡(129.7±7.4) Ma可大致作為成礦年齡。

表1 黃金洞金礦床中白鎢礦的Sm-Nd同位素組成

圖5 湖南黃金洞金礦床白鎢礦Sm-Nd等時線圖
由于白鎢礦從流體中結晶時, Nd同位素不會受到影響[78], 白鎢礦的Nd同位素被廣泛運用于源區示蹤的工作[1,11,30,78,79]。本次測得黃金洞金礦床中白鎢礦的Nd()值位于?8.21~?8.68之間, 表明Nd同位素為殼源。根據毛景文等[38]的Sm-Nd同位素數據, 重新計算得賦礦地層冷家溪群的Nd(129.7 Ma)值分布于?10.30 ~ ?13.86之間, 小于白鎢礦的Nd()值。礦區外圍出露的時代更老的倉溪巖群的Nd(129.7 Ma)值分布于?5.80 ~ ?8.06之間[80], 大于白鎢礦的Nd()值。同時, 湘東北地區早白堊世的S型花崗巖的Nd(129 Ma)值分布于?10.02 ~ ?10.36之間(中南大學未發表數據) (圖6)。這表明, 白鎢礦中的Nd可能部分來自于冷家溪群和(或)湘東北早白堊世的花崗巖, 部分來自于新元古界倉溪巖群。
在黃金洞金礦區, 切穿第一階段無礦石英的白云母的Ar-Ar年齡為397~399 Ma[81], 表明東西向?北西西向的賦礦構造形成于加里東期或更早。同樣賦存于東西向?北西西向賦礦構造中的第二階段白鎢礦的Sm-Nd等時線年齡為(129.7±7.4) Ma, 表明賦礦構造在燕山期發生了活化。前人研究表明, 向華南板塊俯沖的古太平洋板塊發生后撤, 進而導致整個華南地區的應力體系由擠壓向伸展轉換的時間也為130 Ma左右[52,82], 與黃金洞金礦床的成礦年齡在誤差范圍內一致。因此, 可能是這次構造事件導致了湘東北地區構造的活化, 從而為黃金洞金礦床的成礦流體提供了運移的通道和成礦的空間。

圖6 黃金洞金礦區白鎢礦與湘東北各地質體εNd(t)值對比圖
新元古界倉溪巖群的Nd() (=129.7 Ma)根據文獻[80]重新計算; 新元古界冷家溪群的Nd() (=129.7 Ma)根據文獻[38]重新計算; 湘東北早白堊世花崗巖的Nd() (=129 Ma)數據引自中南大學未發表數據
Nd() (=129.7 Ma) for the Neoproterozoic Cangxiyan Group was calculated according to reference [80];Nd() (=129.7 Ma) for the Neoproterozoic Lengjiaxi Group was calculated according to reference [38], whileNd() (=129 Ma) for early Cretaceous granites in northeastern Hunan was cited from unreleased data of Central South University
在江南造山帶上, 絕大多數金銻鎢礦床賦存于新元古界地層之中[36,77]。S和Pb同位素分析結果表明, 這些礦床的成礦物質主要來源于賦礦的新元古界(文獻[36]及其參考文獻)。同時, 元素含量分析結果表明, 新元古界(尤其是冷家溪群)的Au、Sb和W的含量高于地殼豐度值[38,54]。因此, 江南造山帶上絕大多數金銻鎢礦床的礦源層應為新元古界, 各個礦床成礦時代不一致可能是因為成礦物質被活化、遷移、沉淀成礦的時間不同所導致的。
關于引起礦源層中成礦元素活化的因素, 有學者認為是大規模的造山作用[25,93–96]和(或)區域變質作用[97–100]。針對江南造山帶金銻鎢礦床的成礦年代學研究結果顯示, 不論是加里東期、印支期還是燕山期, 在江南造山帶的西南段、中段和北東段通常都有相近的年齡(不論是成礦年齡還是無礦的熱液活動年齡)出現(表2, 圖7)。因此, 大規模的造山作用和(或)區域變質作用在引發江南造山帶熱液活動方面發揮了重要作用。江南造山帶大部分金銻鎢礦床的成礦流體主要為變質水[25,95,99,101–109]的現象也支持這個觀點。

表2 江南造山帶已報道和本文中的金銻鎢礦床年齡統計表

(續表2)
粗體的年齡數據為“較可靠”的年齡; 其余為“較不可靠”的年齡。“較可靠”的年齡和“較不可靠”的年齡的定義見圖7的說明。

圖7 江南造山帶北東段、中段、西南段年齡對比圖(年齡數據來自表2)
圖中“較可靠”的年齡指對應的定年礦物的成因明確, 且與成礦階段/無礦階段的關系明確的年齡; “較不可靠”的年齡指對應的定年礦物成因不明, 或與成礦階段/無礦階段的關系不明的年齡。
Robust ages in the figure represent ages that were dated by minerals with specific genesis and relationship with ore-forming stage/barren stage;Less robust ages represent ages that were dated by minerals without specific genesis or relationship with ore-forming stage/barren stage.
同時, 江南造山帶上的金銻鎢礦床大多在空間上與巖漿巖相聯系。部分礦區有巖體或巖脈出露(如龍山金銻礦床[12]); 部分礦區盡管沒有巖體露頭, 但被認為深部存在隱伏巖體(如大萬金礦床[110]), 或其附近的北東向深大斷裂沿線有巖體產出(如大萬金礦床、黃金洞金礦床(圖1b)和沃溪金銻鎢礦床)。金銻鎢礦床的成礦年齡通常與這些鄰近巖體的年齡相近或稍晚。例如, 黃金洞金礦床的年齡((129.7±7.4) Ma)、大巖金礦化點的年齡(130 Ma)[56]略晚于長平斷裂帶沿線燕山期巖體的年齡(155~130 Ma)[49,56]; 龍山金銻礦床的年齡((210±2) Ma)[12]和渣滓溪銻鎢礦床的年齡((227.3±6.2) Ma)[30]與附近晚三疊世巖體的年齡(228~201 Ma)[111]大致相等。氫氧同位素分析結果顯示, 江南造山帶金銻鎢礦床的成礦流體中除了變質水外, 通常還有少量巖漿水的參與[102,104,106,107]。在湘東北地區, 還可觀察到以連云山巖體為中心, 由近到遠依次出現高溫、中溫和低溫的成礦元素分帶[38,39](圖1)。以上這些證據表明, 巖漿作用也在成礦物質的活化過程中發揮了重要作用, 可能其提供的熱能或帶來的某些流體或物質有利于礦源層中成礦物質的活化。
此外,江南造山帶上的金銻鎢礦床大多受構造的控制, 產出于北東向深大斷裂兩側的次級斷裂中[41,77]。平秋[29,31]、金井[29,34]和黃金洞[81]等礦床同時存在著兩個或多個年齡(表2)的現象表明, 控礦構造在形成后可能再次活化[36], 構造的活化可能為含礦流體的運移和沉淀成礦提供了通道和空間。
綜上所述, 礦源層中金等成礦物質的活化可能是造山作用及其相關的區域變質作用和巖漿作用共同作用的結果, 而構造活化可能為含礦流體的運移和沉淀成礦提供了通道和空間。在某個特定的時期, 之所以部分地區成礦而部分地區不成礦, 一方面可能是不成礦地區區域變質作用和(或)巖漿作用的影響程度較低導致礦源層中的成礦物質沒有被活化, 另一方面可能是不成礦地區缺乏構造活化提供的成礦流體運移的通道和沉淀成礦的空間。
本次研究表明, 在江南造山帶的金銻鎢成礦作用中, 新元古界地層是礦源層, 區域變質作用、巖漿作用和構造活化在成礦物質的活化、遷移和沉淀過程中起到了重要作用。因此, 在江南造山帶的找礦工作中, 可將新元古界地層、火成巖和活化的構造作為重要的預測要素。
(1) 黃金洞金礦床的成礦年齡為(129.7±7.4) Ma;
(2) 黃金洞金礦床白鎢礦中的Nd部分來自新元古界冷家溪群和(或)湘東北早白堊世的花崗巖, 部分來自新元古界倉溪巖群;
(3) 在江南造山帶上, 新元古界地層為金銻鎢礦床的礦源層, 區域變質作用和巖漿作用的綜合作用可能為新元古界地層中金等成礦物質的活化提供了必要條件, 構造的活化可能為含礦熱液提供了運移通道的和沉淀成礦的空間。
中國地質大學(武漢)蔣少涌教授和中國地質科學院地質研究所周利敏副研究員對本文的初稿提出了寶貴的修稿意見, 在此表示衷心的感謝!
[1] Bell K, Anglin C D, Franklin J M. Sm-Nd and Rb-Sr isotope systematics of scheelites: Possible implications for the age and genesis of vein-hosted gold deposits[J]. Geology, 1989, 17(6): 500–504.
[2] 陸松年, 李懷坤, 李惠民. 成礦地質事件的同位素年代學研究[J]. 地學前緣, 1999, 6(2): 335–342.
Lu Song-nian, Li Huai-kun, Li Hui-min. Research on isotopic geochronology of mineralization events[J]. Geosci Front, 1999, 6(2): 335–342 (in Chinese with English abstract).
[3] Fryer B J, Taylor R P . Sm-Nd direct dating of the Collins Bay hydrothermal uranium deposit, Saskatchewan[J]. Geology, 1984, 12(8): 479–482.
[4] Surya Prakash Rao K, Sastry R S N, Raju S V. Scheelite as a prospecting tool for gold in the Ramagiri greenstone belt, Andhra Pradesh, India[J]. J Geochem Explor, 1989, 31(3): 307–317.
[5] Ghaderi M, Palin J M, Campbell I H, Sylvester P J. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia[J]. Econ Geol, 1999, 94(3): 423–437.
[6] Boyle R W. The geochemistry of gold and its deposits[J]. Geol Surv Can Bull, 1979, 280: 579–584.
[7] Raimbault L, Baumer A, Dubru M, Benkerrou C, Croze V, Zahm A. REE fractionation between scheelite and apatite in hydrothermal conditions[J]. Am Mineral, 1993, 78: 1275–1285.
[8] Brugger J L, Etschmann B, Pownceby M, Liu W, Grundler P, Brewe D. Oxidation state of europium in scheelite: Tracking fluid-rock interaction in gold deposits[J]. Mineral Mag, 2008, 257(1/2): 0–33.
[9] Anglin C D, Jonasson I R, Franklin J M. Sm-Nd dating of scheelite and tourmaline; implications for the genesis of Archean gold deposits, Val d’Or, Canada[J]. Econ Geol, 1996, 91(8): 1372–1382.
[10] Darbyshire D P F, Pitfield P E J, Campbell S D G. Late Archean and Early Proterozoic gold-tungsten mineralization in the Zimbabwe Archean craton: Rb-Sr and Sm-Nd isotope constraints[J]. Geology, 1996, 24(1): 19–22.
[11] 彭建堂, 胡瑞忠, 趙軍紅, 符亞洲, 林源賢. 湘西沃溪Au-Sb-W礦床中白鎢礦Sm-Nd和石英Ar-Ar定年[J]. 科學通報, 2003, 48(18): 1976–1981.
Peng Jian-tang, Hu Rui-zhong, Zhao Jun-hong, Fu Ya-zhou, Lin Yuan-xian. Scheelite Sm-Nd dating and quartz Ar-Ar dating from the Woxi Au-Sb-W deposit, western Hunan China[J]. Chinese Sci Bull, 2003, 48(18): 1976–1981 (in Chinese).
[12] Zhang Z Y, Xie G Q, Mao J W, Liu W G, Olin P, Li W. Sm-Nd Dating and in-situ LA-ICP-MS trace element analyses of scheelite from the Longshan Sb-Au deposit, Xiangzhong metallogenic province, South China[J]. Minerals, 2019, 9: doi: 10.3390/ min9020087
[13] 史明魁, 傅必勤, 靳西祥. 湘中銻礦[M]. 長沙: 湖南科技出版社, 1994: 1–151.
Shi Ming-kui, Fu Bi-qin, Jin Xi-xiang. Antimony metallogeny in central part of Hunan Province [M]. Changsha: Hunan Science and Technology Press, 1994: 1–151 (in Chinese with English abstract).
[14] 張金春. 江西金山韌性剪切型金礦成礦地球化學研究[D]. 南京: 南京大學, 1994.
Zhang Jin-chun. Metallogenic and geochemistry of Jinshan ductile shear-type gold deposit, Jiangxi Province [D]. Nanjing: Nanjing University, 1994 (in Chinese with English abstract).
[15] 陳好壽, 徐步臺. 浙江璜山金礦床同位素地球化學研究[J]. 浙江地質, 1996, 12(1): 74–82.
Chen Hao-shou, Xu Bu-tai. Isotope geochemical study on the Huangshan gold deposit, Zhejiang[J]. Geol of Zhejiang, 1996, 12(1): 74–82 (in Chinese with English abstract).
[16] 彭建堂, 戴塔根. 雪峰地區金礦成礦時代問題的探討[J]. 地質與勘探, 1998, 34(4): 37–41.
Peng Jian-tang, Dai Ta-gen. On the mineralization epoch of the Xuefeng gold metallogenic province[J]. Geol Prosp, 1998, 34(4): 37–41 (in Chinese with English abstract).
[17] 王秀璋, 梁華英, 單強, 程景平, 夏萍. 金山金礦成礦年齡測定及華南加里東成金期的討論[J]. 地質論評, 1999, 45(1): 19–25.
Wang Xiu-zhang, Liang Hua-ying, Shan Qiang, Cheng Jing-ping, Xia Ping. Metallogenic age of the Jinshan gold deposit and Caledonian gold mineralization in South China[J]. Geol Rev, 1999, 45(1): 19–25 (in Chinese with English abstract).
[18] 朱笑青, 王甘露, 盧煥章, 吳學益, 陳文益. 黔東南金礦形成時代的確定兼論湘黔加里東金礦帶[J]. 中國地質, 2006, 33(5): 1092–1099.
Zhu Xiao-Qing, Wang Gan-lu, Lu Huan-zhang, Wu Xue-yi, Chen Wen-yi. Determination of the age of gold deposits in southeastern Guizhou: With a discussion of the Caledonian Hunan-Guizhou gold ore belt[J]. Chinese Geol, 2006, 33(5): 1092–1099 (in Chinese with English abstract).
[19] 陳富文, 戴平云, 梅玉萍, 李華芹, 王登紅, 蔡紅. 湖南雪峰山地區沈家埡金礦成礦學及年代學研究[J]. 地質學報, 2008, 82(7): 906–911.
Chen Fu-wen, Dai Ping-yun, Mei Yu-ping, Li Hua-qin, Wang Deng-hong, Cai Hong. Metallogenetic and isotopic chronological study on the Shenjiaya gold deposit in Xuefeng Mountains, Hunan Province[J]. Acta Geol Sinica, 2008, 82(7): 906–911 (in Chinese with English abstract).
[20] 董國軍, 許德如, 王力, 陳廣浩, 賀轉利, 符鞏固, 吳俊, 王智琳. 湘東地區金礦床礦化年齡的測定及含礦流體來源的示蹤——兼論礦床成因類型[J]. 大地構造與成礦學, 2008, 32(4): 482–491.
Dong Guo-jun, Xu De-ru, Wang Li, Chen Guang-hao, He Zhuan-li, Fu Gong-gu, Wu Jun, Wang Zhi-lin. Determination of mineralizing ages on gold ore deposits in the eastern Hunan province, south China and isotopic tracking on ore-forming fluids re-discussing gold ore deposit type[J]. Geotecton Metallogen, 2008, 32(4): 482–491 (in Chinese with English abstract).
[21] 李華芹, 王登紅, 陳富文, 梅玉萍, 蔡紅. 湖南雪峰山地區鏟子坪和大坪金礦成礦作用年代學研究[J]. 地質學報, 2008, 82(7): 900–905.
Li Hua-qin, Wang Deng-hong, Chen Fu-wen, Mei Yu-ping, Cai Hong. Study on chronology of the Chanziping and Daping gold deposit in Xuefeng Mountains, Hunan Province[J]. Acta Geol Sinica, 2008, 82(7): 900–905 (in Chinese with English abstract).
[22] 毛光周, 華仁民, 龍光明, 陸慧娟. 江西金山金礦成礦時代探討——來自石英流體包裹體Rb-Sr年齡的證據[J]. 地質學報, 2008, 82(4): 532–539.
Mao Guang-zhou, Hua Ren-min, Long Guang-ming, Lu Hui-juan. Rb-Sr age of gold-bearing pyrite in the Jinshan gold deposit, Jiangxi Province[J]. Acta Geol Sinica, 2008, 82(4): 532–539 (in Chinese with English abstract).
[23] 韓鳳彬, 常亮, 蔡明海, 劉孫泱, 張詩啟, 陳艷, 彭振安, 徐明. 湘東北地區金礦成礦時代研究[J]. 礦床地質, 2010, 29(3): 563–571.
Han Feng-bin, Chang Liang, Cai Ming-hai, Liu Sun-yang, Zhang Shi-qi, Chen Yan, Peng Zhen-an, Xu Ming. Ore-forming epoch of gold deposits in northeastern Hunan[J]. Mineral Deposits, 2010, 29(3): 563–571 (in Chinese with English abstract).
[24] 盧新哲. 遂昌治嶺頭金礦礦床地質特征和成礦作用研究[D]. 合肥: 合肥工業大學, 2014.
Lu Xin-zhe. Study on Suichang Zhilingtou deposit geological feature and mineralization [D]. Hefei: Hefei University of Technology, 2014 (in Chinese with English abstract).
[25] Ni P, Wang G G, Chen H, Xu Y F, Guan S J, Pan J Y, Li L. An Early Paleozoic orogenic gold belt along the Jiang-Shao Fault, South China: Evidence from fluid inclusions and Rb-Sr dating of quartz in the Huangshan and Pingshui deposits[J]. J Asian Earth Sci, 2015, 103: 87–102.
[26] 羅獻林. 論湖南前寒武紀系金礦床的形成時代[J]. 桂林冶金地質學院學報, 1989, 9(1): 25–34.
Luo Xian-lin. On the epoch of the formation of Precambrian gold deposits in Hunan Province[J]. J Guilin Colleg Geol, 1989, 9(1): 25–34 (in Chinese with English abstract).
[27] 葉有鐘, 葉桂順, 趙關連, 柏慶如. 浙江諸暨璜山地區金(銀)礦成礦時代探討[J]. 浙江地質, 1993, 9(2): 10–14.
Ye You-zhong, Ye Gui-shun, Zhao Guan-lian, Bai Qing-ru. Discussion on mineralization period of gold (silver) deposits in Huangshan district of Zhuji, Zhejiang Province[J]. Geol of Zhejiang, 1993, 9(2): 10–14 (in Chinese with English abstract).
[28] 胡瑞英, 程景平, 郭士倫, 郝秀紅. 裂變徑跡法在金礦研究中的應用[J]. 地球化學, 1995, 24(2): 188–192.
Hu Rui-ying, Cheng Jing-ping, Guo Shi-lun, Hao Xiu-hong. Application of fission track technique to study of gold deposits[J]. Geochimica, 1995, 24(2): 188–192 (in Chinese with English abstract).
[29] 王加昇, 溫漢捷, 李超, 丁偉, 張錦讓. 黔東南石英脈型金礦毒砂Re-Os同位素定年及其地質意義[J]. 地質學報, 2011, 85(6): 955–964.
Wang Jia-sheng, Wen Han-jie, Li Chao, Ding Wei, Zhang Jin-rang. Re-Os isotope dating of arsenopyrite from the quartz vein-type gold deposit, southeastern Guizhou Province, and its geological implications[J]. Acta Geol Sinica, 2011, 85(6): 955–964 (in Chinese with English abstract).
[30] 王永磊, 陳毓川, 王登紅, 徐玨, 陳鄭輝. 湖南渣滓溪W-Sb礦床白鎢礦Sm-Nd測年及其地質意義[J]. 中國地質, 2012, 39(5): 1339–1344.
Wang Yong-lei, Chen Yu-chuan, Wang Deng-hong, Xu Yu, Chen Zheng-hui. Scheelite Sm-Nd dating of the Zhazixi W-Sb deposit in Hunan and its geological significance[J]. Chinese Geol, 2012, 39(5): 1339–1344 (in Chinese with English abstract).
[31] 顧尚義, 杜定全, 付勇, 孫士軍, 李超. 江南造山帶西南緣石英脈型金礦中毒砂Re-Os同位素定年研究[J]. 巖礦測試, 2016, 35(5): 542–549.
Gu Shang-yi, Du Ding-quan, Fu Yong, Sun Shi-jun, Li Chao. Re-Os isotopic dating of arsenopyrite from auriferous quartz vein-type gold deposits in the southwestern margin of Jiangnan Orogen[J]. Rock Mineral Anal, 2016, 35(5): 542–549 (in Chinese with English abstract).
[32] Li H, Wu Q H, Evans N J, Zhou Z K, Lin Z W. Geochemistry and geochronology of the Banxi Sb deposit: Implications for fluid origin and the evolution of Sb mineralization in central-western Hunan, South China[J]. Gondw Res, 2017, 55: 112–134.
[33] Wang C, Shao Y J, Evans N J, Li H, Zhou H D, Huang K X, Liu Z F, Chen Y, Lai C, Liu Q Q. Genesis of Zixi gold deposit in Xuefengshan, Jiangnan Orogen (South China): Age, geology and isotopic constraints[J]. Ore Geol Rev, 2020, 117: 103301. doi: 10.1016/j.oregeorev.2019.103301
[34] Wang J S, Wen H J, Li C, Zhang J R, Ding W. Age and metal source of orogenic gold deposits in Southeast Guizhou Province, China: Constraints from Re-Os and He-Ar isotopic evidence[J]. Geosci Front, 2019, 10(2): 581–593.
[35] Deng T, Xu D, Chi G, Zhu Y, Wang Z, Chen G, Li Z, Zhang J, Ye T, Yu D. Revisiting the ca. 845–820-Ma S-type granitic magmatism in the Jiangnan Orogen: new insights on the Neoproterozoic tectono-magmatic evolution of South China[J]. International Geology Review, 2019, 61(6): 383–403.
[36] Xu D R, Deng T, Chi G X, Wang Z L, Zou F H, Zhang J L, Zou S H. Gold mineralization in the Jiangnan Orogenic Belt of South China: Geological, geochemical and geochronological characteristics, ore deposit-type and geodynamic setting[J]. Ore Geology Reviews, 2017, 88: 565–618.
[37] Sun W D, Yang X Y, Fan W M, Wu F Y. Mesozoic large scale magmatism and mineralization in South China: Preface[J]. Lithos, 2012, 150(Complete): 1–5.
[38] 毛景文, 李紅艷, 徐鈺, 羅福庭. 湖南萬古地區金礦地質與成因[M]. 北京: 原子能出版社, 1997.
Mao Jing-wen, Li Hong-yan, Xu Yu, Luo Fu-ting. Geology and genesis of the Wangu gold deposit in Hunan province, China[M]. Beijing: Atomic energy press, 1997 (in Chinese with English abstract).
[39] 許德如, 鄧騰, 董國軍, 寧鈞陶, 王智琳, 張俊嶺, 鄒鳳輝, 周岳強, 陳根文, 周永章, 林舸. 湘東北連云山二云母二長花崗巖的年代學和地球化學特征: 對巖漿成因和成礦地球動力學背景的啟示[J]. 地學前緣, 2017, 24(2): 104–122.
Xu De-ru, Deng Teng, Dong Guo-jun, Ning Jun-tao, Wang Zhi-lin, Zhang Jun-ling, Zou Feng-hui, Zhou Yue-qiang, Chen Gen-wen, Zhou Yong-zhang, Lin Ge. Zircon U-Pb geochronological and geochemical characteristics of the Lianyunshan two-mica monzogranites in northeastern Hunan Province: implications for petrogenesis and tectonic setting associated with polymetallic mineralization[J]. Geoscience Frontiers, 2017, 24(2): 104–122 (in Chinese with English abstract).
[40] 舒良樹, 王德滋. 北美西部與中國東南部盆嶺構造對比研究[J]. 高校地質學報, 2006, 12(1): 1–13.
Shu Liang-shu, Wang De-zi. Comparative study on basin and range structure in western North America and eastern China[J]. Geological Journal of China Universities, 2006, 12(1): 1–13 (in Chinese with English abstract).
[41] 許德如, 鄒鳳輝, 寧鈞陶, 鄧騰, 王智琳, 陳根文, 張建嶺, 董國軍. 湘東北地區地質構造演化與成礦響應探討[J]. 巖石學報, 2017, 33(3): 695–715.
Xu De-ru, Zou Feng-hui, Ning Jun-tao, Deng Teng, Wang Zhi-lin, Chen Gen-wen, Zhang Jian-ling, Dong Guo-jun. Discussion on geological and structural characteristics and associated metallogeny in northeastern Hunan province, South China[J]. Acta Petrologica Sinica, 2017, 33(3): 695–715 (in Chinese with English abstract).
[42] Ye M F, Li X H, Li W X, Liu Y, Li Z X. SHRIMP zircon U–Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block[J]. Gondwana Research, 2007, 12(1): 144–156.
[43] Faure M, Shu L S, Wang B, Charvet J, Choulet F, Monie P. Intracontinental subduction: a possible mechanism for the Early Palaeozoic Orogen of SE China[J]. Terra Nova, 2009, 21(5): 360–368.
[44] Xu X B, Li Y, Tang S, Xue D J, Zhang Z J. Neoproterozoic to Early Paleozoic polyorogenic deformation in the southeastern margin of the Yangtze Block: Constraints from structural analysis and 40Ar/39Ar geochronology[J]. Journal of Asian Earth Sciences, 2015, 98: 141–151.
[45] 孫濤. 新編華南花崗巖分布圖及其說明[J]. 地質通報, 2006, 25(3): 332–335.
Sun Tao. A new map showing the distribution of granites in South China and its explanatory notes[J]. Geological Bulletin of China, 2006, 25(3): 332–335 (in Chinese with English abstract).
[46] Wang Y J, Fan W M, Sun M, Liang X Q, Zhang Y H, Peng T P. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: A case study in the Hunan Province[J]. Lithos, 2007, 96(3-4): 475–502.
[47] Li Z X. Tectonic History of the Major East Asian Lithospheric Blocks Since the Mid-Proterozoic — A Synthesis[M]. Washington: American Geophysical Union, 1998: 221–243.
[48] 王岳軍, 范蔚茗, 梁新權, 彭頭平, 石玉若. 湖南印支期花崗巖SHRIMP鋯石U-Pb年齡及其成因啟示[J]. 科學通報, 2005, 50(12): 101–108.
Wang Yue-jun, Fan Wei-ming, Liang Xin-quan, Peng Tou-ping, Shi Yu-ruo. SHRIMP zircon U-Pb geochronology of Indosiniangranites in Hunan Province and its petrogenetic implications[J]. Chinese Science Bulletin, 2005, 50(12): 101–108 (in Chinese with English abstract).
[49] Li J H, Dong S W, Zhang Y Q, Zhao G C, Johnston S T, Cui J J, Xin Y J. New insights into Phanerozoic tectonics of south China: Part 1, polyphase deformation in the Jiuling and Lianyunshan domains of the central Jiangnan Orogen[J]. Journal of Geophysical Research Solid Earth, 2016, 121(4): 3048–3080.
[50] Chen C H, Lee C Y, Shinjo R. Was there Jurassic paleo-Pacific subduction in South China?: Constraints from 40Ar/39Ar dating, elemental and Sr–Nd–Pb isotopic geochemistry of the Mesozoic basalts[J]. Lithos, 2008, 106(1-2): 83–92.
[51] Jiang Y H, Jiang S Y, Dai B Z, Liao S Y, Zhao K D, Ling H F. Middle to late Jurassic felsic and mafic magmatism in southernHunan province, southeast China: Implications for a continental arc to rifting[J]. Lithos, 2009, 107(3-4): 185–204.
[52] Li J H, Zhang Y Q, Dong S W, Johnston S T. Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. Earth-Science Reviews, 2014, 134(1): 98–136 (in Chinese with English abstract).
[53] 柏道遠, 鐘響, 賈朋遠, 熊雄, 黃文義, 姜文. 雪峰造山帶及鄰區構造變形和構造演化研究新進展[J]. 華南地質與礦產, 2015, 31(04): 3–25.
Bai Dao-yuan, Zhong Xiang, Jia Peng-yuan, Xiong Xiong, Huang wen-yi, Jiang Wen. Progresses in the deformations and tectonic evolutions of the Xuefeng Orogenic Belt and its adjacent areas[J]. Geology and Mineral Resources of South China, 2015, 31(04): 3–25 (in Chinese with English abstract).
[54] 朱炎齡, 李崇佑, 林運淮. 贛南鎢礦地質[M]. 南昌: 江西人民出版社, 1981.
Zhu Yan-ling, Li Chong-you, Lin Yun-huai. Geology of Tungsten deposit[M]. Nanchang: Jiangxi People's Publishing House, 1981 (in Chinese with English abstract).
[55] 肖擁軍, 陳廣浩. 湘東北大洞-萬古地區金礦構造成礦定位機制的初步研究[J]. 大地構造與成礦學, 2004, 28(1): 38–44.
Xiao Yong-jun, Chen Guang-hao. Preliminary study on the tectono-metallogenic orientation mechanism of the Dadong-Wangu gold deposit zone, northeastern Hunan province[J]. Geotectonica et Metallogenia, 2004, 28(1): 38–44 (in Chinese with English abstract).
[56] Deng T, Xu D R, Chi G X, Wang Z L, Jiao Q Q, Ning J T, Dong G J, Zou F H. Geology, geochronology, geochemistry and ore genesis of the Wangu gold deposit in northeastern Hunan Province, Jiangnan Orogen, South China[J]. Ore Geology Reviews, 2017, 88: 619–637.
[57] Li X H, Li Z X, Ge W C, Zhou H W, Li W X, Liu Y. U-Pb zircon ages of the Neoproterozoic granitoids in South China and their tectonic implications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4): 271-273.
[58] 鐘玉芳, 馬昌前, 佘振兵, 林廣春, 續海金, 王人鏡, 楊坤光, 劉強. 江西九嶺花崗巖類復式巖基鋯石 SHRIMP U-Pb年代學[J]. 地球科學, 2005, 030(6): 685–691.
Zhong Yu-fang, Ma Chang-qian, She Zhen-bing, Lin Guang-chun, Xu Hai-jin, Wang Ren-jing, Yang Kun-guang, Liu Qiang. SHRIMP U-Pb Zircon Geochronology of the Jiuling Granitic Complex Batholith in Jiangxi Province[J]. Earth Science, 2005, 30(6): 685–691 (in Chinese with English abstract).
[59] 馬鐵球, 陳立新, 柏道遠, 周柯軍, 李綱, 王先輝. 湘東北新元古代花崗巖體鋯石SHRIMP U-Pb年齡及地球化學特征[J]. 中國地質, 2009, 36(1): 65–73.
Ma Tie-qiu, Chen Li-xin, Bai Dao-yuan, Zhou Ke-jun, Li Gang, Wang Xian-hui. Zircon SHRIMP dating and geochemical characteristics of Neoproterozoic granites in southeastern Hunan[J]. Chinese Geology, 2009, 36(1): 65–73 (in Chinese with English abstract).
[60] Wang X L, Zhou J C, Qiu J S, Gao J F. Geochemistry of the Meso- to Neoproterozoic basic-acid rocks from Hunan Province, South China: implications for the evolution of the western Jiangnan orogen[J]. Precambrian Research, 2004, 135(1): 79–103.
[61] 李鵬春, 陳廣浩, 許德如, 賀轉利, 符鞏固. 湘東北新元古代過鋁質花崗巖的巖石地球化學特征及其成因討論[J]. 大地構造與成礦學, 2007, 31(1): 126–136.
Li Peng-chun, Chen Guang-hao, Xu De-ru, He Zhuan-li, Fu Gong-gu. Petrological and geochemical characteristics and petrogenesis of Neoproterozoic peraluminous granites in northeastern Hunan Province[J]. Geotectonica et Metallogenia, 2007, 31(1): 126–136 (in Chinese with English abstract).
[62] 關義立, 袁超, 龍曉平, 王毓婧, 張運迎, 黃宗瑩. 華南地塊東部早古生代的陸內造山作用: 來自I型花崗巖的啟示[J].大地構造與成礦學, 2013, 37(4): 698–720.
Guang Yi-li, Yuan Chao, Long Xiao-ping, Wang Yu-jin, Zhang Yun-ying, Huang Zong-ying. Early Paleozoic Intracontinental Orogeny of the Eastern South China Block: Evidence from I-type Granitic Plutons in the SE Yangtze Block[J]. Geotectonicaet Metallogenia, 2013, 37(4): 698–720 (in Chinese with English abstract).
[63] 許德如, 陳廣浩, 夏斌, 李鵬春, 賀轉利. 湘東地區板杉鋪加里東期埃達克質花崗閃長巖的成因及地質意義[J]. 高校地質學報, 2006, 12(4): 507–521.
Xu De-ru, Chen Guang-hao, Xia Bin, Li Peng-chun, He Zhuan-li. The Caledonian Adakite-Like Granodiorites in Banshanpu Area, Eastern Hunan Province, South China: Petrogenesis and Geological Significance[J]. Geological Journal of China Universities, 2006, 12(4): 507–521 (in Chinese with English abstract).
[64] 鄧騰. 湘東北地區陸內構造-巖漿活化及其對金成礦作用的控制[D]. 廣州: 中國科學院廣州地球化學研究所, 2018.
Deng Teng. Introcontinental tectono-magmatic reactivation and its control over gold mineralization in Northeastern Hunan Province, South China[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2018 (in Chinese with English abstract).
[65] 李鵬春. 湘東北地區顯生宙花崗巖巖漿作用及其演化規律[D]. 廣州: 中國科學院廣州地球化學研究所, 2006.
Li Peng-chun. Magmatism of Phanerozoic granitoids in southeastern Hunan Province, China and its evolution regularity[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2006 (in Chinese with English abstract).
[66] Zhang L, Groves D I, Yang L Q, Sun S C, Weinberg R F, Wang J Y, Wu S G, Gao L, Yuan L L, Li R H. Utilization of pre-existing competent and barren quartz veins as hosts to later orogenic gold ores at Huangjindong gold deposit, Jiangnan Orogen, southern China[J].Mineralium Deposita, 2019.
[67] 劉英俊, 孫承轅, 崔衛東, 季峻峰. 湖南黃金洞金礦床毒砂中金的賦存狀態的研究[J]. 地質找礦論叢, 1989, 4(1): 42–49.
Liu Ying-jun, Sun Cheng-yuan, Cui Wei-dong, Ji Jun-feng. Study of the occurrence of gold in arsenopyrite of Huangjindong gold deposit in Hunan Province[J]. Contributions To Geology and Mineral Resources Research, 1989, 4(1): 42–49 (in Chinese with English abstract).
[68] 張文蘭, 胡文宣, 胡受奚, 周順之, 陳鋼. 湖南黃金洞金礦毒砂中Au賦存狀態的電子探針研究[J]. 高校地質學報, 1997, 3(3): 17–23.
Zhang Wen-lan, Hu Wen-xuan, Hu Shou-xi, Zhou Shun-zhi, Chen Gang. Study of the mode of gold in arsenopyrite from Huangjindong gold deposit, Hunan, by using electron probe microanalysis[J]. Geological Journal of China Universities, 1997, 3(3): 17–23 (in Chinese with English abstract).
[69] 李華芹. 新疆北部有色貴金屬礦床成礦作用年代學[M]. 北京: 地質出版社, 1998: 1–266.
Li Hua-qin. Geochronology of mineralization of nonferrous and precious metal deposits in Northern Xinjiang[M]. Beijing: Geological Publishing House, 1998: 1–266 (in Chinese with English abstract).
[70] Ludwig K R. Isoplot 3.0–A Geochronological Toolkit for Microsoft Excel[M]. Berkeley, CA, USA: Berkeley Geochronology Center Special Publication, 2003.
[71] Steiger R H, Jager E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology[J]. Earth and Planetary Science Letters, 1977.
[72] Goldfarb R J, Baker T, Dubé B, Groves D I, Hart C J, Gosselin P. Distribution, Character, and Genesis of Gold Deposits in Metamorphic Terranes[J]. Economic Geology, 2005, Economic Geology 100th Anniversary Volume: 407–450.
[73] Mueller A G. The Savage Lode magnesian skarn in the Marvel Loch gold–silver mine, Southern Cross greenstone belt, WesternAustralia[J]. Canadian Journal of Earth Sciences, 1991, 62(28): 659–685.
[74] Beaudoin G, Pitre D. Stable isotope geochemistry of the Archean Val-d‘Or (Canada) orogenic gold vein field[J]. Mineralium Deposita, 2005, 40(1): 59–75.
[75] Graupner T, Niedermann S, Rhede D, Kempe U, Seltmann R, Williams C T, Klemd R. Multiple sources for mineralizing fluids in the Charmitan gold(-tungsten) mineralization (Uzbekistan)[J]. Mineralium Deposita, 2010, 45(7): 667–682.
[76] Kempe U O T. Physical and geochemical characteristics of scheelite from gold deposits: A reconnaissance study[M]. Rotterdam: Brookfield, 1997.
[77] Zhang L, Yang L Q, Groves D I, Sun S C, Liu Y, Wang J Y, Li R H, Wu S G, Gao L, Guo J L, Chen X G, Chen J H. An overview of timing and structural geometry of gold, gold-antimony and antimony mineralization in the Jiangnan Orogen, southern China[J]. Ore Geology Reviews, 2019: doi: https: //doi.org/10. 1016/j.oregeorev.2019.103173.
[78] Voicu G, Bardoux M, Stevenson R, Jébrak M. Nd and Sr isotope study of hydrothermal scheelite and host rocks at Omai, Guiana Shield: Implications for ore fluid source and flow path during the formation of orogenic gold deposits[J]. Mineralium Deposita, 2000, 35(4): 302–314.
[79] Kempe U, Belyatsky B, Krymsky R, Kremenetsky A, Ivanov P. Sm–Nd and Sr isotope systematics of scheelite from the giant Au(–W) deposit Muruntau (Uzbekistan): implications for the age and sources of Au mineralization[J]. Mineralium Deposita, 2001, 36(5): 379–392.
[80] 唐曉珊, 賈寶華, 黃建中, 彭和求, 郭樂群, 何江南. 湖南早前寒武紀變質結晶基底的Sm-Nd同位素年齡[J]. 華東地質, 2004, 25(1): 55–63.
Tang Xiao-shan, Jia Bao-hua, Huang Jian-zhong, Peng Qiu-he, Guo Le-qun, He Jiang-nan. The Sm-Nd isochron ages of the early Precambrian metamorphic crystalline basement in Hunan[J]. Resources Survey and Environment, 2004, 25(1): 55–63 (in Chinese with English abstract).
[81] Deng T, Xu D R, Chi G X, Wang Z L, Chen G W, Zhou Y Q, Li Z H, Ye T W, Yu D S. Caledonian (Early Paleozoic) veins overprinted by Yanshanian (Late Mesozoic) gold mineralization in the Jiangnan Orogen: A case study on gold deposits in northeastern Hunan, South China[J]. Ore Geology Reviews, 2018.
[82] Zhou X M, Li W X. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 2000, 326(3): 269–287.
[83] 呂赟珊, 解國愛, 倪培, 劉家潤, 趙葵東, 董偉明. 贛東北金山金礦床構造變形特征及其區域構造意義[J]. 大地構造與成礦學, 2012, 36(4): 504–517.
Lv Yun-shan, Xie Guo-ai, Ni Pei, Liu Jia-run, Zhao Kui-dong, Dong Wei-ming. Structural deformation in the Jinshan gold deposit and its implication to the Tectonic evolution of the northeastern Jiangxi Province[J]. Geotectonica et Metallogenia, 2012, 36(4): 504–517 (in Chinese with English abstract).
[84] 李曉峰, 華仁民, 楊鳳根, 高劍峰. 金山金礦K-Ar年齡及其對贛東北構造演化的指示意義[J]. 巖石礦物學雜志, 2002, 21(1): 49–54.
Li Xiao-feng, Hua Ren-min, Yang Feng-gen, Gao Jian-feng. K-Ar age of illite in Jinshan gold deposit and its implication to the tectonic evolution of northeastern Jiangxi Province[J]. Acta Petrologica et Mineralogica, 2002, 21(1): 49–54 (in Chinese with English abstract).
[85] 韋星林. 江西金山韌性剪切帶型金礦地質特征[J]. 江西地質, 1996, (1): 52–64.
Wei Xinglin. The geological characteristics of Jinshan shear ductile shear zone type gold deposit in Jiangxi province[J]. Jiangxi Geology, 1996, (1): 52–64 (in Chinese with English abstract).
[86] 李曉峰, 陳文, 毛景文, 王春增, 謝桂青, 馮佐海. 江西銀山多金屬礦床蝕變絹云母40Ar-39Ar年齡及其地質意義[J]. 礦床地質, 2006, 25(1): 17–26.
Li Xiao-feng, Chen Wen, Mao Jing-wen, Wang Chun-zeng, Xie Gui-qing, Feng Zuo-hai.40Ar-39Ar dating of sericite from altered dacite porphyry and quartz porphyry inYinshan polymetallic deposit of Jiangxi Province and its geological significance[J]. Mineral Deposits, 2006, 25(1): 17–26 (in Chinese with English abstract).
[87] 黃誠, 樊光明, 姜高磊, 羅亮, 徐增連. 湘東北雁林寺金礦構造控礦特征及金成礦ESR測年[J]. 大地構造與成礦學, 2012, 36(1): 78–86.
Huang Cheng, Fan Guang-ming, Jiang Gao-lei, Luo Liang, Xu Zeng-lian. Structural ore-controlling characteristics and electron spin resonance dating of the Yanlinsi gold deposit in north-eastern Hunan province[J]. Geotectonica et Metallogenia, 2012, 36(1): 78–86 (in Chinese with English abstract).
[88] 萬嘉敏. 湘西西安白鎢礦礦床的地球化學研究[J]. 地球化學, 1986, 15(2): 183–192.
Wan Jia-min. Geochemical studies of the Xi’an tungsten ore deposit, west Hunan, China[J]. Geochemica, 1986, 15(2): 183–192 (in Chinese with English abstract).
[89] 彭建堂, 戴塔根. 雪峰地區金礦成礦時代問題的探討[J]. 地質與勘探, 1998, (4): 37–41.
Peng Jian-tang, Dai Ta-gen. On the mineralization epoch of the Xuefeng gold metallogenic province[J]. Geology and Prospecting, 1998, (4): 37–41 (in Chinese with English abstract).
[90] 付山嶺, 胡瑞忠, 陳佑緯, 駱金誠. 湘中龍山大型金銻礦床成礦時代研究——黃鐵礦Re-Os和鋯石U-Th/He定年[J]. 巖石學報, 2016, 32(11): 3507–3517.
Fu Shan-ling, Hu Rui-zhong, Chen You-wei, Luo Jin-cheng. Chronology of the Longshan Au-Sb deposit in central Hunan Province: Constraints from pyrite Re-Os and zircon U-Th/He isotopic dating[J]. Acta Petrologica Sinica, 2016, 32(11): 3507–3517 (in Chinese with English abstract).
[91] 張志遠, 謝桂青, 李惠純, 李偉. 湖南龍山銻金礦床白云母40Ar-39Ar年代學及其意義初探[J]. 巖石學報, 2018, 34(09): 37–49.
Zhang Zhi-yuan, Xie Gui-qing, Li Hui-chun, Li Wei. Preliminarystudy on muscovite40Ar-39Ar geochronology and its significance of the Longshan Sb-Au deposit in Hunan Province[J]. Acta Petrologica Sinica, 2018, 34(9): 37–49 (in Chinese with English abstract).
[92] 王瑞湖, 張青技. 桂北地下熱水溶濾金礦床地質特征及成因[J]. 南方國土資源, 1997, (2): 25–36.
Wang Rui-hu, Zhang Qing-ji. Geological features and geneses of geothermal fluid leaching type gold deposits in northern Guangxi[J]. Land and resources of southern china, 1997, (2): 25–36 (in Chinese with English abstract).
[93] Pirajno F, Bagas L. Gold and silver metallogeny of the South China Fold Belt: A consequence of multiple mineralizing events?[J]. Ore Geology Reviews, 2002, 20(3): 109–126.
[94] 賀轉利, 許德如, 陳廣浩, 夏斌, 李鵬春, 符鞏固. 湘東北燕山期陸內碰撞造山帶金多金屬成礦地球化學[J]. 礦床地質, 2004, 23(1): 39–51.
He Zhuan-li, Xu De-ru, Chen Guang-hao, Xia Bin, Li Peng-chun, Fu Gong-gu. Gold-polymetallic ore-forming geochemistry of Yanshanian Introcontinental Collision Orogen, northeastern Hunan Province[J]. Mineral Deposits, 2004, 23(1): 39–51 (in Chinese with English abstract).
[95] Zhao C, Ni P, Zhao C, Ni P, Wang G G, Ding J Y, Chen H, Zhao K D, Cai Y T, Xu Y F. Geology, fluid inclusion, and isotope constraints on ore genesis of the Neoproterozoic Jinshan orogenic gold deposit, South China[J]. Geofluids, 2013, 13(4): 506–527.
[96] Deng J, Wang Q F. Gold mineralization in China: Metallogenicprovinces, deposit types and tectonic framework[J]. Gondwana Research, 2016, 36: S1342937X15002427.
[97] 羅獻林. 論湖南前寒武系金礦床的成礦物質來源[J]. 桂林冶金地質學院學報, 1990, 10(1): 13–26.
Luo Xian-lin. Discussion on the material sources of gold deposits in Precambrian strata in Hunan[J]. Journal of Guilin Institute of Metallurgical Geology. 1990, 10(1): 13–26 (in Chinese with English abstract).
[98] 毛光周, 華仁民, 高劍峰, 趙葵東, 龍光明, 陸慧娟, 姚軍明. 江西金山金礦床含金黃鐵礦的稀土元素和微量元素特征[J]. 礦床地質, 2006, 25(4): 412–426.
Mao Guang-zhou, Hua Ren-min, Gao Jian-feng, Zhao Kui-dong, Long Guang-ming, Lu Hui-juan, Yao Jun-ming. REE composition and trace element features of gold-bearing pyrite in Jianshan gold deposit, Jiangxi Province[J]. Mineral Deposits, 2006, 25(4): 412–426 (in Chinese with English abstract).
[99] 何明勤, 龍成雄, 王甘露. 黔東南錦屏平秋金礦床成礦流體來源研究[J]. 礦物學報, 2015, (4): 80–84.
He Ming-qin, Long Cheng-xiong, Wang Gan-lu. Origin of ore-forming fluids of Pingqiu Au ore deposit in Jinping County, Southeast Guizhou Province, China[J]. Acta mineralogical Sinica, 2015, (4): 80–84 (in Chinese with English abstract).
[100] 潘燦軍, 鮑振襄, 包覺敏. 湘西符竹溪金礦地質特征及成礦作用[J]. 地質找礦論叢, 2015, 30(1): 53–59.
Pan Can-jun, Bao Zhen-xiang, Bao Jue-min. Geological characteristics and metellogenesis of Fuzhuxi gold deposit in the west Hunan Province[J]. Contributions to Geology and Mineral Resources reserching, 2015, 30(1): 53–59 (in Chinese with English abstract).
[101] 羅獻林. 論湖南黃金洞金礦床的成因及成礦模式[J]. 桂林冶金地質學院學報, 1988, (3): 225–240.
Luo Xian-lin. On the genesis and metallogenic model of the Huangjindong gold deposit from Hunan[J]. Journal of Guiling college of geology, 1988, (3): 225–240 (in Chinese with English abstract).
[102] 毛景文, 李紅艷. 江南古陸某些金礦床成因討論[J]. 地球化學, 1997, 26(5): 71–81.
Mao Jing-wen, Li Hong-yan. Research on genesis of the gold deposits in the Jiangnan terrain[J]. Geochimica, 1997, 26(5): 71–81 (in Chinese with English abstract).
[103] 李傳明, 陳小惠. 江西石塢金礦床成礦特征及找礦方向[J]. 地質與勘探, 2005, 41(4): 10–17.
Li Chuan-ming, Chen Xiao-hui. Metallogenic Characteristic and ore prospecting direction of Shiwu gold deposit, Jiangxi[J]. Geology and Prospecting, 2005, 41(4): 10–17 (in Chinese with English abstract).
[104] 吳文明. 黔東錦屏縣主要金礦流體包裹體特征研究[D]. 貴陽: 貴州大學, 2009.
Wu Wen-ming. Study on the characteristics of fluid inclusions of main gold deposits in Jinping County, eastern Guizhou[D]. Guiyang: Guizhou University, 2009 (in Chinese with English abstract).
[105] 李杰, 陳必河, 安江華, 譚仕敏, 張孝國, 姚宇軍. 湖南黃金洞金礦成礦流體包裹體特征[J]. 華南地質與礦產, 2011, (2): 163–168.
Li Jie, Chen Bi-he, An Jiang-hua, Tan Shi-min, Zhang Xiao-guo, Yao Yu-jun. Characteristics of fluid inclusion of the Huangjindong gold deposit, Hunan Province[J]. Geology and Mineral Resources of South China, 2011, (2): 163–168 (in Chinese with English abstract).
[106] 孫銘聰. 黔東南黎平古幫金礦床地質特征及礦石礦物學特征研究[D]. 北京: 中國地質大學(北京), 2011.
Sun Ming-cong. Study on the geological characteristics and ore mineralogy of the Gubang gold deposit in Liping, Southeastern Guizhou[D]. Beijing: China University of geosciences (Beijing), 2011 (in Chinese with English abstract).
[107] 曹亮, 段其發, 彭三國, 周云. 雪峰山鏟子坪金礦床流體包裹體特征及地質意義[J]. 地質與勘探, 2015, 51(2): 212–224.
Cao Liang, Duan Qi-fa, Peng San-guo, Zhou Yun. Characteristics of fluid inclusions in the Chanziping gold deposit in Xuefeng Mountins and their geological implications[J]. Geology and Prospecting, 2015, 51(2): 212–224 (in Chinese with English abstract).
[108] 龍成雄, 秦琴, 周玲玲. 貴州錦屏縣平秋璧澤金礦成礦流體氫氧同位素地球化學研究[J]. 資源信息與工程, 2015, 30(3): 18–19.
Long Cheng-xiong, Qin Qin, Zhou Ling-ling. Guizhou Jinping County Pingqiu Bize gold metallogenic fluid hydrogen and oxygen isotope geochemistry[J]. Resource Information and Engineering, 2015, 30(3): 18–19 (in Chinese with English abstract).
[109] Peng J T, Zhu Y N. Infrared microthermometric and noble gas isotope study of fluid inclusions in ore minerals at the Woxi orogenic Au-Sb-W deposit, western Hunan, South China[J]. Ore Geology Reviews, 2015, 65(1): 55–69.
[110] 文志林, 鄧騰, 董國軍, 鄒鳳輝, 許德如, 王智琳, 林舸, 陳根文. 湘東北萬古金礦床控礦構造特征與控礦規律研究[J]. 大地構造與成礦學, 2016, 40(2): 281–294.
Wen Zhi-lin, Deng Teng, Dong Guo-jun, Zou Feng-hui, Xu De-ru, Wang Zhi-lin, Lin Ge, Chen Gen-wen. Study on the characters and rules of the ore-controlling structures of the Wangu gold deposit in northeastern Hunan Province[J]. Geotectonica et Metallogenia, 2016, 40(2): 281–294 (in Chinese with English abstract).
[111] Xie G Q, Mao J W, Bagas L, Fu B, Zhang Z Y. Mineralogy and titanite geochronology of the Caojiaba W deposit, Xiangzhong metallogenic province, southern China: Implications for a distal reduced skarn W formation[J]. Mineralium Deposita, 2019, 54(3): 459–472.
Scheelite Sm-Nd age of the Huangjindong Au deposit in Hunan and its geological significance
ZHOU Yue-qiang1,2,3, DONG Guo-jun3*, XU De-ru1,4, DENG Teng4, WU Jun3, WANG Xiang3, GAO Lei5and CHEN Xiao-gang5
1. Key Laboratory of Mineral and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,China;2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Team 402, Hunan Geology and Mineral Resources Exploration and Development Bureau, Changsha 410014, China; 4. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China; 5. Huangjindong Mining Industry Limited Company of Hunan, Yueyang 414507, China
The Huangjindong gold deposit is one of the most important Au reserve in the Jiangnan Orogenic Belt. Its orebodies are strictly controlled by a series of E- to WNW-trending faults developed in low-grade metamorphic Neoproterozoic strata. However, the mineralization age of the Huangjindong deposit has not been constrained. Detailed field surveys, petrographic observations and Sm-Nd isotopic analyses have been carried out on scheelites in the Huangjindong deposit area. The scheelites yield an isochron age of 129.7±7.4 Ma (MSWD=1.0) on the143Nd/144Nd versus147Sm/144Nd plot, with correspondingNd() values varying from ?8.21 to ?8.68. Based on the crosscutting relationship of the scheelite vein and Au-bearing sulfide vein in the Huangjindong deposit, and the previous studies on geochronology and mineralogy, the isochron age of scheelites is considered to be the mineralization age of the Huangjindong gold deposit. TheNd() values of scheelites are higher than those of the ore-bearing Neoproterozoic Lengjiaxi Group and early Cretaceous granitoids in northeastern Hunan but lower than those of the Neoproterozoic Cangxiyan Group, indicating that Nd in the scheelites partly originate from the Neoproterozoic Lengjiaxi Group and/or the early Cretaceous granitoids in northeastern Hunan, and partly from the Neoproterozoic Cangxiyan Group. Combined with previous research, ore materials of the Au-Sb-W deposits in the Jiangnan Orogenic belt are interpreted to be sourced from the Neoproterozoic strata owing to regional metamorphism and magmatic activities are interpreted to have facilitated the reactivation of ore-forming materials such as Au. Structural reactivation was interpreted as the source of channels and space for ore-fluids during the Au-Sb-W ore-forming process in the Jiangnan Orogenic Belt.
Au deposit; scheelite; Sm-Nd isotope; northeastern Hunan; Jiangnan Orogenic Belt
P597.1; P619.51
A
0379-1726(2021)04-0381-17
10.19700/j.0379-1726.2021.04.005
2019-11-15;
2020-04-15;
2020-07-21
國家自然科學基金項目(41930428, 42002090)、湖南省自然資源廳科技項目(2020-13)、湖南省礦產資源深部探測研究中心(DK402–2019–PT01)和國家重點研發計劃(2016YFC0600401, 2017YFC0602302)
周岳強(1985–), 男, 博士, 高級工程師, 構造地質學專業。E-mail: 271164104@qq.com
DONG Guo-jun, E-mail: dgj402@163.com; Tel: +86-731-85596782