999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Determinantal Expressions and Recursive Relations for the Bessel Zeta Function and for a Sequence Originating from a Series Expansion of the Power of Modified Bessel Function of the First Kind

2021-11-05 11:09:06YanHongBaiNiGuoandFengQi

Yan Hong,Bai-Ni Guoand Feng Qi

1College of Mathematics and Physics,Inner Mongolia University for Nationalities,Tongliao,028043,China

2School of Mathematics and Informatics,Henan Polytechnic University,Jiaozuo,454003,China

3School of Mathematical Sciences,Tiangong University,Tianjin,300387,China

ABSTRACT In the paper,by virtue of a general formula for any derivative of the ratio of two differentiable functions,with the aid of a recursive property of the Hessenberg determinants,the authors establish determinantal expressions and recursive relations for the Bessel zeta function and for a sequence originating from a series expansion of the power of modified Bessel function of the first kind.

KEYWORDS Determinantal representation;recursive relation;series expansion;first kind modified Bessel function;Bessel zeta function;Pochhammer symbol;gamma function;Hessenberg determinant

1 Introduction and Motivations

2 Determinantal Representations via Ratios of Gamma Functions

3 Determinantal Representations via the Pochhammer Symbols

4 Recursive Relations

5 More Numerical Computation of the First Few Values

Figure 1:Graphs of ζν(2k)for 1 ≤k ≤4 on the interval(?1,9)

6 Conclusions

In this paper,by virtue of a general formula(13)for derivatives of the ratio of two differentiable functions and with the aid of a recursive property(23)of the Hessenberg determinants(22),we establish six determinantal expressions(9),(14),(15),(17)–(19),find two recursive relations(20)and(21)for the sequencebk+1(ν)defined by(4)and for the Bessel zeta functionζν(2k)defined by(5).

Acknowledgement:The authors thank 1.Jiaying Chen and Geng Li(Undergraduates Enrolled in 2018 at School of Mathematical Sciences,Tianjin Polytechnic University,China),for their valuable help downloading the papers[5,8,17]on 27 January 2021.2.Christophe Vignat(Universite d’Orsay,France;Tulane University,USA;cvignat@tulane.edu)for his sending electronic version of the paper[8]on 28 January 2021.3.Anonymous referees for their careful reading of,helpful suggestions to,and valuable comments on the original version of this paper.

Funding Statement:The first author,Mrs.Yan Hong,was partially supported by the Natural Science Foundation of Inner Mongolia(Grant No.2019MS01007),by the Science Research Fund of Inner Mongolia University for Nationalities(Grant No.NMDBY15019),and by the Foundation of the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(Grant Nos.NJZY19157 and NJZY20119)in China.

Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

主站蜘蛛池模板: 午夜三级在线| 国产在线自揄拍揄视频网站| 澳门av无码| 欧美日韩国产一级| 欧美一级片在线| 色婷婷成人网| 欧美日韩在线第一页| 亚洲成aⅴ人片在线影院八| 久久精品国产精品国产一区| 欧美综合成人| 亚洲AV无码精品无码久久蜜桃| 一级毛片在线免费看| 性喷潮久久久久久久久| 免费一级毛片| www亚洲天堂| 中文字幕 欧美日韩| 深爱婷婷激情网| 无码电影在线观看| 72种姿势欧美久久久久大黄蕉| 99久久精品免费看国产电影| 国外欧美一区另类中文字幕| 亚洲第一色视频| 91亚洲精品国产自在现线| 亚洲成人在线免费| 国产精品无码久久久久久| 国产黑丝一区| 成人午夜视频在线| 全裸无码专区| 一区二区日韩国产精久久| 成人91在线| 国产男女XX00免费观看| 色香蕉影院| 91精品小视频| 女人18毛片久久| 日本精品视频一区二区| 在线观看精品自拍视频| 国产福利在线免费| 欧美日韩综合网| 亚洲欧美极品| 亚洲视频在线青青| 日本高清免费一本在线观看 | 伊人激情综合| 欧美a网站| 99在线视频精品| 波多野结衣一区二区三区88| 色综合天天操| 欧美.成人.综合在线| 日本黄色不卡视频| 国内精自视频品线一二区| 久久黄色小视频| 欧美国产精品不卡在线观看 | 97青青青国产在线播放| 欧美精品黑人粗大| 欧美日韩第二页| 国产产在线精品亚洲aavv| 亚洲无码免费黄色网址| 国产成人精品视频一区视频二区| 国产特级毛片| 国产手机在线ΑⅤ片无码观看| 动漫精品中文字幕无码| 无码精品国产dvd在线观看9久| 一级爆乳无码av| 91丨九色丨首页在线播放 | 国产主播在线观看| 亚洲色欲色欲www在线观看| av性天堂网| 免费高清a毛片| 国产一区二区影院| 97国产成人无码精品久久久| 狠狠操夜夜爽| 偷拍久久网| 亚洲天堂免费在线视频| 中文字幕久久精品波多野结| 国产成人超碰无码| 亚洲国产欧美国产综合久久 | 她的性爱视频| 无码粉嫩虎白一线天在线观看| 久久国语对白| 中文字幕啪啪| 国产福利在线观看精品| 国产高清在线丝袜精品一区| 四虎国产永久在线观看|