999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Neutrosophic N-Structures Applied to Sheffer Stroke BL-Algebras

2021-11-05 11:08:56TugceKaticanTahsinOnerAkbarRezaeiandFlorentinSmarandache

Tugce Katican,Tahsin Oner,Akbar Rezaeiand Florentin Smarandache

1Department of Mathematics,Ege University,Izmir,35100,Turkey

2Department of Mathematics,Payame Noor University,Tehran,19395-4697,Iran

3Department of Mathematics and Science,University of New Mexico,Gallup,87301,NM,USA

ABSTRACT In this paper,we introduce a neutrosophic N-subalgebra,a(ultra)neutrosophic N-filter,level sets of these neutrosophic N-structures and their properties on a Sheffer stroke BL-algebra.By defining a quasi-subalgebra of a Sheffer stroke BL-algebra,it is proved that the level set of neutrosophic N-subalgebras on the algebraic structure is its quasi-subalgebra and vice versa.Then we show that the family of all neutrosophic N-subalgebras of a Sheffer stroke BL-algebra forms a complete distributive lattice.After that a(ultra)neutrosophic N-filter of a Sheffer stroke BL-algebra is described,we demonstrate that every neutrosophic N-filter of a Sheffer stroke BL-algebra is its neutrosophic N-subalgebra but the inverse is generally not true.Finally,it is presented that a level set of a(ultra)neutrosophic N-filter of a Sheffer stroke BL-algebra is also its(ultra)filter and the inverse is always true.Moreover,some features of neutrosophic N-structures on a Sheffer stroke BL-algebra are investigated.

KEYWORDS Sheffer stroke BL-algebra;(ultra)filter;neutrosophic N-subalgebra;(ultra)neutrosophic N-filter

1 Introduction

Fuzzy set theory,which has the truth(t)(membership)function and state positive meaning of information,is introduced by Zadeh[1]as a generalization the classical set theory.This led scientists to find negative meaning of information.Hence,intuitionistic fuzzy sets[2]which are fuzzy sets with the falsehood(f)(nonmembership)function were introduced by Atanassov.However,there exist uncertainty and vagueness in the language,as well as positive ana negative meaning of information.Thus,Smarandache defined neutrosophic sets which are intuitionistic fuzzy sets with the indeterminacy/neutrality(i)function[3,4].Thereby,neutrosophic sets are determined on three components:(t,i,f):(truth,indeterminacy,falsehood)[5].Since neutrosophy enables that information in language can be comprehensively examined at all points,many researchers applied neutrosophy to different theoretical areas such as BCK/BCI-algebras,BE-algebras,semigroups,metric spaces,Sheffer stroke Hilbert algebras and strong Sheffer stroke non-associative MValgebras[6–15]so as to improve devices imitating human behaviours and thoughts,artificial intelligence and technological tools.

Sheffer stroke(or Sheffer operation)was originally introduced by Sheffer[16].Since Sheffer stroke can be used by itself without any other logical operators to build a logical system which is easy to control,Sheffer stroke can be applied to many logical algebras such as Boolean algebras[17],ortholattices[18],Sheffer stroke Hilbert algebras[19].On the other side,BL-algebras were introduced by Hájek as an axiom system of his Basic Logic(BL)for fuzzy propositional logic,and he widely studied many types of filters[20].Moreover,Oner et al.[21]introduced BL-algebras with Sheffer operation and investigated some types of(fuzzy)filters.

We give fundamental definitions and notions about Sheffer stroke BL-algebras,N-functions and neutrosophicN-structures defined by these functions on a crispy setX.Then a neutrosophicN-subalgebra and a(τ,γ,ρ)-level set of a neutrosophicN-structure are presented on Sheffer stroke BL-algebras.By defining a quasi-subalgebra of a Sheffer stroke BL-algebra,it is proved that every(τ,γ,ρ)-level set of a neutrosophicN-subalgebra of the algebra is the quasi-subalgebra and the inverse is true.Also,we show that the family of all neutrosophicN-subalgebras of this algebraic structure forms a complete distributive lattice.Some properties of neutrosophicNsubalgebras of Sheffer stroke BL-algebras are examined.Indeed,we investigate the case whichN-functions defining a neutrosophicN-subalgebra of a Sheffer stroke BL-algebra are constant.Moreover,we define a(ultra)neutrosophicN-filter of a Sheffer stroke BL-algebra byN-functions and analyze many features.It is demonstrated that(τ,γ,ρ)-level set of a neutrosophicN-filter of a Sheffer stroke BL-algebra is its filter but the inverse does not hold in general.In fact,we propound that(τ,γ,ρ)-level set of a(ultra)neutrosophicN-filter of a Sheffer stroke BL-algebra is its(ultra)filter and the inverse is true.Finally,new subsets of a Sheffer stroke BL-algebra are defined by theN-functions and special elements of the algebra.It is illustrated that these subsets are(ultra)filters of a Sheffer stroke BL-algebra for the(ultra)neutrosophicN-filter but the special conditions are necessary to prove the inverse.

2 Preliminaries

In this section,basic definitions and notions on Sheffer stroke BL-algebras and neutrosophicN-structures.

Definition 2.1.[18]LetH=〈H,|〉be a groupoid.The operation |is said to be aSheffer stroke(or Sheffer operation)if it satisfies the following conditions:

(S1)x|y=y|x,

(S2)(x|x)|(x|y)=x,

(S3)x|((y|z)|(y|z))=((x|y)|(x|y))|z,

(S4)(x|((x|x)|(y|y)))|(x|((x|x)|(y|y)))=x.

Definition 2.2.[21]A Sheffer stroke BL-algebra is an algebra(C,∨,∧,|,0,1)of type(2,2,2,0,0)satisfying the following conditions:

(sBL?1)(C,∨,∧,0,1)is a bounded lattice,

(sBL?2)(C,|)is a groupoid with the Sheffer stroke,

(sBL?3)c1∧c2=(c1|(c1|(c2|c2)))|(c1|(c1|(c2|c2))),

(sBL?4)(c1|(c2|c2))∨(c2|(c1|c1))=1,

for allc1,c2∈C.

1=0|0 is the greatest element and 0=1|1 is the least element ofC.

Proposition 2.1.[21]In any Sheffer stroke BL-algebraC,the following features hold,for allc1,c2,c3∈C:

(1)c1|((c2|(c3|c3))|(c2|(c3|c3)))=c2|((c1|(c3|c3))|(c1|(c3|c3))),

(2)c1|(c1|c1)=1,

(3)1|(c1|c1)=c1,

(4)c1|(1|1)=1,

(5)(c1|1)|(c1|1)=c1,

(6)(c1|c2)|(c1|c2)≤c3?c1≤c2|(c3|c3)

(7)c1≤c2iffc1|(c2|c2)=1,

(8)c1≤c2|(c1|c1),

(9)c1≤(c1|c2)|c2,

(10)(a)(c1|(c1|(c2|c2)))|(c1|(c1|(c2|c2)))≤c1,

(b)(c1|(c1|(c2|c2)))|(c1|(c1|(c2|c2)))≤c2.

(11)Ifc1≤c2,then

(i)c3|(c1|c1)≤c3|(c2|c2),

(ii)(c1|c3)|(c1|c3)≤(c2|c3)|(c2|c3),

(iii)c2|(c3|c3)≤c1|(c3|c3).

(12)c1|(c2|c2)≤(c3|(c1|c1))|((c3|(c2|c2))|(c3|(c2|c2))),

(13)c1|(c2|c2)≤(c2|(c3|c3))|((c1|(c3|c3))|(c1|(c3|c3))),

(14)((c1∨c2)|c3)|((c1∨c2)|c3)=((c1|c3)|(c1|c3))∨((c2|c3)|(c2|c3)),

(15)c1∨c2=((c1|(c2|c2))|(c2|c2))∧((c2|(c1|c1))|(c1|c1)).

Lemma 2.1.[21]LetCbe a Sheffer stroke BL-algebra.Then

(c1|(c2|c2))|(c2|c2)=(c2|(c1|c1))|(c1|c1),

for allc1,c2∈C.

Corollary 2.1.[21]LetCbe a Sheffer stroke BL-algebra.Then

c1∨c2=(c1|(c2|c2))|(c2|c2),

for allc1,c2∈C.

Lemma 2.2.[21]LetCbe a Sheffer stroke BL-algebra.Then

c1|((c2|(c3|c3))|(c2|(c3|c3)))=(c1|(c2|c2))|((c1|(c3|c3))|(c1|(c3|c3))),

for allc1,c2,c3∈C.

Definition 2.3.[21]A filter ofCis a nonempty subsetP?Csatisfying

(SF?1)ifc1,c2∈P,then(c1|c2)|(c1|c2)∈P,

(SF?2)ifc1∈Pandc1≤c2,thenc2∈P.

Proposition 2.2.[21]LetPbe a nonempty subset ofC.ThenPis a filter ofCif and only if the following hold:

(SF?3)1 ∈P,

(SF?4)c1∈Pandc1|(c2|c2)∈Pimplyc2∈P.

Definition 2.4.[21]LetPbe a filter ofC.ThenPis called an ultra filter ofCif it satisfiesc∈Porc|c∈P,for allc∈C.

Lemma 2.3.[21]A filterPofCis an ultra filter ofCif and only ifc1∨c2∈Pimpliesc1∈Porc2∈P,for allc1,c2∈C.

Definition 2.5.[8]F(X,[?1,0])denotes the collection of functions from a setXto[?1,0]and an element ofF(X,[?1,0])is called a negative-valued function fromXto[?1,0](briefly,N-function onX).AnN-structure refers to an ordered pair(X,f)ofXandN-functionfonX.

Definition 2.6.[12]A neutrosophicN-structure over a nonempty universeXis defined by

whereTN,INandFNareN-functions onX,called the negative truth membership function,the negative indeterminacy membership function and the negative falsity membership function,respectively.

Every neutrosophicN-structureXNoverXsatisfies the condition(?x∈X)(?3 ≤TN(x)+IN(x)+FN(x)≤0).

Definition 2.7.[13]LetXNbe a neutrosophicN-structure on a setXandτ,γ,ρbe any elements of[?1,0]such that ?3 ≤τ+γ+ρ≤0.Consider the following sets:

3 Neutrosophic N-Structures

In this section,neutrosophicN-subalgebras and neutrosophicN-filters on Sheffer stroke BLalgebras.Unless otherwise specified,Cdenotes a Sheffer stroke BL-algebra.

Definition 3.1.A neutrosophicN-structureCNon a Sheffer stroke BL-algebraCis called a neutrosophicN-subalgebra ofCif the following condition is valid:

for allc1,c2∈C.

Example 3.1.Consider a Sheffer stroke BL-algebraCwhere the setC={0,a,b,c,d,e,f,1}and the Sheffer operation |,the join operation ∨and the meet operation ∧onChas the Cayley tables in Tab.1[21].Then a neutrosophicN-structure

onCis a neutrosophicN-subalgebra ofC.

Table 1:Tables of the Sheffer operation |,the join operation ∨and the meet operation ∧on C

4 Conclusion

Acknowledgement:The authors are thankful to the referees for a careful reading of the paper and for valuable comments and suggestions.

Funding Statement:The authors received no specific funding for this study.

Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

主站蜘蛛池模板: a毛片基地免费大全| 日韩午夜片| 久草青青在线视频| 亚洲日韩在线满18点击进入| 试看120秒男女啪啪免费| 免费国产无遮挡又黄又爽| 欧美中文字幕一区| 国产SUV精品一区二区6| 欧美日韩午夜| JIZZ亚洲国产| 熟妇人妻无乱码中文字幕真矢织江 | 午夜丁香婷婷| 日韩在线网址| 欧美激情视频二区| 国产高潮视频在线观看| 亚洲综合在线最大成人| 日韩欧美国产综合| 免费国产黄线在线观看| 伊人福利视频| 色偷偷一区二区三区| 亚洲视频黄| 日本午夜视频在线观看| 国产在线视频自拍| 日本福利视频网站| 国产欧美日本在线观看| 亚洲网综合| 亚洲一区无码在线| аⅴ资源中文在线天堂| 91最新精品视频发布页| 无码精品一区二区久久久| 欧美在线精品一区二区三区| 国产超碰一区二区三区| 国产精品无码影视久久久久久久| 欧美午夜在线视频| 狠狠v日韩v欧美v| 日韩欧美国产精品| 美女国内精品自产拍在线播放| 久久美女精品国产精品亚洲| 无码专区在线观看| 40岁成熟女人牲交片免费| 亚洲无码久久久久| 国产高清国内精品福利| 好吊日免费视频| 亚洲人成网站18禁动漫无码| 国产精品无码一二三视频| 亚洲精品无码AV电影在线播放| 欧美成人第一页| 在线精品亚洲一区二区古装| 亚洲an第二区国产精品| 久久综合激情网| 亚洲an第二区国产精品| 久久综合激情网| 精品第一国产综合精品Aⅴ| 白浆免费视频国产精品视频| 婷婷在线网站| 白浆免费视频国产精品视频| 国产美女丝袜高潮| a天堂视频在线| 欧美亚洲一区二区三区导航 | 国产精品成人AⅤ在线一二三四| 欧美在线视频a| 欧美特级AAAAAA视频免费观看| 精品一区二区三区中文字幕| 一级香蕉视频在线观看| 四虎永久免费地址在线网站| 国产91丝袜在线观看| 亚洲美女高潮久久久久久久| 亚洲无码在线午夜电影| 国产成人乱码一区二区三区在线| 中文字幕有乳无码| 狠狠久久综合伊人不卡| 97人人做人人爽香蕉精品| 999福利激情视频| 欧美成a人片在线观看| 啪啪永久免费av| 日韩美女福利视频| 亚洲成人免费在线| 思思99热精品在线| 激情六月丁香婷婷| 91成人在线免费观看| 一级毛片免费观看久| 亚洲资源在线视频|