劉 甫,曾國輝,黃 勃,劉 瑾,韋 鈺
(上海工程技術(shù)大學(xué) 電子電氣工程學(xué)院,上海 201600)
無刷直流電動(dòng)機(jī)(BLDCM)具有響應(yīng)速度快、功率因數(shù)高、運(yùn)行平穩(wěn)、體積小、可靠性好、效率高、維護(hù)成本低等優(yōu)點(diǎn),因此得到了廣泛的應(yīng)用[1]。由于常規(guī)控制中電機(jī)的繞組電流和轉(zhuǎn)矩之間存在非線性耦合,因此很難對(duì)電機(jī)進(jìn)行精確控制。高性能驅(qū)動(dòng)系統(tǒng)最重要的特點(diǎn)是快速、精確的響應(yīng),快速從負(fù)載擾動(dòng)中恢復(fù)速度。針對(duì)電機(jī)驅(qū)動(dòng)系統(tǒng)的控制問題,已有許多改進(jìn)方法,如模型參考自適應(yīng)控制器、滑模控制器、變結(jié)構(gòu)控制等控制器,這些控制器的設(shè)計(jì)依賴于精確的數(shù)學(xué)參數(shù)[2]。在眾多的控制器中,模糊控制器是比較簡(jiǎn)單的一種,在響應(yīng)速度快、對(duì)參數(shù)不敏感等方面優(yōu)于其他智能控制器。另一方面,模糊邏輯等智能控制器的設(shè)計(jì)不需要被控對(duì)象精確的數(shù)學(xué)模型[3]。這種智能控制器的主要特點(diǎn)是簡(jiǎn)單,數(shù)學(xué)設(shè)計(jì)要求不高,適用于處理電機(jī)的非線性和不確定性問題。
本文在轉(zhuǎn)速外環(huán)中采用模糊PID雙模控制器,并在模糊PID基礎(chǔ)上進(jìn)行了改進(jìn),提出了變論域的模糊PID雙模控制策略,并通過實(shí)驗(yàn)驗(yàn)證。
在建立數(shù)學(xué)模型之前,我們做出如下假設(shè):
1)定子繞組是三相對(duì)稱且完全分布的;
2)磁路是不飽和的;
3)忽略渦流損耗和磁滯損耗;
4)氣隙磁場(chǎng)是方波;
5)忽略電樞反應(yīng)和換相過程的影響。
在這些條件下,Y接無刷直流電動(dòng)機(jī)的數(shù)學(xué)模型可以表達(dá)如下。三相定子電壓方程:

其中,ua、ub、uc為定子三相繞組端電壓,Ra、Rb、Rc為定子三相繞組電阻,ia、ib、ic為定子三相繞組電流,Lbb、Laa、Lcc為定子三相繞組自感。Lab、Lba為A相繞組和B相繞組間的互感,Lac、Lca為B相繞組和C相繞組間的互感,Lbc、Lcb為B相繞組和C相繞組間的互感,ea、eb、ec為定子三相繞組上的反電動(dòng),ua是中性點(diǎn)電壓,p是微分算子。根據(jù)上面的假設(shè),可以令:

這樣可以將式(1)化為:

因?yàn)槿嗬@組呈星形連接,則有:

將該式代入式(2)中,可以得:

無刷直流電動(dòng)機(jī)的電磁轉(zhuǎn)矩和機(jī)械運(yùn)動(dòng)方程分別為式(4)和式(5)。

根據(jù)電壓方程得電動(dòng)機(jī)的等效電路圖如圖1所示。

圖1 直流無刷電機(jī)的等效結(jié)構(gòu)
傳統(tǒng)的PID控制器在各種工程應(yīng)用中得到了廣泛的應(yīng)用,但對(duì)復(fù)雜多變的環(huán)境適應(yīng)能力不強(qiáng),同時(shí)PID控制參數(shù)在整個(gè)控制過程中一旦確定,一般都是固定不變的。而模糊控制不但不依賴被控對(duì)象的數(shù)學(xué)模型,而且具有良好的魯棒性和控制性能。但是,單純的模糊控制器也有其缺點(diǎn)。例如,模糊規(guī)則和隸屬度函數(shù)依賴于經(jīng)驗(yàn),不合適的模糊處理會(huì)導(dǎo)致系統(tǒng)的控制精度和動(dòng)態(tài)品質(zhì)下降,同時(shí)模糊邏輯控制系統(tǒng)由于沒有積分作用,也可能產(chǎn)生穩(wěn)態(tài)誤差[4]。
針對(duì)上述問題,本文提出在速度外環(huán)設(shè)計(jì)了模糊控制與PID調(diào)節(jié)相結(jié)合的雙模控制器。控制器模型如圖2所示。控制器以速度誤差與設(shè)定閾值之間的關(guān)系作為比較依據(jù),當(dāng)速度與實(shí)際速度誤差大于設(shè)定值時(shí),此時(shí)速度誤差較大,選用模糊控制。當(dāng)速度誤差小于設(shè)定值時(shí)采用傳統(tǒng)PID控制,此時(shí)轉(zhuǎn)速已基本趨于穩(wěn)定,故選用PID控制。同時(shí),在模糊控制器的設(shè)計(jì)中引入變論域(Variable Universe)的思想,實(shí)現(xiàn)控制性能的提高。

圖2 模糊PID雙模控制器結(jié)構(gòu)圖
如圖3所示,電機(jī)的給定轉(zhuǎn)速、實(shí)際轉(zhuǎn)速的誤差e與誤差的變化率e作為模糊控制器的輸入變量。輸出變量為PID的3個(gè)參數(shù)的校正量Δkp,Δki,Δkd。

圖3 模糊PID控制結(jié)構(gòu)
本系統(tǒng)中將模糊控制器的輸入輸出論域設(shè)為[-6,6],并離散化,分別為{NB,NM,NS,ZO,PS,PM,PB},建立“三角形”的隸屬度函數(shù)。根據(jù)PID不同參數(shù)調(diào)整模糊的規(guī)則,得到得到輸出變量Δkp,Δki,Δkd規(guī)則表,如表1所示。

表1 模糊控制規(guī)則
將速度誤差和速度誤差變化率設(shè)為ke和kec,輸出比例因子設(shè)為ku,這三個(gè)參數(shù)的選擇對(duì)機(jī)控制系統(tǒng)的性能有很大的影響。
當(dāng)保持kec不變,ke增大時(shí),系統(tǒng)響應(yīng)速度變快;當(dāng)ke過大時(shí),系統(tǒng)超調(diào)變大,過渡時(shí)間變長(zhǎng);當(dāng)kec不變,越大,系統(tǒng)超調(diào)減小,穩(wěn)態(tài)時(shí)間變長(zhǎng);選擇的比例因子ku越大,系統(tǒng)響應(yīng)越快,但如果它太大,則系統(tǒng)會(huì)產(chǎn)生振蕩,當(dāng)它太小時(shí),穩(wěn)態(tài)時(shí)u間就會(huì)ke變長(zhǎng)。
綜上所述,量化因子和比例因子通常會(huì)影響模糊控制的效果,模糊邏輯控制與傳統(tǒng)的PID控制一樣存在著動(dòng)靜態(tài)性能的矛盾,因?yàn)楸疚奶岢龅哪:齈ID雙模控制具有PID控制環(huán)節(jié),因此可以提高系統(tǒng)的穩(wěn)態(tài)性能,參數(shù)的選擇應(yīng)著眼于提高系統(tǒng)的響應(yīng)速度和減小超調(diào)量。通過以上分析和反復(fù)模擬研究,獲得最佳的量化因子和比例因子數(shù)據(jù)。
本文采用“重心法”對(duì)模糊推理得到的模糊集合去模糊化,使用本方法可使輸出更平滑。公式如下所示:

式中:μFUi為第一個(gè)i條規(guī)則的隸屬度;FUi是第一個(gè)i規(guī)則的輸出中心點(diǎn)。
在完成模糊PID控制器設(shè)計(jì)時(shí),量化因子和比例因子不能再次改變,導(dǎo)致自適應(yīng)能力大大削弱。因此,模糊控制器可以通過收縮擴(kuò)展因子使論域可變,實(shí)現(xiàn)控制性能的提高[7]。基本的模糊控制器論域如圖4所示。

圖4 基本論域
顯而易見,當(dāng)控制過程中誤差變小時(shí),[-E,E]域太大。如果系統(tǒng)繼續(xù)使用該領(lǐng)域進(jìn)行模糊推理,必然會(huì)導(dǎo)致控制精度的降低。由此,具有可變伸縮因子的模糊控制器如圖5所示。

圖5 變論域圖示
定義α:X→[0,1],x|→α(x)作為論域X的伸縮因子,滿足下列條件:
對(duì)偶性:((?x∈X)α(x)=α(-x);
空屬性:α(0)=0;
單調(diào)性:α在論域[0,E]嚴(yán)格單調(diào)遞增;
協(xié)調(diào)性:((?x∈X)(|x|≤α(x)E);
上述條件應(yīng)作為變伸縮因子的選擇和構(gòu)造原則,因此,輸入論域伸縮因子的一種常用形式是:
e,e可以看作x,分別是輸入誤差和誤差變化率的精確值。可以看出,系數(shù)k和λ越小,伸縮系數(shù)越大。在這種情況下,系數(shù)變化大,則伸縮效應(yīng)越明顯,反應(yīng)越快[8]。但在實(shí)際系統(tǒng)中,應(yīng)考慮綜合指標(biāo)。一些智能優(yōu)化算法如遺傳算法在實(shí)現(xiàn)過程中,采用隨機(jī)優(yōu)化搜索算法和禁忌搜索算法實(shí)現(xiàn)參數(shù)優(yōu)化過程。對(duì)于輸出變量論域,輸出變量Kp、Kd的伸縮因子應(yīng)與誤差的單調(diào)性一致,而輸出變量K的伸縮因子與誤差的單調(diào)性相反,則輸出論域的伸縮因子采用的一般公式為[9]:

通過調(diào)試優(yōu)化,參數(shù)選擇如下:

電機(jī)的控制系統(tǒng)與實(shí)驗(yàn)臺(tái)如圖6、圖7所示。實(shí)驗(yàn)系統(tǒng)包括以下部分:

圖6 BLDCM電機(jī)控制系統(tǒng)

圖7 實(shí)驗(yàn)平臺(tái)
1)采用STM32F103RBT6控制芯片作控制核心。
2)驅(qū)動(dòng)模塊采用SD05M50DBE驅(qū)動(dòng)芯片作為驅(qū)動(dòng)電路。
3)輸入電壓為12V,輸出電壓為5V和3.3V的電源模塊。
4)電機(jī)型號(hào)為57BL02,電機(jī)的主要技術(shù)參數(shù)如表2所示。

表2 電機(jī)參數(shù)表
同時(shí),該實(shí)驗(yàn)平臺(tái)控制系統(tǒng)采用反電勢(shì)過零檢測(cè)法檢測(cè)轉(zhuǎn)子位置[10],通過合理的系統(tǒng)硬件電路,減少因系統(tǒng)硬件帶來的檢測(cè)誤差,從而提升檢測(cè)轉(zhuǎn)子位置的靈敏度,并提高系統(tǒng)的可靠性。
電機(jī)輸出的電機(jī)相電壓波形如圖8所示:

圖8 啟動(dòng)200ms電壓圖
其中通道1、3、4分別對(duì)應(yīng)三相繞組的電壓。通過輸出3個(gè)兩兩相差120°電角度的梯形波,從而實(shí)現(xiàn)對(duì)BLDCM的控制。
圖9為轉(zhuǎn)速為500rpm時(shí)的三相反電勢(shì)信號(hào),在該低速下電機(jī)的三相反電勢(shì)過零比較信號(hào)如圖10所示。當(dāng)連續(xù)多次檢測(cè)到開路相的反電動(dòng)勢(shì)過零點(diǎn)后,系統(tǒng)從他控式運(yùn)行模式切換到無刷直流電機(jī)自控式模式。連續(xù)多次檢測(cè)的目的是防止干擾等引起的誤差檢測(cè)和轉(zhuǎn)速未達(dá)到預(yù)定轉(zhuǎn)速,保證能夠平穩(wěn)切換,順利完成啟動(dòng)過程。

圖9 三相反電勢(shì)圖

圖10 三相反電勢(shì)過零信號(hào)圖
由此可以準(zhǔn)確的得到電機(jī)的定子浮空相過零點(diǎn)時(shí)刻,反電勢(shì)信號(hào)在電機(jī)高速時(shí)比電機(jī)低速時(shí)更容易檢測(cè),故本控制系統(tǒng)在高中低速都有良好的運(yùn)行性能。相電壓波形互差120度,電機(jī)運(yùn)行穩(wěn)定。
設(shè)置電機(jī)目標(biāo)轉(zhuǎn)速為1200rpm,啟動(dòng)電機(jī),根據(jù)實(shí)驗(yàn)中的記錄的轉(zhuǎn)速數(shù)據(jù),使用MATLAB繪制轉(zhuǎn)速曲線圖11所示:

圖11 速度響應(yīng)曲線
由上圖可以看出,當(dāng)設(shè)定目標(biāo)轉(zhuǎn)速為1200rpm時(shí),電機(jī)達(dá)到目標(biāo)轉(zhuǎn)速且穩(wěn)定只需大約0.3s,并且超調(diào)量小。另外,設(shè)定不同目標(biāo)轉(zhuǎn)速,重復(fù)對(duì)比觀察不同目標(biāo)轉(zhuǎn)速下的速度響應(yīng)時(shí)間與超調(diào)量,可以發(fā)現(xiàn)電機(jī)在啟動(dòng)運(yùn)行時(shí)系統(tǒng)調(diào)節(jié)時(shí)間短且超調(diào)量小的特點(diǎn)。實(shí)驗(yàn)可以證明該控制系統(tǒng)響應(yīng)速度快,且控制精度高。
本文構(gòu)建的模糊PID雙模控制器將模糊邏輯的智能性與PID控制相結(jié)合。將模糊控制和PID技術(shù)同時(shí)應(yīng)用于無刷直流電動(dòng)機(jī)的速度控制,啟動(dòng)時(shí)消除了部分峰值超調(diào),提高了上升時(shí)間和穩(wěn)定時(shí)間。穩(wěn)定運(yùn)行時(shí)減小了電機(jī)的轉(zhuǎn)速波動(dòng)。因此,這種控制器可以成為精確控制應(yīng)用的理想選擇。