梁忠厚 李靜納



摘要:【目的】明確多花黃精根腐病在湖南地區的發生規律及其病原菌種類,為湖南多花黃精根腐病的綜合防治及GAP(中藥材生產質量管理規范)種植提供科學依據。【方法】以湖南地區具有典型根腐病癥狀的多花黃精植株為材料,采用傳統的平板分離法對其病原菌進行分離純化,通過rDNA-ITS序列分析及形態學觀測鑒定病原菌的種類和分類地位,并依據Koch?s法則驗證病原菌的致病性。【結果】湖南地區的多花黃精根腐病以生長旺盛期(5—7月)發生最嚴重,平均發病率為12%,嚴重時可達20%;發病部位主要是多花黃精根部。從患典型根腐病多花黃精根莖的病健交界處分離獲得4株分離菌株(G1~G4),菌株G1、G2和G4經PCR擴增分別獲得511、573和573 bp的目的條帶,菌株G3因PCR擴增條帶混雜,導致測序失敗。菌株G1與F. foetens(GenBank登錄號NR_159865.1)的rDNA-ITS序列相似性為99.22%,菌株G2和G4與F. hostae(GenBank登錄號NR_171109.1)的rDNA-ITS序列相似性為99.81%。菌株G1在PDA培養基上生長較快,培養7 d后其菌落直徑為6.7 cm,氣生菌絲致密,呈氈狀,白色至粉紫色;菌株G2和G4在PDA培養基上培養7 d后其菌落直徑為6.2 cm,氣生菌絲呈放射狀,白色至淡黃色。將菌株G1、G2和G4分別接種至健康多花黃精植株的根莖上,接種10 d后均表現出強致病性,呈典型的根腐病發病癥狀。其中,菌株G1接種10 d后多花黃精根莖開始變褐腐爛,且伴有明顯的腥味;菌株G2和G4接種10 d后多花黃精根莖初期變褐色,后期病斑腐爛部分的根莖出現凹陷。【結論】不同地理位置、栽培方式及黃精品種,均有可能導致黃精根腐病的發生情況及其病原菌存在差異,在一定程度上增加了黃精根腐病防治工作的難度,且給后期的產品加工帶來安全隱患。F. foetens和F. hostae是引起湖南多花黃精根腐病的致病菌。
關鍵詞: 多花黃精;根腐病;病原菌;Fusarium foetens;Fusarium hostae
中圖分類號: S435.672? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2021)07-1923-08
Isolation and identification of the pathogenic fungi of Polygonatum cyrtonema Hua root rot in Hunan Province
LIANG Zhong-hou, LI Jing-na
(Undergrowth Medicinal Plant Application Technology Hunan Engineering Research Center/Landscape Department, Hunan Polytechnic of Environment and Biology, Hengyang, Hunan? 421005, China)
Abstract:【Objective】Clarify the regularity of outbreak and pathogenic fungi of Polygonatum cyrtonema Hua root rot in Hunan, and provide a scientific basis for the comprehensive control of P. cyrtonema root rot and GAP(Good Agricultural Practice for Chinese Crude Drugs) planting. 【Method】Samples with typical symptoms of root rot were collected in Hunan, the pathogen of P. cyrtonema Hua root rot was isolated and purified by plate isolation and purification. The classification status of the pathogen was determined based on their morphological characteristics and rDNA-ITS sequence, and Koch?s rule was used to prove the pathogenicity of fungal strain isolated from P. cyrtonema Hua. 【Result】The P. cyrtonema Hua root rot in Hunan was the most serious at growth stage(May-July), with the average incidence of 12% and 20% when serious; the incidence site was mainly root. Four strains(G1-G4) were isolated from the healthy junction of P. cyrtonema Hua rhizome suffering from typical root rot. The isolated and purified strains G1, G2 and G4 were amplified by PCR to obtain DNA fragments with a length of 511, 573 and 573 bp bands, respectively. Due to PCR amplification bands mixed, strain G3 sequencing was failed. According to BLAST homology comparison of pathogen rDNA-ITS sequence, the sequence of strain G1 shared the high identity of 99.22% with Fusarium foetens(GenBank accession number NR_159865.1),while the sequence of strains G2 and G4 had 99.81% similarity with F. hostae(GenBank accession number? NR_171109.1). Strain G1 grew rapidly on PDA medium, and after 7 d of culture, colony diameter was 6.7 cm, aerial mycelium was dense, felt shape, white to pink purple; and after 7 d of culture, colony diameters of strains G2 and G4 were 6.2 cm, aerial mycelium was radial, white to pale yellow. Isolates G1, G2 and G4 were infected onto the rhizomes of healthy P. cyrtonema Hua plants, and both were strongly pathogenic and showed typical symptoms of root rot onset. P. cyrtonema Hua root infected by G1 began to decompose and brownish 10 d after infection with obvious fishy smell; 10 d after strains G2 and G4 infection, P. cyrtonema Hua root turned brown, then the tubers in the rotten part of the diseased spot appear depressed. 【Conclusion】Different geographical locations, cultivation methods and P. cyrtonema Hua varieties can lead to differences in the occurrence of P. cyrtonema Hua root rot and its pathogens, which increases the difficulty of the prevention and control of P. cyrtonema Hua root rot to a certain extent, and brings safety risks to the processing of later products. F. foetens and F. hostae are the pathogens that cause P. cyrtonema Hua root rot in Hunan.
Key words: Polygonatum cyrtonema Hua; root rot disease; pathogen; Fusarium foetens; Fusarium hostae
Foundation item: Innovation Ability Demonstration Project of Hunan Development and Reform Commission(XFGTZ〔2021〕319);Forestry Science and Technology Project of Hunan(XLK201959,XCZHZ〔2019〕2,XCZHZ〔2020〕42)
0 引言
【研究意義】多花黃精(Polygonatum cyrtonema Hua)又名雞頭參、老虎姜,隸屬于百合科(Liliaceae)黃精屬(Polygonatum),為多年生草本植物,與黃精(P. sibiricum Red.)、滇黃精(P. kingianum Coll. et Hemsl.)一同收錄于《中國藥典》,是中藥材黃精的基源植物(肖韻錚等,2020)。多花黃精的根莖中富含多種人體必需的微量元素,具有降血糖、抗腫瘤、提高人體免疫力及延緩機體衰老等功效(楊德等,2020;陳宇等,2021),在新藥研制及保健品開發方面具有極高的商業價值。長期以來,多花黃精的藥材供應主要以采集野生資源為主,隨著市場需求量的逐漸增加,人們開始進行大規模人工栽植。湖南作為我國多花黃精的主要產區之一,目前種植面積達4667 ha(梁忠厚等,2020),但人工栽培條件下多花黃精原有生物的生態平衡被打破,病蟲害日益猖獗,嚴重影響多花黃精的生長和產量(周先治等,2017),成為制約湖南省中藥材GAP(中藥材生產質量管理規范)實施及現代化產業發展的主要障礙,同時給中藥材產品加工帶來諸多安全隱患。根腐病是由真菌引起的植物土傳病害,是制約多花黃精產量和品質的主要病害之一(韓鳳等,2020)。因此,了解根腐病的發病規律及其病原菌種類,對開展多花黃精根腐病綜合防治及促進黃精產業健康發展具有重要意義。【前人研究進展】尖孢鐮刀菌(Fusarium oxysporum)是多種植物根腐病的主要病原菌,為典型的土傳病害真菌(肖榮鳳等,2020;姚健等,2020;紀莉景等,2021;唐貴婷等,2021)。已有研究表明,尖孢鐮刀菌和腐皮鐮刀菌(F. solani)是引起黃精屬根腐病的主要病原菌(吳依婷等,2018;楊林毅等,2019;韓鳳等,2020)。F. foetens是尖孢鐮刀菌的姊妹群,其形態與尖孢鐮刀菌相似,產孢細胞著生于分生孢子座上,為單瓶梗,較短,大型分生孢子,具隔膜;區別在于F. foetens具明顯的刺激氣味,而尖孢鐮刀菌無氣味(Schroers et al.,2004)。據報道,F. foetens是引起秋海棠枯萎和莖腐病的主要病原菌,植株感染F. foetens后,其莖基部腐爛,葉脈發黃并枯萎,萎蔫的植株表面覆蓋有白色霉層(Schroers et al.,2004;Tian et al.,2010;Saurat et al.,2013)。F. hostae與芬芳鐮刀菌(F. redolens)的形態類似,大型分生孢子呈鐮刀狀,具有3~5個分隔,區別在于F. hostae能在25和30 ℃的PDA培養基上緩慢生長,且致病性較芬芳鐮刀菌強(Geiser et al.,2001)。F. hostae是引起小麥冠腐和根腐病的主要病原菌,小麥感染F. hostae后其地下根莖基部和地上冠部變褐腐爛壞死(Gebremariam et al.,2016,2018;?zer et al.,2019);芬芳鐮刀菌則是引起大麥(Ye?in et al.,2017)和玉竹(曹亮等,2018)根腐病的主要病原菌,可造成植株根部腐爛,嚴重影響作物的產量和質量。鐮刀屬(Fusarium)真菌種類多,寄主范圍廣泛,加上病原菌的形態特征差異非常微小,且易受環境影響,因此僅根據傳統分類學的形態特征(菌落、分生孢子和厚垣孢子等)及病害發生情況很難將鐮刀菌屬真菌鑒定到種。【本研究切入點】隨著分子生物學技術的快速發展,核糖體DNA內轉錄間隔區(rDNA-ITS)序列已廣泛應用于物種鑒定(陳玉璽等,2008;馬原松等,2012;白映祿等,2019);近年來,關于鐮刀菌屬真菌引起作物根腐病的報道日益增多,但至今尚無基于ITS序列鑒定湖南多花黃精根腐病病原菌種類的研究報道。【擬解決的關鍵問題】以患根腐病的湖南多花黃精病株為研究對象,通過病原菌分離純化、rDNA-ITS序列分析及形態學鑒定,并結合病原真菌的致病性測定,深入了解多花黃精根腐病在湖南地區的發生規律及其病原菌種類,以期為湖南多花黃精根腐病的綜合防治及GAP種植提供科學依據。
1 材料與方法
1. 1 試驗材料
2020年7月在湖南省境內采集患典型根腐病多花黃精病株的根莖,放入無菌采集袋中并編號,冰盒保存運回實驗室進行病原菌分離純化。健康多花黃精植株由湖南環境生物職業技術學院湖南林下經濟科研示范基地提供,為無菌萌發獲得的2年生植株,置于26 ℃恒溫箱中培養,以保證植株處于健康狀態,供致病性測定用。
1. 2 試驗方法
1. 2. 1 病原菌分離純化 在患典型根腐病多花黃精根莖的病健交界處,用無菌刀片切取1.0 cm3大小的組織塊,置于75%酒精中浸泡30 s后以1% NaClO浸泡4 min,無菌水沖洗3~4次,消毒濾紙吸干水分,將組織塊轉移至PDA培養基上25 ℃恒溫培養,待產孢純化后將菌株移接至PDA培養基上,4 ℃保存備用(方中達,1998;Hayden et al.,2004;曹瑱艷等,2020)。
1. 2. 2 病原菌分子鑒定 將分離純化得到的菌株接種至PDA培養基上進行擴大培養,采用改良的CTAB法(Hayden et al.,2004;劉丹等,2017)提取基因組DNA。選用真菌ITS序列的通用引物(ITS1:5'-TCCGTAGGTGAACCTGCGG-3'和ITS4:5'-TCCTC CGCTTATTGATATGC-3')進行PCR擴增。PCR擴增產物測序委托北京六合華大基因科技有限公司完成,將測序結果提交至NCBI的GenBank進行BLAST比對分析,檢索出相似性較高的ITS序列,以確定分離菌株的分類地位;再利用ClustalW對目標序列與從GenBank檢索到的相關真菌ITS序列進行比對(何英云等,2020),下載同源的真菌ITS序列,利用MEGA 6.1中的鄰接法(Neighbor-Joining,NJ)構建系統發育進化樹并分析其親緣關系。
1. 2. 3 病原菌形態學鑒定 將分離純化得到的菌株接種至PDA培養基上,25 ℃恒溫培養7~10 d。通過光學顯微鏡觀察菌落的形態和顏色,并挑取菌絲置于體視顯微鏡下觀察記錄分生孢子的形態、大小及有無隔膜等。參照王拱辰等(1996)的《常見鐮刀菌鑒定指南》、Leslie和Summerell(2006)的分類系統進行分離菌株的形態學鑒定。
1. 2. 4 致病性測定 參照蘸根法,將2年生的多花黃精健康植株置于1×106個/mL的病原菌孢子懸液中浸泡30 min,移入有濕潤濾紙保濕的500 mL密封塑料杯中,以接種無菌水的多花黃精健康植株為對照,分別置于26 ℃培養箱中培養,每處理10株。接種10 d后,記錄多花黃精植株的感染發病情況。依據Koch?s法則,在植株病斑處再次分離純化病原菌,并與原接種的分離菌株進行比較。
2 結果與分析
2. 1 多花黃精根腐病的發生及田間病害癥狀
湖南地區的多花黃精根腐病以生長旺盛期(5—7月)發生最嚴重,平均發病率為12%,嚴重時可達20%。發病部位主要是多花黃精根部。發病初期,多花黃精植株的地上葉片無明顯癥狀(圖1-A),地下根部有水漬狀褐色壞死斑(圖1-B),具腥味,濕度大時根莖表面可見白色霉層(圖1-C),腐爛病株極易從土中拔起;后期嚴重時根內部腐爛,僅殘留纖維狀維管束,病部呈褐色或紅褐色,地上葉片由外向里逐漸變黃,最后整株枯死(圖1-D)。
2. 2 病原菌rDNA-ITS序列分析結果
從患典型根腐病多花黃精根莖的病健交界處取樣進行病原菌分離純化,結果獲得4株不同的分離菌株(G1~G4)。以ITS1和ITS4為引物對分離獲得的菌株進行PCR擴增,經1.0%瓊脂糖凝膠電泳檢測,結果從菌株G1、G2和G4分別擴增獲得511、573和573 bp的目的條帶,菌株G3因PCR擴增條帶混雜,導致測序失敗。將菌株G1、G2和G4的rDNA-ITS序列提交至NCBI的GenBank進行BLAST比對分析,結果表明,菌株G1與F. foetens(GenBank登錄號NR_159865.1)的相似性為99.22%,菌株G2和G4與F. hostae(GenBank登錄號NR_171109.1)的相似性為99.81%。基于rDNA-ITS序列相似性,利用MEGA 6.1中的鄰接法(NJ)構建系統發育進化樹,結果(圖2)也顯示,菌株G1與F. foetens聚為一支,菌株G2和G4與F. hostae聚為一支,進一步證實從湖南多花黃精根腐病植株分離獲得的菌株G1為F. foetens,菌株G2和G4為F. hostae。
2. 3 病原菌的形態特征
分子鑒定為F. foetens的菌株G1:在PDA培養基上生長較快,培養7 d后其菌落直徑為6.7 cm,氣生菌絲致密,呈氈狀(圖3-A),白色至粉紫色(圖3-B)。大型分生孢子呈柱形,基部較鈍,具隔膜,大小為20.0~33.0 μm×3.2~4.3 μm;小型分生孢子呈卵形或腎形,單胞,單生或串生,大小為2.1~7.8 μm×1.4~3.6 μm(圖3-C)。
分子鑒定為F. hostae的菌株G2/G4:在PDA培養基上培養7 d后其菌落直徑為6.2 cm,氣生菌絲呈放射狀(圖3-D),白色至淡黃色(圖3-E)。大型分生孢子呈鐮刀狀,有3~5個分隔,端部略彎曲,大小為25.0~38.0 μm×3.3~4.5 μm;小型分生孢子呈卵圓形,部分有輕微彎曲,大小為7.0~10.0 μm×3.0~4.0 μm(圖3-F)。
2. 4 病原菌致病性測定結果
通過蘸根法將菌株G1、G2和G4分別接種至健康多花黃精植株的根莖上,接種10 d后觀察發現所有多花黃精植株均表現出強致病性,呈典型的根腐病發病癥狀。其中,菌株G1接種10 d后,多花黃精根莖開始變褐腐爛(圖4-A),且伴有明顯的腥味;菌株G2和G4接種10 d后,多花黃精根莖初期變褐色,后期病斑腐爛部分的根莖出現凹陷(圖4-B和圖4-C);而接種無菌水的多花黃精植株未表現出任何癥狀(圖4-D)。依據Koch?s法則,對接種后發病的多花黃精植株取樣再次進行病原菌分離純化,結果均分離得到與原接種菌株性狀相同的菌株。由此確定,F. foetens和F. hostae是湖南多花黃精根腐病的致病菌。
3 討論
本研究選取湖南地區具有典型根腐病癥狀的多花黃精植株,采用傳統的平板分離法對其病原菌進行分離純化,通過rDNA-ITS序列分析、形態學鑒定及致病性測定,明確引起湖南多花黃精根腐病的致病菌為F. foetens和F. hostae,是繼尖孢鐮刀菌(F. oxysporum)和腐皮鐮刀菌(F. solani)引起多花黃精根腐病(韓鳳等,2020)的2種新病原菌。多花黃精植株感染尖孢鐮刀菌和腐皮鐮刀菌后,其地上部葉片由下而上逐漸枯萎,地下根莖出現水漬狀褐色壞死斑,根莖表面可見白色菌絲。F. foetens和F. hostae引起的多花黃精根腐病癥狀與這2種病原菌引起的病癥相似,其區別在于多花黃精感染F. foetens后,除了根莖出現明顯的褐色病斑外,還伴有明顯的腥味。尖孢鐮刀菌和腐皮鐮刀菌還能引起黃精和滇黃精發生根腐病。黃精感染尖孢鐮刀菌后,導致其根莖腐爛而絕收(吳依婷等,2018);滇黃精感染腐皮鐮刀菌初期,其根莖上出現不規則的黑色病斑,隨著病斑逐漸擴大,最終導致整個根莖腐爛,莖桿枯萎(楊林毅等,2019)。可見,不同地理位置、栽培方式及黃精品種,均有可能導致黃精根腐病的發生情況及其病原菌存在差異,在一定程度上增加了黃精根腐病防治工作的難度,且給后期的產品加工帶來安全隱患。湖南多花黃精根腐病的發生是否與當地氣候及其品種有關,還有待進一步研究確認。
本研究通過rDNA-ITS序列分析并構建系統發育進化樹,結果證實分離純化獲得的多花黃精根腐病病原菌株G1為F. foetens,菌株G2和G4為F. hostae。基于rDNA-ITS序列分析的分子鑒定已廣泛應用于物種鑒定(陳玉璽等,2008;馬原松等,2012;白映祿等,2019),但也存在一定局限性(Crouch et al.,2009),單一的rDNA-ITS序列可能會導致病原菌鑒定結果出現偏差(Moriwaki et al.,2002)。因此,下一步需對采集的多花黃精根腐病病原菌進行多基因序列聯合鑒定,以準確鑒定病原菌的種類。致病性測定結果表明,F. foetens和F. hostae均為多花黃精根腐病的致病菌。韓鳳等(2020)研究表明,多花黃精根腐病可能是多種致病菌復合侵染的結果。湖南地區的多花黃精根腐病以生長旺盛期(5—7月)發生最嚴重,此時正值南方梅雨季節,高溫高濕的自然條件非常有利于病原菌的流行傳播。吳依婷等(2018)從黃精根莖中分離出對黃精根腐病具有明顯抑制作用的內生細菌——枯草芽孢桿菌(Bacillus subtilis);遲惠榮(2019)從多花黃精根莖中分離獲得11株內生細菌,經鑒定分別隸屬于3個屬,其中芽孢桿菌屬(Bacillus)為多花黃精內生細菌的優勢菌屬。本研究從患典型根腐病的湖南多花黃精根莖中僅分離獲得2種病原菌(F. foetens和F. hostae),并未發現其他病原菌。湖南多花黃精根腐病是否存在其他病原菌,且這些病原菌是否存在協同侵染,以及多花黃精根莖中是否含有抵御多花黃精根腐病的內生菌,均有待進一步探究。
4 結論
不同地理位置、栽培方式及黃精品種,均有可能導致黃精根腐病的發生情況及其病原菌存在差異,在一定程度上增加了黃精根腐病防治工作的難度,且給后期的產品加工帶來安全隱患。F. foetens和F. hostae是引起湖南多花黃精根腐病的致病菌。
參考文獻:
白映祿,薛玉麗,常蕓,尚素琴. 2019. 基于rDNA ITS1序列的甘肅省葉螨屬Tetranychus和全爪螨屬Panonychus種群的系統關系[J]. 甘肅農業大學學報,54(5):128-134. doi:10. 13432/j.cnki.jgsau.2019.05.016. [Bai Y L,Xue Y L,Chang Y,Shang S Q. 2019. Phylogenetic relationship between spider mite genus Tetranychus and Panonychus based on ribosomal DNA ITS1 sequence in Gansu Pro-vince[J]. Journal of Gansu Agricultural University,54(5):128-134.]
曹亮,徐瑞,謝進,朱校奇,周佳民,宋榮,黃艷寧,彭斯文. 2018. 玉竹根腐病防治殺菌劑篩選[J]. 中藥材,41(5):1031-1034. doi:10.13863/j.issn1001-4454.2018.05.004. [Cao L,Xu R,Xie J,Zhu X Q,Zhou J M,Song R,Huang Y N,Peng S W. 2018. Screening of fungicides for controlling root rot of Polygonatum odoratum[J]. Journal of Chinese Medicinal Materials,41(5):1031-1034.]
曹瑱艷,楊怡華,申屠旭萍,俞曉平. 2020. 浙江省鐵皮石斛根腐病病原真菌的鑒定[J]. 植物保護學報,47(1):178-186. doi:10.13802/j.cnki.zwbhxb.2020.2019040. [Cao Z Y,Yang Y H,Shentu X P,Yu X P. 2020. Identification of the pathogenic fungi of root rot of traditional medicinal Dendrobium officinale in Zhejiang Province[J]. Acta Phytophylacica Sinica,47(1):178-186.]
陳宇,周蕓湄,李丹,彭成. 2021. 黃精的現代藥理作用研究進展[J]. 中藥材,44(1):240-244. doi:10.13863/j.issn1001-4454. 2021.01.046. [Chen Y,Zhou Y M,Li D,Peng C. 2021. Research Progress on modern pharmacological action of Polygonatum cyrtonema Hua[J]. Journal of Chinese Medicinal Materials,44(1):240-244.]
陳玉璽,張利平,呂志堂. 2008. 10株鐮刀菌rDNA內轉錄間隔區(ITS)序列分析[J]. 安徽農業科學,36(12):4886-4887. doi:10.13989/j.cnki.0517-6611.2008.12.018. [Chen Y X,Zhang L P,Lü Z T. 2008. Analysis of the internal transcribed spacer(ITS) sequences in rDNA of 10 strains of Fusarium spp.[J]. Journal of Anhui Agricultural Scien-ces,36(12):4886-4887.]
遲惠榮. 2019. 多花黃精葉枯病病原菌鑒定及貝萊斯芽胞桿菌防病促生效果研究[D]. 杭州:浙江大學. [Chi H R. 2019. The study on the pathogen identification of the leaf blight of Polygonatum cyrtonema Hua and the plant growth promotion and biocontrol effect of Bacillus veleaensis[D]. Hangzhou:Zhejiang University.]
方中達. 1998. 植病研究法[M]. 第3版. 北京:中國農業出版社. [Fang Z D. 1998. Plant disease research method[M]. The 3rd Edition. Beijing:China Agriculture Publishing House.]
韓鳳,李巧玲,韓如剛,章文偉,余中蓮,林茂祥,楊娟. 2020. 渝產多花黃精根腐病病原菌的分離與鑒定[J]. 分子植物育種,18(11):3693-3698. doi:10.13271/j.mpb.018.003693. [Han F,Li Q L,Han R G,Zhang W W,Yu Z L,Lin M X,Yang J. 2020. Isolation and identification of pathogen of Polygonatum cyrtonema Hua root rot disease in Chong-qing[J]. Molecular Plant Breeding,18(11):3693-3698.]
何英云,陳興全,張永科,張祖兵,徐萬壽,黃美智,張傳利,龍繼明,馬麗宣,田洋. 2020. 云南西雙版納辣木果腐病病原鑒定[J]. 南方農業學報,51(9):2160-2166. doi:10.3969/ j.issn.2095-1191.2020.09.014. [He Y Y,Chen X Q,Zhang Y K,Zhang Z B,Xu W S,Huang M Z,Zhang C L,Long J M,Ma L X,Tian Y. 2020. Seed pod rot pathogen identification of Moringa oleifera in Xishuangbanna,Yunnan[J]. Journal of Southern Agriculture,51(9):2160-2166.]
紀莉景,肖穎,李耀發,賈海民,王亞嬌,吳玉星,孔令曉. 2021. 引起河北省保定市白術根腐病的病原鐮刀菌種類鑒定[J]. 植物病理學報,51(2):282-286. doi:10.13926/j.cnki.apps.000354. [Ji L J,Xiao Y,Li Y F,Jia H M,Wang Y J,Wu Y X,Kong L X. 2021. Identification of pathogenic Fusarium species causing Atractylodes macrocaphal root rot in Baoding,Hebei Province[J]. Acta Phytopathologica Sinica,51(2):282-286.]
梁忠厚,李有清,鄒青,劉慧娟. 2020. 湖南省黃精產業發展現狀與對策[J]. 湖南生態科學學報,7(3):35-42. doi:10. 3969/j. issn.2095-7300.2020.03.006. [Liang Z H,Li Y Q,Zou Q,Liu H J. 2020. Development status and countermeasures of Polygonati rhizome industry in Hunan Pro-vince[J]. Journal of Hunan Ecological Science,7(3):35-42.]
劉丹,李煥宇,付婷婷,張云,呂天佑,李遠,李敏權,徐秉良. 2017. 基于正交試驗設計優化真菌DNA提取的CTAB法[J]. 甘肅農業大學學報,52(2):139-145. doi:10.13432/j.cnki.jgsau.2017.02.022. [Liu D,Li H Y,Fu T T,Zhang Y,Lü T Y,Li Y,Li M Q,Xu B L. 2017. Optimization of CTAB methods for extraction of fungal DNA based on the orthogonal experiment[J]. Journal of Gansu Agricultural University,52(2):139-145.]
馬原松,裴冬麗,王文靜,李成偉. 2012. 河南省幾種白粉菌的ITS序列分析[J]. 河南農業科學,41(9):87-90. doi:10. 3969/j.issn. 1004-3268.2012.09.022. [Ma Y S,Pei D L,Wang W J,Li C W. 2012. ITS sequence analysis of se-veral powdery mildew from Henan Province[J]. Journal of Henan Agricultural Sciences,41(9):87-90.]
唐貴婷,蔣歡,蘇宇,何煥然,趙冰峰,吳朝君,張勇,王旭祎. 2021. 重慶南蒼術根腐病病原鑒定[J]. 植物病理學報,51(4):641-645. doi:10.13926/j.cnki.apps.000542. [Tang G T,Jiang H,Su Y,He H R,Zhao B F,Wu C J,Zhang Y,Wang X Y. 2021. Identification of pathogen causing Atractylodes lancea root rot in Chongqing municipality[J]. Acta Phytopathologica Sinica,51(4):641-645.]
王拱辰,鄭重,葉琪明,章初龍. 1996. 常見鐮刀菌鑒定指南[M]. 北京:中國農業科技出版社. [Wang G C,Zheng Z,Ye Q M,Zhang C L. 1996. Guidelines for identification of common Fusarium[M]. Beijing:China Agricultural Science and Technology Press.]
吳依婷,姚傳威,鄧波俠,張霞,李勝華,鄒娟,付明. 2018. 黃精根腐病分離菌及其拮抗內生細菌的鑒定[J]. 浙江農業學報,30(12):2087-2093. doi:10.3969/j.issn.1004-1524. 2018.12.14. [Wu Y T,Yao C W,Deng B X,Zhang X,Li S H,Zou J,Fu M. 2018. Identification of isolated fungus from root rot of Polygonatum sibiricum and its antagonistic endophytic bacteria[J]. Acta Agriculturae Zhejiangensis,30(12):2087-2093.]
肖榮鳳,陳燕萍,陳梅春,阮傳清,朱育菁,劉波. 2020. 太子參根腐病病原菌的鑒定及防治藥劑篩選[J]. 植物保護學報,47(6):1333-1342. doi:10.13802/j.cnki.zwbhxb.2020. 2019211. [Xiao R F,Chen Y P,Chen M C,Ruan C Q,Zhu Y J,Liu B. 2020. Pathogen identification of root rot of Pseudostellaria heterophylla plant and fungicide scree-ning for its efficient control[J]. Acta Phytophylacica Sinica,47(6):1333-1342.]
肖韻錚,韓世明,秦昭,李春奇. 2020. 滇黃精轉錄組測序及類黃酮合成相關基因的分析[J]. 河南農業大學學報,54(6):931-940. doi:10.16445/j.cnki.1000-2340.2020.06.004. [Xiao Y Z,Han S M,Qin Z,Li C Q. 2020. Analysis of transcriptome sequencing and related genes of flavonoids biosynthesis from Polygonatum kingianum[J]. Journal of Henan Agricultural University,54(6):931-940.]
楊德,薛淑靜,盧琪,陳曉春,李露. 2020. 黃精藥理作用研究進展及產品開發[J]. 湖北農業科學,59(21):5-9. doi:10. 14088/j. cnki.issn0439-8114.2020.21.001. [Yang D,Xue S J,Lu Q,Chen X C,Li L. 2020. Research progress and product development of Polygonatum sibiricum[J]. Hubei Agricultural Sciences,59(21):5-9.]
楊林毅,陳澤歷,賴清玉,陳潞,孫雁,唐朝輝,趙明富,文國松. 2019. 滇黃精腐皮鐮刀菌的分離鑒定[J]. 湖北農業科學,58(3):65-67. doi:10.14088/j.cnki.issn0439-8114. 2019.03.018. [Yang L Y,Chen Z L,Lai Q Y,Chen L,Sun Y,Tang Z H,Zhao M F,Wen G S. 2019. Isolation and identification of Fusarium solani from Polygonatum kingianum[J]. Hubei Agricultural Sciences,58(3):65-67.]
姚健,劉玉珍,李建華,王京,孫曉偉,李肖宇,法鵬飛,危月輝. 2020. 許昌煙草根腐病的分子鑒定及致病性分析[J]. 江西農業學報,32(3):99-103. doi:10.19386/j.cnki.jxnyxb.2020.03.18. [Yao J,Liu Y Z,Li J H,Wang J,Sun X W,Li X Y,Fa P F,Wei Y H. 2020. Molecular identification and pathogenicity analysis of tobacco fusarium root rot disease in Xuchang[J]. Acta Agriculturae Jiangxi,32(3):99-103.]
周先治,蘇海蘭,陳陽,高暉,唐建陽,單寄坪. 2017. 多花黃精主要病害發生規律調查[J]. 福建農業科技,(10):25-27. doi:10.13651/j.cnki.fjnykj.2017.10.008. [Zhou X Z,Su H L,Chen Y,Gao H,Tang J Y,Shan J P. 2017. Occurrence regularity of major diseases of Polygonatum sibiricum[J]. Fujian Agricultural Science and Technology,(10):25-27.]
Crouch J A,Clarke B B,Hillman B I. 2009. What is the value of ITS sequence data in Colletotrichum systematics and species diagnosis? A case study using the falcate-spored graminicolous Colletotrichum group[J]. Mycologia,101(5):648-656. doi:10.3852/08-231.
Gebremariam E S,Karakaya A,Orakci G E,Dababat A A,Sharma-Poudyal D,Paulitz T C. 2016. First report of Fusarium hostaes causing crown rot on wheat (Triticum spp.) in Turkey[J]. Plant Disease,99(9):15042007092 4008. doi:10.1094/PDIS-01-15-0128-PDN.
Gebremariam E S,Sharma-Poudyal D,Paulitz T C,Orakci G E,Karakaya A,Dababat A A. 2018. Identity and pathogenicity of Fusarium species associated with crown rot on wheat(Triticum spp.) in Turkey[J]. European Journal of Plant Pathology,150:387-399. doi:10.1007/s10658-017-1285-7.
Geiser D M,Juba J H,Wang B,Jeffers S N. 2001. Fusarium hostae sp. nov.,a relative of F. redolens with a Gibberella teleomorph[J]. Mycologia,93(4):670-678. doi:10.1080/00275514.2001.12063198.
Hayden K J,Rizzo D,Tse J,Garbelotto M. 2004. Detection and quantification of Phytophthora ramorum from California forests using a real-time polymerase chain reaction assay[J]. Phytopathology,94(10):1075-1083. doi:10.1094/ PHYTO.2004.94.10. 1075.
Leslie J F,Summerell B A. 2006. The Fusarium laboratory manual[M]. Iowa:Blackwell Publishing.
Moriwaki J,Tsukiboshi T,Sato T. 2002. Grouping of Colletotrichum species in Japan based on rDNA sequences[J]. Journal of General Plant Pathology,69:424. doi:10.1007/s10327-003-0092-5.
Saurat C,Fourrier C,Wilson V,Casset C,Ioos R. 2013. First report of begonia elatior wilt disease caused by Fusarium foetens in France[J]. Plant Disease,97(1):144. doi:10. 1094/PDIS-07-12-0659-PDN.
Schroers H J,Baayen R P,Meffert J P,de Gruyter J,Hooftman M,O'Donnell K. 2004. Fusarium foetens,a new species pathogenic to begonia elatior hybrids(Begonia×Hiemalis) and the sister taxon of the Fusarium oxysporum species complex[J]. Mycologia,96(2):393-406.
Tian X L,Dixon M,Zheng Y. 2010. First report of Hiemalis begonias wilt disease caused by Fusarium foetens in Ca-nada[J]. Plant Disease,94(10):1261. doi:10.1094/PDIS-06-10-0402.
?zer G,?mren M,Bayraktar H,Paulitz T C,Muminjanov H,Dababat A A. 2019. First report of Fusarium hostae cau-sing crown rot on wheat in Azerbaijan[J]. Plant Disease,103(12):3278. doi:10.1094/PDIS-05-19-1035-PDN.
Ye?in N Z,?nal F,Tekiner N,Dolar F S. 2017. First report of Fusarium redolens causing root and crown rot of ba-rley(Hordeum vulgare) in Turkey[J]. The Journal of Tur-kish Phytopathology,46(3):101-105.
(責任編輯 蘭宗寶)