999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Well-posedness of Time-dependent Nonclassical Diffusion Equation with Memory

2021-09-17 01:24:56TangZhipiaoZhangJiangweiLiuDi
數學理論與應用 2021年1期

Tang Zhipiao Zhang Jiangwei Liu Di

(School of Mathematics and Statistics,Changsha University of Science and Technology,Changsha 410114,China)

Abstract In this paper,we discuss a class of nonclassical diffusion equation with time-dependent damping terms.The existence of global weak solution is obtained by using the nonclassical method of Faedo-Galerkin and analytical techniques.Meanwhile,we also prove the uniqueness of the solution and the continuous dependence on initial value,where the nonlinearity f satisfies arbitrary polynomial growth.

Key words Nonclassical diffusion equation Global weak solution Arbitrary polynomial growth Galerkin’s method

1 Introduction

In this paper,we consider the following initial-boundary value problem for the nonclassical diffusion equation with memory:

where ? is a bounded smooth domain in Rn(n ≥3),t >τ,τ ∈R is the initial time,the external force termg=g(x)∈H?1(?)is known andε(t)∈C1(R)is a decreasing bounded function satisfying that

In the whole paper,unless otherwise stated,z(t)=(u(t),ηt) is the solution of the system(1.13)-(1.14)with initial valuezτ=(uτ,ητ).

As a mathematical and physical model,(1.1) is usually used in the fields of fluid mechanics,solid mechanics,and heat conduction theory[1,2].It mainly considers two aspects:one is the viscosity,the other is the historical influence ofu(such as polymer,high viscosity liquid,etc.[3]).An energy equation is formed to reveal the whole process of diffusion when these two factors are considered,that is,the above evolution equation with memory term(1.1),which is often referred to as a nonclassical diffusion equation.

Ifε(t)=0,then equation(1.1)becomes the usual reaction-diffusion equation with memory,which equation has been researched by many researchers(see e.g.,[4,9]).In addition,for equation (1.1),the current research focuses on the nonclassical diffusion equation with memory whenε(t)=1(see e.g.,[7,8]).Recently,whenk(s)=0,the existence of time-dependent global attractors inHthas been proved by Zhu et al in [9],where the nonlinearityfsatisfies the polynomial growth of arbitraryp ?1(p ≥2)order.And in[6],when the nonlinearityfsatisfies the critical exponent growth,the authors have proved the existence of the time-dependent global attractors inHt.

Based on the above analysis,the well-posedness for equation(1.1)will be investigated in this paper,and our conclusion will essentially extend the existing results.

2 Existence of solutions in M1

In this section,we will use the Galerkin approximation method to prove the existence of solutions for equation(1.1).For this purpose,we firstly give the definition of global weak solution as follows.

Definition 2.1For anyT >τ,I=[τ,T],let ??Rnbe a bounded smooth area,f(u) satisfy(1.6)-(1.7),zτ=(uτ,ητ)∈V1.We say thatz=(u,ηt)is a global weak solution of(1.1),ifzsatisfies(1.13)-(1.14)and

From the theory of ordinary differential equations,(2.2)with initial-boundary condition(2.3)has a unique solution in[τ,T].

In order to obtain the existence theorem 2.1 of solutions,the following some lemmas onzn=(un,)are established.

3 Uniqueness and continuous of solutions

Thus,the uniqueness of solutions and continuous dependence on the initial value for equation (1.1) are proved.This completes the proof.

Acknowledgment

The authors would like to thank the referees for their many helpful comments and suggestions.

主站蜘蛛池模板: 亚洲天堂免费| 日韩无码黄色| 欧美色伊人| 国产xxxxx免费视频| 国产精品第一区在线观看| 无码福利视频| 久久精品人人做人人爽97| 国产在线一区视频| 国产在线拍偷自揄拍精品| 久久精品亚洲热综合一区二区| 国产性生交xxxxx免费| 综合网天天| 亚洲欧美另类视频| 久久大香香蕉国产免费网站| 国产偷国产偷在线高清| 亚洲一级毛片免费看| 99青青青精品视频在线| 日韩精品无码免费专网站| 伊人久久久久久久| 国产美女精品人人做人人爽| 亚洲欧美综合另类图片小说区| 亚洲天天更新| 日韩高清一区 | 另类重口100页在线播放| 黄色网在线| 亚洲一区二区日韩欧美gif| 亚洲乱码视频| 免费看av在线网站网址| 2021亚洲精品不卡a| 久久性妇女精品免费| 国产精品视频第一专区| 97在线国产视频| 久热这里只有精品6| 欧美日韩午夜| 在线国产资源| 日韩在线2020专区| 日韩无码白| 免费看的一级毛片| 伊人色婷婷| 欧美亚洲一二三区| 亚洲综合极品香蕉久久网| 日韩高清欧美| 欧美日韩中文国产| 国产在线日本| 成年午夜精品久久精品| 欧美午夜视频在线| 国产精品自在自线免费观看| Aⅴ无码专区在线观看| 精品综合久久久久久97超人该| 色综合狠狠操| 无码'专区第一页| 色播五月婷婷| 国产精品.com| 欧美性色综合网| 久久精品一品道久久精品| 99久久精品国产综合婷婷| 国产二级毛片| 精品国产自在现线看久久| 色丁丁毛片在线观看| 污网站免费在线观看| 亚洲国产精品美女| 一级毛片免费播放视频| jizz在线观看| 国产在线观看第二页| 2020精品极品国产色在线观看| 成人无码区免费视频网站蜜臀| 手机在线国产精品| 亚洲国产日韩一区| 国产97视频在线| 欧美色视频日本| 欧美啪啪精品| 欧美精品1区2区| 成人国产一区二区三区| 在线a网站| 91小视频在线观看| 亚洲免费毛片| 色窝窝免费一区二区三区| 国产成人精品18| 国产精品福利在线观看无码卡| 波多野结衣一区二区三区四区| 无码中文字幕加勒比高清| 日韩精品欧美国产在线|