999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A Counterexample on H1 ? in Martingale Theory

2021-09-17 01:24:54TianHongliLongLong
數學理論與應用 2021年1期

Tian Hongli Long Long

(School of Mathematics and Statistics,Central South University,Changsha 410083,China)

Abstract As we have already known that when 1

Key words Martingale space Levi martingale Hardy space

1 Introduction

Apply this space as a transition,Burkholder and Gundy[1,8]proved the following relationship

Burkholder-Gundy’s result shows that the martingale maximal operatorMand the martingale square function operatorShave equivalentLpnorms when 1

And this will make it a little bit easier to talk about the properties of these spaces in the future whenp=1.

At the end of this section,we make some conventions.Throughout this paper,Z and N denote the integer set and nonnegative integer set,respectively.We denote byCthe absolute positive constant,which can vary from line to line.The symbolA?Bstands for the inequalityA≤CB.If we writeA~B,then it stands forA?B?A.

2 Preliminaries

In this section,we introduce some standard notations from the martingale theory.We refer to [7,16,19]for the classical martinale space theory.Suppose that(?,F,P) is a complete probability space.Let (Fn)n≥0be an increasing sequence of subalgebras ofFsuch thatF=σ(∪n≥0Fn),and let Endenote the conditional expectation operator relative toFn.An adapted sequence of measurable functionsf=(fn)n≥0?L1(?)is called a martingale with respect to(Fn)n≥0if En(fn+1)=fnfor everyn ≥0.For a martingalef=(fn)n≥0,denote△nf=fn ?fn?1,n ≥0(with conventionf?1=0).

Example 2.1The dyadic martingale is a typical and important example of martingale theory.Let([0,1),B,dx)be the Lebesgue probability space,with the family{Fn}n≥0generated as

Then all the martingales with respect to such(?,F,μ,{Fn}n≥0)are called the dyadic martingales.They are nothing but the 2n-partial sum of the Walsh expansion

where the dyadic expressionxt=(y1,y2,···),x=(x1,x2,···),t=(t1,t2,···)satisfyyj=xjtjfor allj,withaddition module 2,and

Thus,we have

We have connected the dyadic martingales with the Walsh expansions.

This connection remains ture for the Rademacher system{rn(t)}n≥1

Let(an)n≥1be a sequence,and

It is obvious that (fn)n≥0is an adapted process with respect to{Fn}n≥0.From En(rn+1(t))=0,we have

So,(fn)n≥0is a martingale with respect to{Fn}n≥0.

3 The main result

Finally,we have

which implies thatfH1.

4 Weak type results for p=1

In this section,we give the the weak type results forp=1.

Let (?,F,P) be a complete probability space.As is well-known,the weakLpspace,denoted bywLp,is defined as the set of allP-measurable functionsfsuch that

and the wake spacewL∞is justL∞.It is easy to see that thewLpis a quasi-normed linear space for 0

Now,we introduce the definition of martingale weak spaces as follows:

主站蜘蛛池模板: 婷婷亚洲最大| 日韩黄色大片免费看| 亚洲第一视频网站| 日韩精品亚洲精品第一页| 国产免费久久精品44| 国产成人免费| 天天干天天色综合网| 亚洲国产成人综合精品2020| 欧美一级视频免费| 国产成人精品亚洲日本对白优播| 美女一区二区在线观看| 国产精品林美惠子在线播放| 五月天久久婷婷| 亚洲国产天堂久久综合| 久久久久久国产精品mv| 国产鲁鲁视频在线观看| 国产AV无码专区亚洲精品网站| 波多野结衣无码中文字幕在线观看一区二区| 国产欧美在线观看精品一区污| 波多野结衣无码中文字幕在线观看一区二区 | 538国产在线| 国产成人高清精品免费5388| jizz国产视频| 国产精品无码AV中文| 在线观看91精品国产剧情免费| a级毛片免费播放| 亚洲色图欧美| 精品無碼一區在線觀看 | 少妇被粗大的猛烈进出免费视频| 91九色最新地址| 天天干天天色综合网| 国产农村精品一级毛片视频| 国产一区二区三区精品久久呦| 国产特级毛片| 欧美精品1区2区| 日韩精品成人在线| 亚洲一区免费看| 免费毛片视频| 日韩人妻少妇一区二区| 国产亚洲第一页| 波多野结衣一区二区三区四区| 99er这里只有精品| 国产成人亚洲无码淙合青草| 久久精品一品道久久精品| 啪啪啪亚洲无码| 亚洲码在线中文在线观看| 精品国产网| 国产国产人免费视频成18| 99青青青精品视频在线| 亚洲AⅤ综合在线欧美一区| 亚洲码一区二区三区| h网站在线播放| 久久中文电影| 色视频国产| 亚洲精品视频免费观看| 亚洲毛片网站| 凹凸国产熟女精品视频| 欧美啪啪视频免码| 国内黄色精品| 欧美笫一页| 欧美国产综合色视频| 久久亚洲美女精品国产精品| 美女高潮全身流白浆福利区| 欧美福利在线| 久久这里只有精品免费| 都市激情亚洲综合久久| 欧洲高清无码在线| 国产免费羞羞视频| 一本大道AV人久久综合| 婷婷成人综合| 中日韩一区二区三区中文免费视频| 在线免费不卡视频| a色毛片免费视频| 国产精品亚欧美一区二区| 成年A级毛片| 国产JIZzJIzz视频全部免费| 亚洲一区二区三区麻豆| a色毛片免费视频| 国产91无毒不卡在线观看| 99在线观看视频免费| 福利小视频在线播放| 亚洲精品图区|