劉 慧,龍友能,何思偉,崔業民,沈 躍
四輪獨立電驅動高地隙噴霧機輔助轉向系統設計與試驗
劉 慧1,龍友能1,何思偉1,崔業民2,沈 躍1※
(1. 江蘇大學電氣信息工程學院,鎮江 212013;2. 南通廣益機電有限責任公司,南通 226631)
針對四輪獨立電驅動高地隙噴霧機因輪轂電機控制器遇到較大擾動無法及時響應而導致的轉向不穩定問題,該研究提出了一種液壓輔助轉向方法。通過對四輪獨立電驅動高地隙噴霧機的自轉向底盤結構原理的分析,設計了液壓輔助轉向系統,在此基礎上建立了簡化二自由度車輛轉向模型,用于對輔助轉向系統轉角控制進行分析,并通過仿真分析和試驗驗證自轉向和輔助轉向協調控制性能。四輪電驅動噴霧機分別在自轉向系統單獨作業以及自轉向系統和輔助轉向系統協同作業的工況下,以1 m/s的速度分別進行了坡度為15°的下坡轉向對比試驗和水田轉向對比試驗。試驗結果表明:在下坡試驗中,單獨自轉向系統作業的最大跟蹤偏差為6.1°,自轉向和輔助轉向協同作業的最大跟蹤偏差為0.9°;水田試驗中,單獨自轉向系統作業的最大跟蹤偏差為10.3°,自轉向和輔助轉向協同作業的最大跟蹤偏差為1.5°。研究結果表明該文所設計的液壓輔助轉向系統具有可行性和較好的穩定性,能夠滿足實際作業需求。
高地隙噴霧機;電動底盤;四輪轉向;自轉向結構;液壓輔助轉向
高地隙噴霧機作為典型的田間植保機械[1],優良的轉向性能是其在復雜場地環境中實現穩定作業的關鍵。目前大部分高地隙噴霧機采用機械傳動結構,在松軟、泥濘水田等惡劣環境下,機械傳動結構容易引發驅動輪故障、滑移、沉陷等現象,其機動性、穩定性備受考驗。
近年來,國內外眾多學者針對拖拉機、噴霧機的自動駕駛[2-5]、轉向系統[6-11]以及驅動系統[12-15]等開展研究,并取得了一系列研究成果。夏長高等研究了高地隙自走式噴霧機全液壓轉向系統[16],利用三位四通換向閥實現全液壓四輪轉向,解決了傳統高地隙噴霧機轉向不靈活、轉向半徑過大而且前后輪同轍重合度低的問題。李偉等設計了高地隙自走式噴霧機多輪轉向系統[17],提高了大型高地隙噴霧機的機動性能和作業效率。從現有研究成果分析得知,目前高地隙噴霧機的轉向方式主要采用側向轉彎原理[18-22]。當噴霧機在水田作業過程中半個或整個輪子深陷淤泥時,車輪的轉向則需推開側邊所有淤泥,所需轉向力矩隨著轉向角度的增加而增加,直到滿足轉向機構所能提供力矩的上限,輪子會深陷泥中或超出底盤承受力矩上限而損壞底盤,無法轉向。
沈躍等研究設計了一種四輪獨立電驅動自轉向結構底盤噴霧機[23-24],通過協調控制四輪差速帶動前后橋臂同步轉動實現自轉向,在復雜水田環境中有更好的工作性能。由于噴霧機轉向結構比較特殊,輪轂電機在遇到較大擾動時,現有輪轂電機控制器無法及時響應,因此無法實現穩定、可靠的轉向控制。例如噴霧機在下坡過程中,輪子需要反向力矩保持車身姿態,現有驅動系統無法及時響應,導致轉向不穩定。此外,考慮到成本問題,噴霧機并沒有設計懸架系統,當行駛在高低不平的路面時容易出現因轉向輪懸空而導致前/后橋轉向不穩定現象。當單個輪轂電機出現故障時,系統轉向性能不穩定;當前后均有輪轂電機出現故障時,系統無法實現自動轉向。
本文以四輪獨立電驅動高地隙噴霧機為研究對象,通過分析現有自轉向底盤結構,提出基于液壓控制的輔助轉向系統。該系統使用電機驅動轉向閥的方式對液壓缸進行控制,保證輔助轉向系統響應性能。最后通過仿真測試和實地試驗驗證該方法的有效性。
噴霧機的轉向結構如圖1所示。前后轉向橋通過平面軸承與噴霧機底盤相連,A、B為平面軸承的旋轉中心,前后轉向橋的兩側裝有輪轂電機,通過兩側輪轂電機的差速轉動實現轉向橋的轉動,同時前后轉向橋通過連桿約束,以確保前后轉向橋的轉向角度絕對值相等。
1.底盤車架 2.約束連桿 3.前轉向橋 4.后轉向橋 5.輪轂電機
1.Chassis frame 2.Constraint connecting rod 3.Front steering axle 4.Rear steering axle 5.Wheel hub motor
注:A、B分別為前后橋的轉向中心。
Note: A, B are turning centers of the front/rear steering axle, respectively.
圖1 高地隙噴霧機轉向結構示意圖
Fig.1 Diagram of steering structure of high clearance sprayer
1.2 轉向原理
區別于傳統高地隙的側向轉向方式(圖2a),本文研究的高地隙噴霧機采用一種自轉向結構底盤,通過四輪差速帶動整個橋臂轉動實現自轉向,轉向原理如圖2b所示。當高地隙噴霧機陷于淤泥中時,阻力集中在輪子的切線方向,與驅動電機力矩方向共線,而且轉向無需推開大片淤泥,所需力矩遠小于傳統的側向轉向方式,所以本文研究的高地隙噴霧機在水田中行駛效率較高。
高地隙噴霧機在下坡過程中需要反向力矩來保持車身的姿態,而現有驅動系統無法及時提供所需力矩,此外高地隙噴霧機沒有懸架系統,當行駛在高低不平的路面時容易出現因轉向輪懸空而導致轉向不穩定現象。因此需要設計一套輔助轉向系統,用于提高高地隙噴霧機行駛的穩定性和可靠性。
為實現輔助轉向功能,提高高地隙噴霧機作業性能,本文在現有自轉向系統上設計了一套基于電控液壓的輔助轉向系統,輔助轉向系統的安裝位置如圖3所示。轉向閥4及其驅動電機2、齒輪泵3及其驅動電機1、溢流閥5和油箱6都安裝在車架的右上角,轉向油缸7的固定端安裝在車架上,移動端安裝在后轉向橋上,通過控制轉向油缸的伸縮長度控制后轉向橋的轉動,而后轉向橋與前轉向橋則通過連桿約束,即前后轉向橋的轉向角度相等,所以轉向油缸只需控制后轉向橋轉角即可控制噴霧機的前后轉向橋同步轉向。
液壓輔助轉向系統原理如圖4所示。圖中P為系統壓力油輸入口、T為系統回油口、CL為轉向閥6左腔、CR為轉向閥6右腔。其中油箱1的作用是裝載液壓油,為整個液壓系統提供液壓油;溢流閥2的作用是保護油路;齒輪泵4的作用是控制液壓系統的油壓,確保系統油壓的穩定;直流電機3的作用是驅動齒輪泵4,確保齒輪泵4的轉速可控;轉向閥6的作用是控制油路的流向、流速和流量;直流電機5的作用是驅動轉向閥6,通過調節轉向閥6的轉向、轉速和轉角從而控制轉向油缸7的伸縮、伸縮速度和伸縮距離。轉向閥6的工作原理圖如圖5所示,當驅動轉向閥6的直流電機5不轉動時,閥套和閥芯在回位彈簧的作用下處于中立位置如圖5a所示,通往左腔CL和右腔CR的通道被關閉,從進油口P流進的壓力油最后經回油口T流回油箱1,轉向油缸7兩腔的油液不流動,活塞不移動,高地隙噴霧機沿原定方向行駛;當驅動轉向閥6的直流電機5逆時針轉動時,通過電機軸帶動閥芯旋轉,閥套由于制動而暫時不轉,閥芯與閥套產生相對運動如圖5b所示,左腔CL和右腔CR的油路逐漸被打開,回油口T的油路逐漸被關閉,腔內的壓力油使閥套跟隨電機軸同向旋轉,電機軸繼續轉動,則閥套始終跟隨閥芯保持一定的相對轉角同步旋轉。這一轉角保證了向該方向轉向所需要的油液通道,液壓油從進油口P流經左腔CL然后流向轉向油缸7的右腔而將液壓缸推出,另一腔的油液經轉向閥6的右腔CR流經回油口T流回油箱1,電機軸連續轉動,轉向閥便把與電機軸轉角成比例的油量泵入轉向油缸7,使活塞運動,推動橋臂轉動,完成轉向動作。電機軸停止轉動后,閥芯停止轉動,由于閥套的隨動和回位彈簧的作用,閥芯與閥套的相對轉角立即消失,轉向閥6恢復到中立位置,高地隙噴霧機沿著操縱方向行駛。
1.油箱 2.溢流閥 3.直流電機 4.齒輪泵 5.直流電機 6.轉向閥 7.轉向油缸
1.Oil tank 2.Relief valve 3.DC motor 4.Gear pump 5.DC motor 6.Steering valve 7. Steering cylinder
注:P為系統壓力油輸入口; T為系統回油口;CL為轉向閥6左腔;CR為轉向閥6右腔。下同。
Note: P represents inlet; T represents return port; CLrepresents left cavity; CRrepresents right cavity. The same as below.
圖4 輔助轉向液壓系統原理圖
Fig.4 Principle diagram of auxiliary steering hydraulic system
由于條件限制,不能通過實測獲得噴霧機的轉向阻力矩,因此,通過計算來估計噴霧機的轉向阻力矩。如圖6所示,A、B分別為前后轉向橋的轉向中心,為轉向中心到輪子中心的距離。前后轉向橋通過連桿連接,以確保前后轉向角相等。假設噴霧機有2個輪子出現故障時仍可轉向,則其中有2個輪子處于滾動狀態,另外2個輪子處于滑動狀態。
滾動狀態的輪子在轉向時的轉向阻力矩為
滑動狀態的輪子在轉向時的轉向阻力矩為

式中M為滾動狀態輪子轉向阻力矩,N·mm;M為滑動狀態輪子轉向阻力矩,N·mm;1為滾動摩擦系數,查閱機械設計手冊,取0.035;2為地面附著系數,查閱機械設計手冊,取0.9;為轉向中心與輪子中心距離,取755 mm;為噴霧機整車質量,取1 380 kg;為重力加速度,取9.8 N/kg。
由式(1)和式(2)可得,M=89.3 N·m,M=2 297.4 N·m,整車的轉彎阻力矩為M1=2M+2M=4 773.4 N·m。
由于噴霧機主要工作環境為水田,因此需要考慮土壤對輪胎的阻力矩[25]。為了計算方便,近似取為M2= 226.6 N·m。最終計算得出噴霧機的總轉向阻力矩為
查閱機械設計手冊,按照系統壓力低于液壓泵額定壓力的2/3的原則,本文噴霧機液壓輔助轉向系統工作壓力選取為1=10 MPa。
根據選取的工作壓力及最大總負載可以確定液壓缸內徑和活塞桿直徑,液壓缸受力分析如圖7所示。
活塞桿受壓時:
活塞桿受拉時:

查閱機械設計手冊,取2=0.8,取/=0.71,將數據代入公式,求得液壓缸內徑尺寸=63 mm,活塞桿直徑尺寸=35 mm。
為了獲得行走中橋臂轉向角度和輔助轉向液壓缸的映射關系以及橋臂轉向的角速度和液壓缸伸縮的線速度關系,建立輔助轉向系統幾何模型如圖8所示。圖中A、B分別為前后橋臂的轉向中心,C為液壓缸的固定端,D為液壓缸的移動端,前后橋臂通過連桿約束(圖中未畫出),以確保前后橋臂的轉角絕對值基本相等,橋臂轉角即為轉向輪轉角。當車輛從直線方向向左轉向時活塞桿向外伸出,C、D之間的距離增大。
根據三角函數關系可得:

求得:
同理得:

由三角形關系得:
將式(8)~(9)代入式(10)得到車輪轉角和液壓油缸行程的映射關系:

根據試驗分析,3WPZ-500噴霧機在轉向時轉向角范圍是?30°~30°,根據上述計算和參考其他田間行走機器的轉向液壓缸,最終選擇HSG63雙向液壓缸,該液壓缸的額定壓力16 MPa,最高壓力19 MPa,額定推力49 850 N,額定拉力31 681 N,機械效率M≥92%,容積效率V≥98%,最高速度0.3 m/s,行程300 mm,缸徑63 mm,外徑73 mm,桿徑35 mm,銷孔30 mm,安裝距離570 mm,閉合總長630 mm,伸出總長930 mm。經計算得到液壓油缸的安裝距離=720 mm,1=780 mm,2= 300 mm,經測量油缸缸體長度=570 mm,得到液壓油缸行程與轉向橋轉向角之間的映射關系如圖9所示。
由圖9可知,油缸行程與轉角近似呈線性關系,通過計算數據擬合所得比例系數為3.49 rad/m。為驗證比例系數的準確性,通過采集油缸行程和橋臂轉角數據,試驗數據擬合得到比例系數為3.42 rad/m,相對誤差0.2%。因此液壓油缸行程與后橋轉向角之間的映射關系可近似為:
對車輪轉角求導

通過試驗,轉向橋從-30°轉到30°平均需要3.5 s,HSG63液壓缸最高速度0.3 m/s,行程300 mm,理論上從一個極限點到另一個極限點只需1 s,滿足要求。
查閱機械設計手冊,所需轉向閥和液壓泵的流量應滿足:

式中為轉向閥和液壓泵輸出的最大流量,L/min;為系統泄漏系數,一般取1.1~1.3;max為進入液壓缸的最大流量,L/min;π2/4為無桿腔活塞最大容積,m3;經計算得max=16.02 L/min,則轉向閥和液壓泵流量≥17.62 L/min。
因此,選用BZZ1-E250擺線轉閥式開芯無反應型全液壓轉向器搭配DM08RC有刷直流減速電機,CBN-E310齒輪油泵搭配DC72 V直流減速電機;BZZ1-E250擺線轉閥式開芯無反應型全液壓轉向器基本參數:排量250 mL/r,流量19 L/min,轉速100 r/min,最大入口壓力16 MPa,最大連續背壓2.5 MPa,質量6.48 kg,總長181.5 mm,最高工作油溫80 ℃,動力轉向力矩1.7~5.0 N·m,最大人力轉向力矩136 N·m;DM08RC有刷直流減速電機基本參數:工作電壓72 V,功率90 W,轉速120 r/min,最大轉矩6.98 N·m;CBN-E310齒輪油泵基本參數:額定壓力16 MPa,最大壓力20 MPa,排量10 mL/r,額定轉速2 000 r/min,最大轉速3 000 r/min,輸入功率7.7 kW;DC72 V直流電機為常用的液壓系統電機,功率4 kW。
2.3 控制系統設計

閥控缸系統為非線性傳遞,本文采用PID控制算法實現轉向系統閉環控制。根據車速、轉角對應的四個輪子的速度以及對應的液壓缸伸縮長度和伸縮速度關系,建立Matlab/Simulink仿真模型如圖11所示。
仿真結果如圖12所示,由仿真結果可以看出,自轉向單獨作業、輔助轉向單獨作業以及自轉向和輔助轉向協調作業都在1.8 s左右跟蹤到目標角度。自轉向單獨作業前期響應相對較慢,后期跟蹤到目標角度時比單獨輔助轉向較快,單獨輔助轉向作業跟蹤到目標角度后有微小的超調并在后期一直保持了這微小的誤差,自轉向和輔助轉向協同作業相比前兩種單獨作業系統有更快的響應性能,而且到達目標角度后也更加穩定。
為驗證液壓輔助轉向系統性能,在水田和坡度為15°路面的工況下分別進行獨立自轉向系統作業以及自轉向系統和輔助轉向系統協同作業試驗,試驗車速為1 m/s。試驗情況如圖13所示。圖13a為獨立自轉向(無推桿)下坡試驗圖,圖13b為自轉向和輔助轉向系統協同作業(有推桿)下坡試驗圖,圖13c為獨立自轉向(無推桿)水田試驗圖,圖13d為自轉向和輔助轉向系統協同作業(有推桿)水田試驗圖。水田場地為長50 m、寬40 m的試驗田,水田中有多條寬20 cm、深40 cm的溝,田里有水浸泡,場地較為泥濘。
下坡試驗的角度跟蹤軌跡如圖14和圖15所示,其中圖14為獨立自轉向系統作業角度跟蹤軌跡,圖15為自轉向系統和輔助轉向系統協同作業的角度跟蹤軌跡。由試驗結果可知:下坡過程中,獨立自轉向系統作業的轉向角度出現震蕩,震蕩角度在2.5°左右,最大角度跟蹤偏差為6.1°,自轉向系統和輔助轉向系統協同作業的轉向角度出現高頻震蕩,震蕩角度在0.6°左右,最大角度跟蹤偏差為0.9°。圖14a中0~2 s為噴霧機的下坡啟動時間,圖14b中抖動現象由約束連桿和液壓缸與噴霧機底盤的連接存在機械間隙引起。
水田試驗的角度跟蹤軌跡如圖15所示,其中圖15a為獨立自轉向系統作業的角度跟蹤軌跡,圖15b為自轉向系統和輔助轉向系統協同作業的角度跟蹤軌跡,由試驗結果可知:獨立自轉向系統作業的轉向角度出現震蕩,震蕩角度在3.0°左右,最大角度跟蹤偏差為10.3°,自轉向系統和輔助轉向系統協同作業的轉向角度出現震蕩,震蕩角度在1.0°左右,最大角度跟蹤偏差為1.5°。
1)針對四輪獨立電驅動高地隙噴霧機因輪轂電機驅動器響應不及時導致的轉向不穩定問題,設計了基于電機驅動轉向閥的液壓輔助轉向系統;結合底盤自轉向結構特點,采用PID算法對自轉向和輔助轉向協調控制進行了Matlab仿真驗證。仿真結構表明:噴霧機從0°轉到10°的響應時間為1.8 s。
2)分別進行了高地隙噴霧機液壓輔助轉向系統下坡和水田試驗,試驗結果表明:該系統可實現既定角度行走,在下坡和水田兩種不同的環境下,跟蹤的最大角度偏差分別為0.9°和1.5°;該液壓輔助轉向系統具有良好的行駛穩定性和精度,能夠滿足作業需求。
[1] 莊騰飛,楊學軍,董祥,等. 大型自走式噴霧機噴桿研究現狀及發展趨勢分析[J]. 農業機械學報,2018,49(S1):189-198.Zhuang Tengfei, Yang Xuejun, Dong Xiang, et al. Research status and development trend of large self-propelled sprayer booms[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 189-198. (in Chinese with English abstract)
[2] 劉兆朋,張智剛,羅錫文,等. 雷沃ZP9500高地隙噴霧機的GNSS自動導航作業系統設計[J]. 農業工程學報,2018,34(1):15-21.
Liu Zhaopeng, Zhang Zhigang, Luo Xiwen, et al. Design of automatic navigation operation system for Levol ZP9500 high clearance boom sprayer based on GNSS[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 15-21. (in Chinese with English abstract)
[3] 劉進一,杜岳峰,張碩,等. 基于GNSS/MIMU/DR的農業機械組合導航定位方法[J]. 農業機械學報,2016,47(S1):1-7.
Liu Jinyi, Du Yuefeng, Zhang Shuo, et al. Automatic navigation method for agricultural machinery based on GNSS/MIMU/DR information fusion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(S1): 1-7. (in Chinese with English abstract)
[4] 陳黎卿,許澤鎮,解彬彬,等. 無人駕駛噴霧機電控系統設計與試驗[J]. 農業機械學報,2019,50(1):122-128.
Chen Liqing, Xu Zezhen, Xie Binbin, et al. Design and test of electronic control system for unmanned drive sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1): 122-128. (in Chinese with English abstract)
[5] 張漫,季宇寒,李世超,等. 農業機械導航技術研究進展[J]. 農業機械學報,2020,51(4):1-18.
Zhang Man, Ji Yuhan, Li Shichao, et al. Research progress of agricultural machinery navigation technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 1-18. (in Chinese with English abstract)
[6] Sahin H, Akalin O. Articulated vehicle lateral stability management via active rear-wheel steering of tractor using fuzzy logic and model predictive control[J]. SAE International Journal of Commercial Vehicles, 2020, 13(2): 115-128.
[7] Hanifah R A, Toha S F, Hassan M K, et al. Power reduction optimization with swarm based technique in electric power assist steering system[J]. Energy, 2016, 102: 444-452.
[8] Li M X, Jia Y M. Decoupling control in velocity-varying four-wheel steering vehicles with∞performance by longitudinal velocity and yaw rate feedback[J]. International Journal of Vehicle Mechanics and Mobility, 2014, 52(12): 1563-1583.
[9] 許超,陳永成,李瑞敏,等. 高地隙自走式噴桿噴霧機的設計與研究[J]. 中國農機化學報,2016,37(1):51-54.
Xu Chao, Chen Yongcheng, Li Ruimin, et al. Design and research on highland gap self-propelled lance spray[J]. Chinese Journal of Agricultural Mechanization, 2016, 37(1): 51-54. (in Chinese with English abstract)
[10] 李忠利,喬冬冬,鄒會勉. 基于變論域方法的拖拉機電液轉向系統控制研究[J]. 江蘇農業科學,2020,48(4):203-208.
Li Zhongli, Qiao Dongdong, Zou Huimian. Study on control of tractor electro-hydraulic steering system based on variable universe method[J]. Jiangsu Agricultural Sciences, 2020, 48(4): 203-208. (in Chinese with English abstract)
[11] 羅燈明,鮑遠通,林海. 多軸重型全掛車機械液壓全輪轉向裝置設計[J]. 機械設計,2013,30(6):86-89.
Luo Dengming, Bao Yuantong, Lin Hai. Design of mechanical-hydraulic full-wheel steering device for multi-axle heavy-duty full trailer[J]. Journal of Mechanical Design, 2013, 30(6): 86-89.(in Chinese with English abstract)
[12] Ariff M H M, Hairi Z, Idris N R N, et al. Independent torque control of an independent-wheel-drive electric vehicle[J]. Applied Mechanics and Materials, 2014, 663(1): 493-497.
[13] Guo Q B, Zhang C M, Li L Y, et al. Design and implementation of a loss optimization control for electric vehicle in-wheel permanent-magnet synchronous motor direct drive system[J]. Applied Energy, 2017, 105: 2253-2259.
[14] 丁力,陳永成,張曼,等. 輪式高地隙噴霧機行走液壓驅動系統的設計研究[J]. 農機化研究,2015,37(12):106-109.
Ding Li, Chen Yongcheng, Zhang Man, et al. Wheeled high clearance sprayer walking hydraulic drive system design research[J]. Journal of Agricultural Mechanization Research, 2015, 37(12): 106-109. (in Chinese with English abstract)
[15] 張京,陳度,王書茂,等. 農用輪式機器人四輪獨立轉向驅動控制系統設計與試驗[J]. 農業工程學報,2015,31(18):63-70.
Zhang Jing, Chen Du, Wang Shumao, et al. Design and experiment of four-wheel independent steering driving and control system for agricultural wheeled robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(18): 63-70.(in Chinese with English abstract)
[16] 夏長高,羅汞偉. 噴霧機全液壓四輪轉向系統設計與分析[J]. 重慶理工大學學報:自然科學,2016,30(11):65-70.
Xia Changgao, Luo Gongwei. Design and analysis of sprayer with full hydraulic four-wheel steering system[J]. Journal of Chongqing University of Technology: Natural Science, 2016, 30(11): 65-70. (in Chinese with English abstract)
[17] 李偉,薛濤,毛恩榮,等. 高地隙自走式噴霧機多輪轉向系統設計與試驗[J]. 農業機械學報,2019,50(1):141-151.
Li Wei, Xue Tao, Mao Enrong, et al. Design and experiment of multifunctional steering system for high clearance self-propelled sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1): 141-151. (in Chinese with English abstract)
[18] 張尚青,王衛兵,馮靜安,等. 高地隙噴霧機驅動輪獨立式驅動系統轉向控制模型研究[J]. 農機化研究,2015,37(1):31-34.
Zhang Shangqing, Wang Weibing, Feng Jingan, et al. The research of vehicles driving wheel free standing driving system steering control model[J]. Journal of Agricultural Mechanization Research, 2015, 37(1): 31-34.(in Chinese with English abstract)
[19] 魯植雄,龔佳慧,魯楊,等. 拖拉機線控液壓轉向系統的雙通道PID控制仿真與試驗[J]. 農業工程學報,2016,32(6):101-106.
Lu Zhixiong, Gong Jiahui, Lu Yang, et al. Simulation and experiment of dual channel PID control for hydraulic steerby-wire system of tractor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 101-106. (in Chinese with English abstract)
[20] 毛罕平,倪靜,韓綠化,等. 高地隙液壓四輪驅動噴霧機轉向防滑控制系統[J]. 農業機械學報,2012,43(6):58-62.
Mao Hanping, Ni Jing, Han Lühua, et al. Turning anti-slip control system of hydraulic four-wheel drive high clearance sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(6): 58-62.(in Chinese with English abstract)
[21] 陳黎卿,許鳴,柏仁貴,等. 高地隙植保機輔助駕駛系統設計與試驗[J]. 農業機械學報,2019,50(9): 25-32.
Chen Liqing, Xu Ming, Bai Rengui, et al. Design and test of auxiliary driving system for high-gap plant protection machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(9): 25-32. (in Chinese with English abstract)
[22] 扈凱,張文毅. 高地隙自走式噴霧機多模式液壓轉向系統設計與試驗[J]. 農業機械學報,2020,51(9):366-373. Hu Kai, Zhang Wenyi. Design and experiment of multi-mode hydraulic steering system of high clearance self-propelled sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 366-373. (in Chinese with English abstract)
[23] 沈躍,何思偉,劉慧,等. 高地隙噴霧機自轉向電動底盤控制系統設計與試驗[J]. 農業機械學報,2020,51(11):385-392,402. Shen Yue, He Siwei, Liu Hui, et al. Modeling and control of self-steering electric chassis structure of high clearance sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 385-392, 402. (in Chinese with English abstract)
[24] Shen Y, Zhang B N, Liu H, et al. Design and development of a novel independent wheel torque control of 4WD electric vehicle[J]. Mechanical, 2019, 25(3): 210-218.
[25] 王靜,魯植雄,金月,等. 拖拉機全液壓轉向阻力矩與油缸推力的研究[J].中國農機化學報,2013,34(4):168-173.Wang Jing, Lu Zhixiong, Jin Yue, et al. Study on resistant torque and piston thrust of wheeled tractor with hydraulic steering system[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(4): 168-173. (in Chinese with English abstract)
Design and experiment of the auxiliary steering system for a four-wheel independent electrically driven high clearance sprayer
Liu Hui1, Long Youneng1, He Siwei1, Cui Yemin2, Shen Yue1※
(1.,,212013,;2.,226631,)
Aiming at the unstable steering of a four-wheel independent electrically driven high clearance sprayer due to the failure of the hub motor controller to respond to a large disturbance, an auxiliary steering method based on electrically controlled hydraulic pressure was proposed. Firstly, the structure and steering principle of the self-steering chassis of the four-wheel independent electrically driven highland gap sprayer were briefly introduced. Secondly, the realization method of the hydraulic assisted steering system was described, including the establishment of the steering resistance moment calculation model, and the analysis of the steering resistance moment required by the wheels under rolling and sliding conditions. The upper limit of the steering resistance moment can be calculated when the two wheels fail turning. Thirdly, based on the structural characteristics of the self-steering chassis, the kinematics model of the hydraulic auxiliary steering was established, the relevant parameters of the important components of the hydraulic system were calculated, the installation position of the hydraulic cylinder was determined, and the key components of the hydraulic system were selected. Finally, the simulation and experiment were carried out to verify the performance of coordinated control of auto steering and auxiliary steering. In the simulation test, the independent operation of self-steering, the independent operation of auxiliary steering, and the collaborative operation of the self-steering and auxiliary steering of the sprayer were simulated and adjusted to make the angle tracking trajectory of the self-steering and the auxiliary steering as consistent as possible. The simulation results showed that, self-steering alone, auxiliary steering alone, and coordinated self-steering and auxiliary steering could all track to the target angle by about 1.8 s. The response of the self-steering is relatively slow in the early stage, but it is a little faster than the auxiliary steering when tracking the target Aangle in the later stage. The auxiliary steering has a slight overshoot after tracking the target Aangle and keeps this slight error in the later stage. Since the self-steering and auxiliary work together has faster response performance than the first two separate operating systems, they are more stable when they reach the target angle. Under the working conditions of independent operation of the self-steering system and cooperative operation of the self-steering system and auxiliary steering system, the comparison tests of downhill and paddy field with a gradient of 15° were carried out at a speed of 1 m/s respectively. The test results showed that in the downhill test, the maximum tracking deviation of the independent auto-steering system operation was 6.1°, and the maximum tracking deviation of the co-operation of auto-steering and auxiliary steering was 0.9°. In the paddy field test, the maximum tracking deviation of the independent auto-steering system operation was 10.3°, and the maximum tracking deviation of the co-operation of auto-steering and auxiliary steering was 1.5°. The experimental results verify the feasibility and stability of the proposed hydraulic auxiliary steering system. The system has good test performance and can meet the actual operation requirements.
high clearance sprayer; electric chassis; four-wheel steering; self-steering structure; hydraulic auxiliary steering
2021-03-15
2021-05-04
國家自然科學基金項目(51975260);江蘇省重點研發計劃(BE2018372);江蘇省自然科學基金(BK20181443);江蘇高校青藍工程項目和鎮江市重點研發計劃(NY2018001)
劉慧,教授,博士生導師,研究方向為農業電氣化與自動化、智能控制與信號處理研究。Email:amity@ujs.edu.cn
沈躍,教授,博士生導師,研究方向為無人農機與智能控制、農業機器人研究。Email:shen@ujs.edu.cn
10.11975/j.issn.1002-6819.2021.13.004
S491
A
1002-6819(2021)-13-0030-08